llvm-project/llvm/lib/Target/AMDGPU/AMDGPUPreloadKernArgProlog.cpp
Austin Kerbow 2e5c298281
[AMDGPU] Add backward compatibility layer for kernarg preloading (#119167)
Add a prologue to the kernel entry to handle cases where code designed
for kernarg preloading is executed on hardware equipped with
incompatible firmware. If hardware has compatible firmware the 256 bytes
at the start of the kernel entry will be skipped. This skipping is done
automatically by hardware that supports the feature.

A pass is added which is intended to be run at the very end of the
pipeline to avoid any optimizations that would assume the prologue is a
real predecessor block to the actual code start. In reality we have two
possible entry points for the function. 1. The optimized path that
supports kernarg preloading which begins at an offset of 256 bytes. 2.
The backwards compatible entry point which starts at offset 0.
2025-01-10 11:39:02 -08:00

212 lines
7.3 KiB
C++

//===- AMDGPUPreloadKernArgProlog.cpp - Preload KernArg Prolog ------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file This pass creates a backward compatibility layer for kernel argument
/// preloading in situations where code is compiled with kernel argument
/// preloading enabled but executed on hardware without firmware support for it.
///
/// To avoid recompilation, the pass inserts a block at the beginning of the
/// program that loads the kernel arguments into SGPRs using s_load
/// instructions. This sets up the registers exactly as they would be on systems
/// with compatible firmware.
///
/// This effectively creates two entry points for the kernel. Firmware that
/// supports the feature will automatically jump past the first 256 bytes of the
/// program, skipping the compatibility layer and directly starting execution on
/// the optimized code path.
///
/// This pass should be run as late as possible to prevent any optimizations
/// that might assume the padding is dead code or that the added prologue is a
/// true predecessor of the kernel entry block.
//
//===----------------------------------------------------------------------===//
#include "AMDGPUPreloadKernArgProlog.h"
#include "AMDGPU.h"
#include "GCNSubtarget.h"
#include "SIMachineFunctionInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/TargetParser/TargetParser.h"
using namespace llvm;
#define DEBUG_TYPE "amdgpu-preload-kern-arg-prolog"
namespace {
// Used to build s_loads maping user SGPRs to kernel arguments
struct LoadConfig {
unsigned Size;
const TargetRegisterClass *RegClass;
unsigned Opcode;
Register LoadReg = Register();
};
class AMDGPUPreloadKernArgProlog {
public:
AMDGPUPreloadKernArgProlog(MachineFunction &MF);
bool run();
private:
MachineFunction &MF;
const GCNSubtarget &ST;
const SIMachineFunctionInfo &MFI;
const SIInstrInfo &TII;
const TargetRegisterInfo &TRI;
// Create a new block before the entry point to the kernel. Firmware that
// supports preloading kernel arguments will automatically jump past this
// block to the alternative kernel entry point.
void createBackCompatBlock(unsigned NumKernArgPreloadSGPRs);
// Add instructions to load kernel arguments into SGPRs.
void addBackCompatLoads(MachineBasicBlock *BackCompatMBB,
Register KernArgSegmentPtr,
unsigned NumKernArgPreloadSGPRs);
};
class AMDGPUPreloadKernArgPrologLegacy : public MachineFunctionPass {
public:
static char ID;
AMDGPUPreloadKernArgPrologLegacy() : MachineFunctionPass(ID) {}
StringRef getPassName() const override {
return "AMDGPU Preload Kernel Arguments Prolog";
}
bool runOnMachineFunction(MachineFunction &MF) override;
};
} // end anonymous namespace
char AMDGPUPreloadKernArgPrologLegacy::ID = 0;
INITIALIZE_PASS(AMDGPUPreloadKernArgPrologLegacy, DEBUG_TYPE,
"AMDGPU Preload Kernel Arguments Prolog", false, false)
char &llvm::AMDGPUPreloadKernArgPrologLegacyID =
AMDGPUPreloadKernArgPrologLegacy::ID;
FunctionPass *llvm::createAMDGPUPreloadKernArgPrologLegacyPass() {
return new AMDGPUPreloadKernArgPrologLegacy();
}
bool AMDGPUPreloadKernArgPrologLegacy::runOnMachineFunction(
MachineFunction &MF) {
return AMDGPUPreloadKernArgProlog(MF).run();
}
AMDGPUPreloadKernArgProlog::AMDGPUPreloadKernArgProlog(MachineFunction &MF)
: MF(MF), ST(MF.getSubtarget<GCNSubtarget>()),
MFI(*MF.getInfo<SIMachineFunctionInfo>()), TII(*ST.getInstrInfo()),
TRI(*ST.getRegisterInfo()) {}
bool AMDGPUPreloadKernArgProlog::run() {
if (!ST.hasKernargPreload())
return false;
unsigned NumKernArgPreloadSGPRs = MFI.getNumKernargPreloadedSGPRs();
if (!NumKernArgPreloadSGPRs)
return false;
createBackCompatBlock(NumKernArgPreloadSGPRs);
return true;
}
void AMDGPUPreloadKernArgProlog::createBackCompatBlock(
unsigned NumKernArgPreloadSGPRs) {
auto KernelEntryMBB = MF.begin();
MachineBasicBlock *BackCompatMBB = MF.CreateMachineBasicBlock();
MF.insert(KernelEntryMBB, BackCompatMBB);
assert(MFI.getUserSGPRInfo().hasKernargSegmentPtr() &&
"Kernel argument segment pointer register not set.");
Register KernArgSegmentPtr = MFI.getArgInfo().KernargSegmentPtr.getRegister();
BackCompatMBB->addLiveIn(KernArgSegmentPtr);
// Load kernel arguments to SGPRs
addBackCompatLoads(BackCompatMBB, KernArgSegmentPtr, NumKernArgPreloadSGPRs);
// Wait for loads to complete
AMDGPU::IsaVersion IV = AMDGPU::getIsaVersion(ST.getCPU());
unsigned Waitcnt =
AMDGPU::encodeWaitcnt(IV, getVmcntBitMask(IV), getExpcntBitMask(IV), 0);
BuildMI(BackCompatMBB, DebugLoc(), TII.get(AMDGPU::S_WAITCNT))
.addImm(Waitcnt);
// Branch to kernel start
BuildMI(BackCompatMBB, DebugLoc(), TII.get(AMDGPU::S_BRANCH))
.addMBB(&*KernelEntryMBB);
BackCompatMBB->addSuccessor(&*KernelEntryMBB);
// Create a new basic block for padding to 256 bytes
MachineBasicBlock *PadMBB = MF.CreateMachineBasicBlock();
MF.insert(++BackCompatMBB->getIterator(), PadMBB);
PadMBB->setAlignment(Align(256));
PadMBB->addSuccessor(&*KernelEntryMBB);
}
/// Find the largest possible load size that fits with SGPR alignment
static LoadConfig getLoadParameters(const TargetRegisterInfo &TRI,
Register KernArgPreloadSGPR,
unsigned NumKernArgPreloadSGPRs) {
static constexpr LoadConfig Configs[] = {
{8, &AMDGPU::SReg_256RegClass, AMDGPU::S_LOAD_DWORDX8_IMM},
{4, &AMDGPU::SReg_128RegClass, AMDGPU::S_LOAD_DWORDX4_IMM},
{2, &AMDGPU::SReg_64RegClass, AMDGPU::S_LOAD_DWORDX2_IMM}};
for (const auto &Config : Configs) {
if (NumKernArgPreloadSGPRs >= Config.Size) {
Register LoadReg = TRI.getMatchingSuperReg(KernArgPreloadSGPR,
AMDGPU::sub0, Config.RegClass);
if (LoadReg) {
LoadConfig C(Config);
C.LoadReg = LoadReg;
return C;
}
}
}
// Fallback to a single register
return LoadConfig{1, &AMDGPU::SReg_32RegClass, AMDGPU::S_LOAD_DWORD_IMM,
KernArgPreloadSGPR};
}
void AMDGPUPreloadKernArgProlog::addBackCompatLoads(
MachineBasicBlock *BackCompatMBB, Register KernArgSegmentPtr,
unsigned NumKernArgPreloadSGPRs) {
Register KernArgPreloadSGPR = MFI.getArgInfo().FirstKernArgPreloadReg;
unsigned Offset = 0;
// Fill all user SGPRs used for kernarg preloading with sequential data from
// the kernarg segment
while (NumKernArgPreloadSGPRs > 0) {
LoadConfig Config =
getLoadParameters(TRI, KernArgPreloadSGPR, NumKernArgPreloadSGPRs);
BuildMI(BackCompatMBB, DebugLoc(), TII.get(Config.Opcode), Config.LoadReg)
.addReg(KernArgSegmentPtr)
.addImm(Offset)
.addImm(0);
Offset += 4 * Config.Size;
KernArgPreloadSGPR = KernArgPreloadSGPR.asMCReg() + Config.Size;
NumKernArgPreloadSGPRs -= Config.Size;
}
}
PreservedAnalyses
AMDGPUPreloadKernArgPrologPass::run(MachineFunction &MF,
MachineFunctionAnalysisManager &) {
if (!AMDGPUPreloadKernArgProlog(MF).run())
return PreservedAnalyses::all();
return PreservedAnalyses::none();
}