llvm-project/llvm/lib/CodeGen/MachineUniformityAnalysis.cpp
Petar Avramovic 88814969dd
MachineUniformityAnalysis: Pass is incorrectly initialized as CFGOnly (#125511)
Set CFGOnly in MachineUniformityAnalysisPass to false.
If there were new registers created, uniformity analysis needs to be
updated. Previously, with CFGOnly set to true, pass would be skipped
if CFG was preserved.
2025-02-04 09:25:25 +01:00

246 lines
7.7 KiB
C++

//===- MachineUniformityAnalysis.cpp --------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/MachineUniformityAnalysis.h"
#include "llvm/ADT/GenericUniformityImpl.h"
#include "llvm/CodeGen/MachineCycleAnalysis.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/MachineSSAContext.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/InitializePasses.h"
using namespace llvm;
template <>
bool llvm::GenericUniformityAnalysisImpl<MachineSSAContext>::hasDivergentDefs(
const MachineInstr &I) const {
for (auto &op : I.all_defs()) {
if (isDivergent(op.getReg()))
return true;
}
return false;
}
template <>
bool llvm::GenericUniformityAnalysisImpl<MachineSSAContext>::markDefsDivergent(
const MachineInstr &Instr) {
bool insertedDivergent = false;
const auto &MRI = F.getRegInfo();
const auto &RBI = *F.getSubtarget().getRegBankInfo();
const auto &TRI = *MRI.getTargetRegisterInfo();
for (auto &op : Instr.all_defs()) {
if (!op.getReg().isVirtual())
continue;
assert(!op.getSubReg());
if (TRI.isUniformReg(MRI, RBI, op.getReg()))
continue;
insertedDivergent |= markDivergent(op.getReg());
}
return insertedDivergent;
}
template <>
void llvm::GenericUniformityAnalysisImpl<MachineSSAContext>::initialize() {
const auto &InstrInfo = *F.getSubtarget().getInstrInfo();
for (const MachineBasicBlock &block : F) {
for (const MachineInstr &instr : block) {
auto uniformity = InstrInfo.getInstructionUniformity(instr);
if (uniformity == InstructionUniformity::AlwaysUniform) {
addUniformOverride(instr);
continue;
}
if (uniformity == InstructionUniformity::NeverUniform) {
markDivergent(instr);
}
}
}
}
template <>
void llvm::GenericUniformityAnalysisImpl<MachineSSAContext>::pushUsers(
Register Reg) {
assert(isDivergent(Reg));
const auto &RegInfo = F.getRegInfo();
for (MachineInstr &UserInstr : RegInfo.use_instructions(Reg)) {
markDivergent(UserInstr);
}
}
template <>
void llvm::GenericUniformityAnalysisImpl<MachineSSAContext>::pushUsers(
const MachineInstr &Instr) {
assert(!isAlwaysUniform(Instr));
if (Instr.isTerminator())
return;
for (const MachineOperand &op : Instr.all_defs()) {
auto Reg = op.getReg();
if (isDivergent(Reg))
pushUsers(Reg);
}
}
template <>
bool llvm::GenericUniformityAnalysisImpl<MachineSSAContext>::usesValueFromCycle(
const MachineInstr &I, const MachineCycle &DefCycle) const {
assert(!isAlwaysUniform(I));
for (auto &Op : I.operands()) {
if (!Op.isReg() || !Op.readsReg())
continue;
auto Reg = Op.getReg();
// FIXME: Physical registers need to be properly checked instead of always
// returning true
if (Reg.isPhysical())
return true;
auto *Def = F.getRegInfo().getVRegDef(Reg);
if (DefCycle.contains(Def->getParent()))
return true;
}
return false;
}
template <>
void llvm::GenericUniformityAnalysisImpl<MachineSSAContext>::
propagateTemporalDivergence(const MachineInstr &I,
const MachineCycle &DefCycle) {
const auto &RegInfo = F.getRegInfo();
for (auto &Op : I.all_defs()) {
if (!Op.getReg().isVirtual())
continue;
auto Reg = Op.getReg();
if (isDivergent(Reg))
continue;
for (MachineInstr &UserInstr : RegInfo.use_instructions(Reg)) {
if (DefCycle.contains(UserInstr.getParent()))
continue;
markDivergent(UserInstr);
}
}
}
template <>
bool llvm::GenericUniformityAnalysisImpl<MachineSSAContext>::isDivergentUse(
const MachineOperand &U) const {
if (!U.isReg())
return false;
auto Reg = U.getReg();
if (isDivergent(Reg))
return true;
const auto &RegInfo = F.getRegInfo();
auto *Def = RegInfo.getOneDef(Reg);
if (!Def)
return true;
auto *DefInstr = Def->getParent();
auto *UseInstr = U.getParent();
return isTemporalDivergent(*UseInstr->getParent(), *DefInstr);
}
// This ensures explicit instantiation of
// GenericUniformityAnalysisImpl::ImplDeleter::operator()
template class llvm::GenericUniformityInfo<MachineSSAContext>;
template struct llvm::GenericUniformityAnalysisImplDeleter<
llvm::GenericUniformityAnalysisImpl<MachineSSAContext>>;
MachineUniformityInfo llvm::computeMachineUniformityInfo(
MachineFunction &F, const MachineCycleInfo &cycleInfo,
const MachineDominatorTree &domTree, bool HasBranchDivergence) {
assert(F.getRegInfo().isSSA() && "Expected to be run on SSA form!");
MachineUniformityInfo UI(domTree, cycleInfo);
if (HasBranchDivergence)
UI.compute();
return UI;
}
namespace {
class MachineUniformityInfoPrinterPass : public MachineFunctionPass {
public:
static char ID;
MachineUniformityInfoPrinterPass();
bool runOnMachineFunction(MachineFunction &F) override;
void getAnalysisUsage(AnalysisUsage &AU) const override;
};
} // namespace
char MachineUniformityAnalysisPass::ID = 0;
MachineUniformityAnalysisPass::MachineUniformityAnalysisPass()
: MachineFunctionPass(ID) {
initializeMachineUniformityAnalysisPassPass(*PassRegistry::getPassRegistry());
}
INITIALIZE_PASS_BEGIN(MachineUniformityAnalysisPass, "machine-uniformity",
"Machine Uniformity Info Analysis", false, true)
INITIALIZE_PASS_DEPENDENCY(MachineCycleInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass)
INITIALIZE_PASS_END(MachineUniformityAnalysisPass, "machine-uniformity",
"Machine Uniformity Info Analysis", false, true)
void MachineUniformityAnalysisPass::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
AU.addRequired<MachineCycleInfoWrapperPass>();
AU.addRequired<MachineDominatorTreeWrapperPass>();
MachineFunctionPass::getAnalysisUsage(AU);
}
bool MachineUniformityAnalysisPass::runOnMachineFunction(MachineFunction &MF) {
auto &DomTree = getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree();
auto &CI = getAnalysis<MachineCycleInfoWrapperPass>().getCycleInfo();
// FIXME: Query TTI::hasBranchDivergence. -run-pass seems to end up with a
// default NoTTI
UI = computeMachineUniformityInfo(MF, CI, DomTree, true);
return false;
}
void MachineUniformityAnalysisPass::print(raw_ostream &OS,
const Module *) const {
OS << "MachineUniformityInfo for function: " << UI.getFunction().getName()
<< "\n";
UI.print(OS);
}
char MachineUniformityInfoPrinterPass::ID = 0;
MachineUniformityInfoPrinterPass::MachineUniformityInfoPrinterPass()
: MachineFunctionPass(ID) {
initializeMachineUniformityInfoPrinterPassPass(
*PassRegistry::getPassRegistry());
}
INITIALIZE_PASS_BEGIN(MachineUniformityInfoPrinterPass,
"print-machine-uniformity",
"Print Machine Uniformity Info Analysis", true, true)
INITIALIZE_PASS_DEPENDENCY(MachineUniformityAnalysisPass)
INITIALIZE_PASS_END(MachineUniformityInfoPrinterPass,
"print-machine-uniformity",
"Print Machine Uniformity Info Analysis", true, true)
void MachineUniformityInfoPrinterPass::getAnalysisUsage(
AnalysisUsage &AU) const {
AU.setPreservesAll();
AU.addRequired<MachineUniformityAnalysisPass>();
MachineFunctionPass::getAnalysisUsage(AU);
}
bool MachineUniformityInfoPrinterPass::runOnMachineFunction(
MachineFunction &F) {
auto &UI = getAnalysis<MachineUniformityAnalysisPass>();
UI.print(errs());
return false;
}