
Adds support for the SPV_INTEL_ternary_bitwise_function extension, adding; * the OpBitwiseFunctionINTEL SPIR-V instruction, a ternary bitwise function where the operation performed is determined by a look-up table index, * and the corresponding TernaryBitwiseFunctionINTEL capability. See https://github.khronos.org/SPIRV-Registry/extensions/INTEL/SPV_INTEL_ternary_bitwise_function.html. Signed-off-by: Larsen, Steffen <steffen.larsen@intel.com>
2066 lines
83 KiB
C++
2066 lines
83 KiB
C++
//===- SPIRVModuleAnalysis.cpp - analysis of global instrs & regs - C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// The analysis collects instructions that should be output at the module level
|
|
// and performs the global register numbering.
|
|
//
|
|
// The results of this analysis are used in AsmPrinter to rename registers
|
|
// globally and to output required instructions at the module level.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "SPIRVModuleAnalysis.h"
|
|
#include "MCTargetDesc/SPIRVBaseInfo.h"
|
|
#include "MCTargetDesc/SPIRVMCTargetDesc.h"
|
|
#include "SPIRV.h"
|
|
#include "SPIRVSubtarget.h"
|
|
#include "SPIRVTargetMachine.h"
|
|
#include "SPIRVUtils.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/CodeGen/MachineModuleInfo.h"
|
|
#include "llvm/CodeGen/TargetPassConfig.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "spirv-module-analysis"
|
|
|
|
static cl::opt<bool>
|
|
SPVDumpDeps("spv-dump-deps",
|
|
cl::desc("Dump MIR with SPIR-V dependencies info"),
|
|
cl::Optional, cl::init(false));
|
|
|
|
static cl::list<SPIRV::Capability::Capability>
|
|
AvoidCapabilities("avoid-spirv-capabilities",
|
|
cl::desc("SPIR-V capabilities to avoid if there are "
|
|
"other options enabling a feature"),
|
|
cl::ZeroOrMore, cl::Hidden,
|
|
cl::values(clEnumValN(SPIRV::Capability::Shader, "Shader",
|
|
"SPIR-V Shader capability")));
|
|
// Use sets instead of cl::list to check "if contains" condition
|
|
struct AvoidCapabilitiesSet {
|
|
SmallSet<SPIRV::Capability::Capability, 4> S;
|
|
AvoidCapabilitiesSet() { S.insert_range(AvoidCapabilities); }
|
|
};
|
|
|
|
char llvm::SPIRVModuleAnalysis::ID = 0;
|
|
|
|
INITIALIZE_PASS(SPIRVModuleAnalysis, DEBUG_TYPE, "SPIRV module analysis", true,
|
|
true)
|
|
|
|
// Retrieve an unsigned from an MDNode with a list of them as operands.
|
|
static unsigned getMetadataUInt(MDNode *MdNode, unsigned OpIndex,
|
|
unsigned DefaultVal = 0) {
|
|
if (MdNode && OpIndex < MdNode->getNumOperands()) {
|
|
const auto &Op = MdNode->getOperand(OpIndex);
|
|
return mdconst::extract<ConstantInt>(Op)->getZExtValue();
|
|
}
|
|
return DefaultVal;
|
|
}
|
|
|
|
static SPIRV::Requirements
|
|
getSymbolicOperandRequirements(SPIRV::OperandCategory::OperandCategory Category,
|
|
unsigned i, const SPIRVSubtarget &ST,
|
|
SPIRV::RequirementHandler &Reqs) {
|
|
// A set of capabilities to avoid if there is another option.
|
|
AvoidCapabilitiesSet AvoidCaps;
|
|
if (ST.isOpenCLEnv())
|
|
AvoidCaps.S.insert(SPIRV::Capability::Shader);
|
|
|
|
VersionTuple ReqMinVer = getSymbolicOperandMinVersion(Category, i);
|
|
VersionTuple ReqMaxVer = getSymbolicOperandMaxVersion(Category, i);
|
|
VersionTuple SPIRVVersion = ST.getSPIRVVersion();
|
|
bool MinVerOK = SPIRVVersion.empty() || SPIRVVersion >= ReqMinVer;
|
|
bool MaxVerOK =
|
|
ReqMaxVer.empty() || SPIRVVersion.empty() || SPIRVVersion <= ReqMaxVer;
|
|
CapabilityList ReqCaps = getSymbolicOperandCapabilities(Category, i);
|
|
ExtensionList ReqExts = getSymbolicOperandExtensions(Category, i);
|
|
if (ReqCaps.empty()) {
|
|
if (ReqExts.empty()) {
|
|
if (MinVerOK && MaxVerOK)
|
|
return {true, {}, {}, ReqMinVer, ReqMaxVer};
|
|
return {false, {}, {}, VersionTuple(), VersionTuple()};
|
|
}
|
|
} else if (MinVerOK && MaxVerOK) {
|
|
if (ReqCaps.size() == 1) {
|
|
auto Cap = ReqCaps[0];
|
|
if (Reqs.isCapabilityAvailable(Cap))
|
|
return {true, {Cap}, ReqExts, ReqMinVer, ReqMaxVer};
|
|
} else {
|
|
// By SPIR-V specification: "If an instruction, enumerant, or other
|
|
// feature specifies multiple enabling capabilities, only one such
|
|
// capability needs to be declared to use the feature." However, one
|
|
// capability may be preferred over another. We use command line
|
|
// argument(s) and AvoidCapabilities to avoid selection of certain
|
|
// capabilities if there are other options.
|
|
CapabilityList UseCaps;
|
|
for (auto Cap : ReqCaps)
|
|
if (Reqs.isCapabilityAvailable(Cap))
|
|
UseCaps.push_back(Cap);
|
|
for (size_t i = 0, Sz = UseCaps.size(); i < Sz; ++i) {
|
|
auto Cap = UseCaps[i];
|
|
if (i == Sz - 1 || !AvoidCaps.S.contains(Cap))
|
|
return {true, {Cap}, ReqExts, ReqMinVer, ReqMaxVer};
|
|
}
|
|
}
|
|
}
|
|
// If there are no capabilities, or we can't satisfy the version or
|
|
// capability requirements, use the list of extensions (if the subtarget
|
|
// can handle them all).
|
|
if (llvm::all_of(ReqExts, [&ST](const SPIRV::Extension::Extension &Ext) {
|
|
return ST.canUseExtension(Ext);
|
|
})) {
|
|
return {true,
|
|
{},
|
|
ReqExts,
|
|
VersionTuple(),
|
|
VersionTuple()}; // TODO: add versions to extensions.
|
|
}
|
|
return {false, {}, {}, VersionTuple(), VersionTuple()};
|
|
}
|
|
|
|
void SPIRVModuleAnalysis::setBaseInfo(const Module &M) {
|
|
MAI.MaxID = 0;
|
|
for (int i = 0; i < SPIRV::NUM_MODULE_SECTIONS; i++)
|
|
MAI.MS[i].clear();
|
|
MAI.RegisterAliasTable.clear();
|
|
MAI.InstrsToDelete.clear();
|
|
MAI.FuncMap.clear();
|
|
MAI.GlobalVarList.clear();
|
|
MAI.ExtInstSetMap.clear();
|
|
MAI.Reqs.clear();
|
|
MAI.Reqs.initAvailableCapabilities(*ST);
|
|
|
|
// TODO: determine memory model and source language from the configuratoin.
|
|
if (auto MemModel = M.getNamedMetadata("spirv.MemoryModel")) {
|
|
auto MemMD = MemModel->getOperand(0);
|
|
MAI.Addr = static_cast<SPIRV::AddressingModel::AddressingModel>(
|
|
getMetadataUInt(MemMD, 0));
|
|
MAI.Mem =
|
|
static_cast<SPIRV::MemoryModel::MemoryModel>(getMetadataUInt(MemMD, 1));
|
|
} else {
|
|
// TODO: Add support for VulkanMemoryModel.
|
|
MAI.Mem = ST->isOpenCLEnv() ? SPIRV::MemoryModel::OpenCL
|
|
: SPIRV::MemoryModel::GLSL450;
|
|
if (MAI.Mem == SPIRV::MemoryModel::OpenCL) {
|
|
unsigned PtrSize = ST->getPointerSize();
|
|
MAI.Addr = PtrSize == 32 ? SPIRV::AddressingModel::Physical32
|
|
: PtrSize == 64 ? SPIRV::AddressingModel::Physical64
|
|
: SPIRV::AddressingModel::Logical;
|
|
} else {
|
|
// TODO: Add support for PhysicalStorageBufferAddress.
|
|
MAI.Addr = SPIRV::AddressingModel::Logical;
|
|
}
|
|
}
|
|
// Get the OpenCL version number from metadata.
|
|
// TODO: support other source languages.
|
|
if (auto VerNode = M.getNamedMetadata("opencl.ocl.version")) {
|
|
MAI.SrcLang = SPIRV::SourceLanguage::OpenCL_C;
|
|
// Construct version literal in accordance with SPIRV-LLVM-Translator.
|
|
// TODO: support multiple OCL version metadata.
|
|
assert(VerNode->getNumOperands() > 0 && "Invalid SPIR");
|
|
auto VersionMD = VerNode->getOperand(0);
|
|
unsigned MajorNum = getMetadataUInt(VersionMD, 0, 2);
|
|
unsigned MinorNum = getMetadataUInt(VersionMD, 1);
|
|
unsigned RevNum = getMetadataUInt(VersionMD, 2);
|
|
// Prevent Major part of OpenCL version to be 0
|
|
MAI.SrcLangVersion =
|
|
(std::max(1U, MajorNum) * 100 + MinorNum) * 1000 + RevNum;
|
|
} else {
|
|
// If there is no information about OpenCL version we are forced to generate
|
|
// OpenCL 1.0 by default for the OpenCL environment to avoid puzzling
|
|
// run-times with Unknown/0.0 version output. For a reference, LLVM-SPIRV
|
|
// Translator avoids potential issues with run-times in a similar manner.
|
|
if (ST->isOpenCLEnv()) {
|
|
MAI.SrcLang = SPIRV::SourceLanguage::OpenCL_CPP;
|
|
MAI.SrcLangVersion = 100000;
|
|
} else {
|
|
MAI.SrcLang = SPIRV::SourceLanguage::Unknown;
|
|
MAI.SrcLangVersion = 0;
|
|
}
|
|
}
|
|
|
|
if (auto ExtNode = M.getNamedMetadata("opencl.used.extensions")) {
|
|
for (unsigned I = 0, E = ExtNode->getNumOperands(); I != E; ++I) {
|
|
MDNode *MD = ExtNode->getOperand(I);
|
|
if (!MD || MD->getNumOperands() == 0)
|
|
continue;
|
|
for (unsigned J = 0, N = MD->getNumOperands(); J != N; ++J)
|
|
MAI.SrcExt.insert(cast<MDString>(MD->getOperand(J))->getString());
|
|
}
|
|
}
|
|
|
|
// Update required capabilities for this memory model, addressing model and
|
|
// source language.
|
|
MAI.Reqs.getAndAddRequirements(SPIRV::OperandCategory::MemoryModelOperand,
|
|
MAI.Mem, *ST);
|
|
MAI.Reqs.getAndAddRequirements(SPIRV::OperandCategory::SourceLanguageOperand,
|
|
MAI.SrcLang, *ST);
|
|
MAI.Reqs.getAndAddRequirements(SPIRV::OperandCategory::AddressingModelOperand,
|
|
MAI.Addr, *ST);
|
|
|
|
if (ST->isOpenCLEnv()) {
|
|
// TODO: check if it's required by default.
|
|
MAI.ExtInstSetMap[static_cast<unsigned>(
|
|
SPIRV::InstructionSet::OpenCL_std)] = MAI.getNextIDRegister();
|
|
}
|
|
}
|
|
|
|
// Appends the signature of the decoration instructions that decorate R to
|
|
// Signature.
|
|
static void appendDecorationsForReg(const MachineRegisterInfo &MRI, Register R,
|
|
InstrSignature &Signature) {
|
|
for (MachineInstr &UseMI : MRI.use_instructions(R)) {
|
|
// We don't handle OpDecorateId because getting the register alias for the
|
|
// ID can cause problems, and we do not need it for now.
|
|
if (UseMI.getOpcode() != SPIRV::OpDecorate &&
|
|
UseMI.getOpcode() != SPIRV::OpMemberDecorate)
|
|
continue;
|
|
|
|
for (unsigned I = 0; I < UseMI.getNumOperands(); ++I) {
|
|
const MachineOperand &MO = UseMI.getOperand(I);
|
|
if (MO.isReg())
|
|
continue;
|
|
Signature.push_back(hash_value(MO));
|
|
}
|
|
}
|
|
}
|
|
|
|
// Returns a representation of an instruction as a vector of MachineOperand
|
|
// hash values, see llvm::hash_value(const MachineOperand &MO) for details.
|
|
// This creates a signature of the instruction with the same content
|
|
// that MachineOperand::isIdenticalTo uses for comparison.
|
|
static InstrSignature instrToSignature(const MachineInstr &MI,
|
|
SPIRV::ModuleAnalysisInfo &MAI,
|
|
bool UseDefReg) {
|
|
Register DefReg;
|
|
InstrSignature Signature{MI.getOpcode()};
|
|
for (unsigned i = 0; i < MI.getNumOperands(); ++i) {
|
|
const MachineOperand &MO = MI.getOperand(i);
|
|
size_t h;
|
|
if (MO.isReg()) {
|
|
if (!UseDefReg && MO.isDef()) {
|
|
assert(!DefReg.isValid() && "Multiple def registers.");
|
|
DefReg = MO.getReg();
|
|
continue;
|
|
}
|
|
Register RegAlias = MAI.getRegisterAlias(MI.getMF(), MO.getReg());
|
|
if (!RegAlias.isValid()) {
|
|
LLVM_DEBUG({
|
|
dbgs() << "Unexpectedly, no global id found for the operand ";
|
|
MO.print(dbgs());
|
|
dbgs() << "\nInstruction: ";
|
|
MI.print(dbgs());
|
|
dbgs() << "\n";
|
|
});
|
|
report_fatal_error("All v-regs must have been mapped to global id's");
|
|
}
|
|
// mimic llvm::hash_value(const MachineOperand &MO)
|
|
h = hash_combine(MO.getType(), (unsigned)RegAlias, MO.getSubReg(),
|
|
MO.isDef());
|
|
} else {
|
|
h = hash_value(MO);
|
|
}
|
|
Signature.push_back(h);
|
|
}
|
|
|
|
if (DefReg.isValid()) {
|
|
// Decorations change the semantics of the current instruction. So two
|
|
// identical instruction with different decorations cannot be merged. That
|
|
// is why we add the decorations to the signature.
|
|
appendDecorationsForReg(MI.getMF()->getRegInfo(), DefReg, Signature);
|
|
}
|
|
return Signature;
|
|
}
|
|
|
|
bool SPIRVModuleAnalysis::isDeclSection(const MachineRegisterInfo &MRI,
|
|
const MachineInstr &MI) {
|
|
unsigned Opcode = MI.getOpcode();
|
|
switch (Opcode) {
|
|
case SPIRV::OpTypeForwardPointer:
|
|
// omit now, collect later
|
|
return false;
|
|
case SPIRV::OpVariable:
|
|
return static_cast<SPIRV::StorageClass::StorageClass>(
|
|
MI.getOperand(2).getImm()) != SPIRV::StorageClass::Function;
|
|
case SPIRV::OpFunction:
|
|
case SPIRV::OpFunctionParameter:
|
|
return true;
|
|
}
|
|
if (GR->hasConstFunPtr() && Opcode == SPIRV::OpUndef) {
|
|
Register DefReg = MI.getOperand(0).getReg();
|
|
for (MachineInstr &UseMI : MRI.use_instructions(DefReg)) {
|
|
if (UseMI.getOpcode() != SPIRV::OpConstantFunctionPointerINTEL)
|
|
continue;
|
|
// it's a dummy definition, FP constant refers to a function,
|
|
// and this is resolved in another way; let's skip this definition
|
|
assert(UseMI.getOperand(2).isReg() &&
|
|
UseMI.getOperand(2).getReg() == DefReg);
|
|
MAI.setSkipEmission(&MI);
|
|
return false;
|
|
}
|
|
}
|
|
return TII->isTypeDeclInstr(MI) || TII->isConstantInstr(MI) ||
|
|
TII->isInlineAsmDefInstr(MI);
|
|
}
|
|
|
|
// This is a special case of a function pointer refering to a possibly
|
|
// forward function declaration. The operand is a dummy OpUndef that
|
|
// requires a special treatment.
|
|
void SPIRVModuleAnalysis::visitFunPtrUse(
|
|
Register OpReg, InstrGRegsMap &SignatureToGReg,
|
|
std::map<const Value *, unsigned> &GlobalToGReg, const MachineFunction *MF,
|
|
const MachineInstr &MI) {
|
|
const MachineOperand *OpFunDef =
|
|
GR->getFunctionDefinitionByUse(&MI.getOperand(2));
|
|
assert(OpFunDef && OpFunDef->isReg());
|
|
// find the actual function definition and number it globally in advance
|
|
const MachineInstr *OpDefMI = OpFunDef->getParent();
|
|
assert(OpDefMI && OpDefMI->getOpcode() == SPIRV::OpFunction);
|
|
const MachineFunction *FunDefMF = OpDefMI->getParent()->getParent();
|
|
const MachineRegisterInfo &FunDefMRI = FunDefMF->getRegInfo();
|
|
do {
|
|
visitDecl(FunDefMRI, SignatureToGReg, GlobalToGReg, FunDefMF, *OpDefMI);
|
|
OpDefMI = OpDefMI->getNextNode();
|
|
} while (OpDefMI && (OpDefMI->getOpcode() == SPIRV::OpFunction ||
|
|
OpDefMI->getOpcode() == SPIRV::OpFunctionParameter));
|
|
// associate the function pointer with the newly assigned global number
|
|
MCRegister GlobalFunDefReg =
|
|
MAI.getRegisterAlias(FunDefMF, OpFunDef->getReg());
|
|
assert(GlobalFunDefReg.isValid() &&
|
|
"Function definition must refer to a global register");
|
|
MAI.setRegisterAlias(MF, OpReg, GlobalFunDefReg);
|
|
}
|
|
|
|
// Depth first recursive traversal of dependencies. Repeated visits are guarded
|
|
// by MAI.hasRegisterAlias().
|
|
void SPIRVModuleAnalysis::visitDecl(
|
|
const MachineRegisterInfo &MRI, InstrGRegsMap &SignatureToGReg,
|
|
std::map<const Value *, unsigned> &GlobalToGReg, const MachineFunction *MF,
|
|
const MachineInstr &MI) {
|
|
unsigned Opcode = MI.getOpcode();
|
|
|
|
// Process each operand of the instruction to resolve dependencies
|
|
for (const MachineOperand &MO : MI.operands()) {
|
|
if (!MO.isReg() || MO.isDef())
|
|
continue;
|
|
Register OpReg = MO.getReg();
|
|
// Handle function pointers special case
|
|
if (Opcode == SPIRV::OpConstantFunctionPointerINTEL &&
|
|
MRI.getRegClass(OpReg) == &SPIRV::pIDRegClass) {
|
|
visitFunPtrUse(OpReg, SignatureToGReg, GlobalToGReg, MF, MI);
|
|
continue;
|
|
}
|
|
// Skip already processed instructions
|
|
if (MAI.hasRegisterAlias(MF, MO.getReg()))
|
|
continue;
|
|
// Recursively visit dependencies
|
|
if (const MachineInstr *OpDefMI = MRI.getUniqueVRegDef(OpReg)) {
|
|
if (isDeclSection(MRI, *OpDefMI))
|
|
visitDecl(MRI, SignatureToGReg, GlobalToGReg, MF, *OpDefMI);
|
|
continue;
|
|
}
|
|
// Handle the unexpected case of no unique definition for the SPIR-V
|
|
// instruction
|
|
LLVM_DEBUG({
|
|
dbgs() << "Unexpectedly, no unique definition for the operand ";
|
|
MO.print(dbgs());
|
|
dbgs() << "\nInstruction: ";
|
|
MI.print(dbgs());
|
|
dbgs() << "\n";
|
|
});
|
|
report_fatal_error(
|
|
"No unique definition is found for the virtual register");
|
|
}
|
|
|
|
MCRegister GReg;
|
|
bool IsFunDef = false;
|
|
if (TII->isSpecConstantInstr(MI)) {
|
|
GReg = MAI.getNextIDRegister();
|
|
MAI.MS[SPIRV::MB_TypeConstVars].push_back(&MI);
|
|
} else if (Opcode == SPIRV::OpFunction ||
|
|
Opcode == SPIRV::OpFunctionParameter) {
|
|
GReg = handleFunctionOrParameter(MF, MI, GlobalToGReg, IsFunDef);
|
|
} else if (Opcode == SPIRV::OpTypeStruct ||
|
|
Opcode == SPIRV::OpConstantComposite) {
|
|
GReg = handleTypeDeclOrConstant(MI, SignatureToGReg);
|
|
const MachineInstr *NextInstr = MI.getNextNode();
|
|
while (NextInstr &&
|
|
((Opcode == SPIRV::OpTypeStruct &&
|
|
NextInstr->getOpcode() == SPIRV::OpTypeStructContinuedINTEL) ||
|
|
(Opcode == SPIRV::OpConstantComposite &&
|
|
NextInstr->getOpcode() ==
|
|
SPIRV::OpConstantCompositeContinuedINTEL))) {
|
|
MCRegister Tmp = handleTypeDeclOrConstant(*NextInstr, SignatureToGReg);
|
|
MAI.setRegisterAlias(MF, NextInstr->getOperand(0).getReg(), Tmp);
|
|
MAI.setSkipEmission(NextInstr);
|
|
NextInstr = NextInstr->getNextNode();
|
|
}
|
|
} else if (TII->isTypeDeclInstr(MI) || TII->isConstantInstr(MI) ||
|
|
TII->isInlineAsmDefInstr(MI)) {
|
|
GReg = handleTypeDeclOrConstant(MI, SignatureToGReg);
|
|
} else if (Opcode == SPIRV::OpVariable) {
|
|
GReg = handleVariable(MF, MI, GlobalToGReg);
|
|
} else {
|
|
LLVM_DEBUG({
|
|
dbgs() << "\nInstruction: ";
|
|
MI.print(dbgs());
|
|
dbgs() << "\n";
|
|
});
|
|
llvm_unreachable("Unexpected instruction is visited");
|
|
}
|
|
MAI.setRegisterAlias(MF, MI.getOperand(0).getReg(), GReg);
|
|
if (!IsFunDef)
|
|
MAI.setSkipEmission(&MI);
|
|
}
|
|
|
|
MCRegister SPIRVModuleAnalysis::handleFunctionOrParameter(
|
|
const MachineFunction *MF, const MachineInstr &MI,
|
|
std::map<const Value *, unsigned> &GlobalToGReg, bool &IsFunDef) {
|
|
const Value *GObj = GR->getGlobalObject(MF, MI.getOperand(0).getReg());
|
|
assert(GObj && "Unregistered global definition");
|
|
const Function *F = dyn_cast<Function>(GObj);
|
|
if (!F)
|
|
F = dyn_cast<Argument>(GObj)->getParent();
|
|
assert(F && "Expected a reference to a function or an argument");
|
|
IsFunDef = !F->isDeclaration();
|
|
auto [It, Inserted] = GlobalToGReg.try_emplace(GObj);
|
|
if (!Inserted)
|
|
return It->second;
|
|
MCRegister GReg = MAI.getNextIDRegister();
|
|
It->second = GReg;
|
|
if (!IsFunDef)
|
|
MAI.MS[SPIRV::MB_ExtFuncDecls].push_back(&MI);
|
|
return GReg;
|
|
}
|
|
|
|
MCRegister
|
|
SPIRVModuleAnalysis::handleTypeDeclOrConstant(const MachineInstr &MI,
|
|
InstrGRegsMap &SignatureToGReg) {
|
|
InstrSignature MISign = instrToSignature(MI, MAI, false);
|
|
auto [It, Inserted] = SignatureToGReg.try_emplace(MISign);
|
|
if (!Inserted)
|
|
return It->second;
|
|
MCRegister GReg = MAI.getNextIDRegister();
|
|
It->second = GReg;
|
|
MAI.MS[SPIRV::MB_TypeConstVars].push_back(&MI);
|
|
return GReg;
|
|
}
|
|
|
|
MCRegister SPIRVModuleAnalysis::handleVariable(
|
|
const MachineFunction *MF, const MachineInstr &MI,
|
|
std::map<const Value *, unsigned> &GlobalToGReg) {
|
|
MAI.GlobalVarList.push_back(&MI);
|
|
const Value *GObj = GR->getGlobalObject(MF, MI.getOperand(0).getReg());
|
|
assert(GObj && "Unregistered global definition");
|
|
auto [It, Inserted] = GlobalToGReg.try_emplace(GObj);
|
|
if (!Inserted)
|
|
return It->second;
|
|
MCRegister GReg = MAI.getNextIDRegister();
|
|
It->second = GReg;
|
|
MAI.MS[SPIRV::MB_TypeConstVars].push_back(&MI);
|
|
return GReg;
|
|
}
|
|
|
|
void SPIRVModuleAnalysis::collectDeclarations(const Module &M) {
|
|
InstrGRegsMap SignatureToGReg;
|
|
std::map<const Value *, unsigned> GlobalToGReg;
|
|
for (auto F = M.begin(), E = M.end(); F != E; ++F) {
|
|
MachineFunction *MF = MMI->getMachineFunction(*F);
|
|
if (!MF)
|
|
continue;
|
|
const MachineRegisterInfo &MRI = MF->getRegInfo();
|
|
unsigned PastHeader = 0;
|
|
for (MachineBasicBlock &MBB : *MF) {
|
|
for (MachineInstr &MI : MBB) {
|
|
if (MI.getNumOperands() == 0)
|
|
continue;
|
|
unsigned Opcode = MI.getOpcode();
|
|
if (Opcode == SPIRV::OpFunction) {
|
|
if (PastHeader == 0) {
|
|
PastHeader = 1;
|
|
continue;
|
|
}
|
|
} else if (Opcode == SPIRV::OpFunctionParameter) {
|
|
if (PastHeader < 2)
|
|
continue;
|
|
} else if (PastHeader > 0) {
|
|
PastHeader = 2;
|
|
}
|
|
|
|
const MachineOperand &DefMO = MI.getOperand(0);
|
|
switch (Opcode) {
|
|
case SPIRV::OpExtension:
|
|
MAI.Reqs.addExtension(SPIRV::Extension::Extension(DefMO.getImm()));
|
|
MAI.setSkipEmission(&MI);
|
|
break;
|
|
case SPIRV::OpCapability:
|
|
MAI.Reqs.addCapability(SPIRV::Capability::Capability(DefMO.getImm()));
|
|
MAI.setSkipEmission(&MI);
|
|
if (PastHeader > 0)
|
|
PastHeader = 2;
|
|
break;
|
|
default:
|
|
if (DefMO.isReg() && isDeclSection(MRI, MI) &&
|
|
!MAI.hasRegisterAlias(MF, DefMO.getReg()))
|
|
visitDecl(MRI, SignatureToGReg, GlobalToGReg, MF, MI);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Look for IDs declared with Import linkage, and map the corresponding function
|
|
// to the register defining that variable (which will usually be the result of
|
|
// an OpFunction). This lets us call externally imported functions using
|
|
// the correct ID registers.
|
|
void SPIRVModuleAnalysis::collectFuncNames(MachineInstr &MI,
|
|
const Function *F) {
|
|
if (MI.getOpcode() == SPIRV::OpDecorate) {
|
|
// If it's got Import linkage.
|
|
auto Dec = MI.getOperand(1).getImm();
|
|
if (Dec == static_cast<unsigned>(SPIRV::Decoration::LinkageAttributes)) {
|
|
auto Lnk = MI.getOperand(MI.getNumOperands() - 1).getImm();
|
|
if (Lnk == static_cast<unsigned>(SPIRV::LinkageType::Import)) {
|
|
// Map imported function name to function ID register.
|
|
const Function *ImportedFunc =
|
|
F->getParent()->getFunction(getStringImm(MI, 2));
|
|
Register Target = MI.getOperand(0).getReg();
|
|
MAI.FuncMap[ImportedFunc] = MAI.getRegisterAlias(MI.getMF(), Target);
|
|
}
|
|
}
|
|
} else if (MI.getOpcode() == SPIRV::OpFunction) {
|
|
// Record all internal OpFunction declarations.
|
|
Register Reg = MI.defs().begin()->getReg();
|
|
MCRegister GlobalReg = MAI.getRegisterAlias(MI.getMF(), Reg);
|
|
assert(GlobalReg.isValid());
|
|
MAI.FuncMap[F] = GlobalReg;
|
|
}
|
|
}
|
|
|
|
// Collect the given instruction in the specified MS. We assume global register
|
|
// numbering has already occurred by this point. We can directly compare reg
|
|
// arguments when detecting duplicates.
|
|
static void collectOtherInstr(MachineInstr &MI, SPIRV::ModuleAnalysisInfo &MAI,
|
|
SPIRV::ModuleSectionType MSType, InstrTraces &IS,
|
|
bool Append = true) {
|
|
MAI.setSkipEmission(&MI);
|
|
InstrSignature MISign = instrToSignature(MI, MAI, true);
|
|
auto FoundMI = IS.insert(MISign);
|
|
if (!FoundMI.second)
|
|
return; // insert failed, so we found a duplicate; don't add it to MAI.MS
|
|
// No duplicates, so add it.
|
|
if (Append)
|
|
MAI.MS[MSType].push_back(&MI);
|
|
else
|
|
MAI.MS[MSType].insert(MAI.MS[MSType].begin(), &MI);
|
|
}
|
|
|
|
// Some global instructions make reference to function-local ID regs, so cannot
|
|
// be correctly collected until these registers are globally numbered.
|
|
void SPIRVModuleAnalysis::processOtherInstrs(const Module &M) {
|
|
InstrTraces IS;
|
|
for (auto F = M.begin(), E = M.end(); F != E; ++F) {
|
|
if ((*F).isDeclaration())
|
|
continue;
|
|
MachineFunction *MF = MMI->getMachineFunction(*F);
|
|
assert(MF);
|
|
|
|
for (MachineBasicBlock &MBB : *MF)
|
|
for (MachineInstr &MI : MBB) {
|
|
if (MAI.getSkipEmission(&MI))
|
|
continue;
|
|
const unsigned OpCode = MI.getOpcode();
|
|
if (OpCode == SPIRV::OpString) {
|
|
collectOtherInstr(MI, MAI, SPIRV::MB_DebugStrings, IS);
|
|
} else if (OpCode == SPIRV::OpExtInst && MI.getOperand(2).isImm() &&
|
|
MI.getOperand(2).getImm() ==
|
|
SPIRV::InstructionSet::
|
|
NonSemantic_Shader_DebugInfo_100) {
|
|
MachineOperand Ins = MI.getOperand(3);
|
|
namespace NS = SPIRV::NonSemanticExtInst;
|
|
static constexpr int64_t GlobalNonSemanticDITy[] = {
|
|
NS::DebugSource, NS::DebugCompilationUnit, NS::DebugInfoNone,
|
|
NS::DebugTypeBasic, NS::DebugTypePointer};
|
|
bool IsGlobalDI = false;
|
|
for (unsigned Idx = 0; Idx < std::size(GlobalNonSemanticDITy); ++Idx)
|
|
IsGlobalDI |= Ins.getImm() == GlobalNonSemanticDITy[Idx];
|
|
if (IsGlobalDI)
|
|
collectOtherInstr(MI, MAI, SPIRV::MB_NonSemanticGlobalDI, IS);
|
|
} else if (OpCode == SPIRV::OpName || OpCode == SPIRV::OpMemberName) {
|
|
collectOtherInstr(MI, MAI, SPIRV::MB_DebugNames, IS);
|
|
} else if (OpCode == SPIRV::OpEntryPoint) {
|
|
collectOtherInstr(MI, MAI, SPIRV::MB_EntryPoints, IS);
|
|
} else if (TII->isAliasingInstr(MI)) {
|
|
collectOtherInstr(MI, MAI, SPIRV::MB_AliasingInsts, IS);
|
|
} else if (TII->isDecorationInstr(MI)) {
|
|
collectOtherInstr(MI, MAI, SPIRV::MB_Annotations, IS);
|
|
collectFuncNames(MI, &*F);
|
|
} else if (TII->isConstantInstr(MI)) {
|
|
// Now OpSpecConstant*s are not in DT,
|
|
// but they need to be collected anyway.
|
|
collectOtherInstr(MI, MAI, SPIRV::MB_TypeConstVars, IS);
|
|
} else if (OpCode == SPIRV::OpFunction) {
|
|
collectFuncNames(MI, &*F);
|
|
} else if (OpCode == SPIRV::OpTypeForwardPointer) {
|
|
collectOtherInstr(MI, MAI, SPIRV::MB_TypeConstVars, IS, false);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Number registers in all functions globally from 0 onwards and store
|
|
// the result in global register alias table. Some registers are already
|
|
// numbered.
|
|
void SPIRVModuleAnalysis::numberRegistersGlobally(const Module &M) {
|
|
for (auto F = M.begin(), E = M.end(); F != E; ++F) {
|
|
if ((*F).isDeclaration())
|
|
continue;
|
|
MachineFunction *MF = MMI->getMachineFunction(*F);
|
|
assert(MF);
|
|
for (MachineBasicBlock &MBB : *MF) {
|
|
for (MachineInstr &MI : MBB) {
|
|
for (MachineOperand &Op : MI.operands()) {
|
|
if (!Op.isReg())
|
|
continue;
|
|
Register Reg = Op.getReg();
|
|
if (MAI.hasRegisterAlias(MF, Reg))
|
|
continue;
|
|
MCRegister NewReg = MAI.getNextIDRegister();
|
|
MAI.setRegisterAlias(MF, Reg, NewReg);
|
|
}
|
|
if (MI.getOpcode() != SPIRV::OpExtInst)
|
|
continue;
|
|
auto Set = MI.getOperand(2).getImm();
|
|
auto [It, Inserted] = MAI.ExtInstSetMap.try_emplace(Set);
|
|
if (Inserted)
|
|
It->second = MAI.getNextIDRegister();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// RequirementHandler implementations.
|
|
void SPIRV::RequirementHandler::getAndAddRequirements(
|
|
SPIRV::OperandCategory::OperandCategory Category, uint32_t i,
|
|
const SPIRVSubtarget &ST) {
|
|
addRequirements(getSymbolicOperandRequirements(Category, i, ST, *this));
|
|
}
|
|
|
|
void SPIRV::RequirementHandler::recursiveAddCapabilities(
|
|
const CapabilityList &ToPrune) {
|
|
for (const auto &Cap : ToPrune) {
|
|
AllCaps.insert(Cap);
|
|
CapabilityList ImplicitDecls =
|
|
getSymbolicOperandCapabilities(OperandCategory::CapabilityOperand, Cap);
|
|
recursiveAddCapabilities(ImplicitDecls);
|
|
}
|
|
}
|
|
|
|
void SPIRV::RequirementHandler::addCapabilities(const CapabilityList &ToAdd) {
|
|
for (const auto &Cap : ToAdd) {
|
|
bool IsNewlyInserted = AllCaps.insert(Cap).second;
|
|
if (!IsNewlyInserted) // Don't re-add if it's already been declared.
|
|
continue;
|
|
CapabilityList ImplicitDecls =
|
|
getSymbolicOperandCapabilities(OperandCategory::CapabilityOperand, Cap);
|
|
recursiveAddCapabilities(ImplicitDecls);
|
|
MinimalCaps.push_back(Cap);
|
|
}
|
|
}
|
|
|
|
void SPIRV::RequirementHandler::addRequirements(
|
|
const SPIRV::Requirements &Req) {
|
|
if (!Req.IsSatisfiable)
|
|
report_fatal_error("Adding SPIR-V requirements this target can't satisfy.");
|
|
|
|
if (Req.Cap.has_value())
|
|
addCapabilities({Req.Cap.value()});
|
|
|
|
addExtensions(Req.Exts);
|
|
|
|
if (!Req.MinVer.empty()) {
|
|
if (!MaxVersion.empty() && Req.MinVer > MaxVersion) {
|
|
LLVM_DEBUG(dbgs() << "Conflicting version requirements: >= " << Req.MinVer
|
|
<< " and <= " << MaxVersion << "\n");
|
|
report_fatal_error("Adding SPIR-V requirements that can't be satisfied.");
|
|
}
|
|
|
|
if (MinVersion.empty() || Req.MinVer > MinVersion)
|
|
MinVersion = Req.MinVer;
|
|
}
|
|
|
|
if (!Req.MaxVer.empty()) {
|
|
if (!MinVersion.empty() && Req.MaxVer < MinVersion) {
|
|
LLVM_DEBUG(dbgs() << "Conflicting version requirements: <= " << Req.MaxVer
|
|
<< " and >= " << MinVersion << "\n");
|
|
report_fatal_error("Adding SPIR-V requirements that can't be satisfied.");
|
|
}
|
|
|
|
if (MaxVersion.empty() || Req.MaxVer < MaxVersion)
|
|
MaxVersion = Req.MaxVer;
|
|
}
|
|
}
|
|
|
|
void SPIRV::RequirementHandler::checkSatisfiable(
|
|
const SPIRVSubtarget &ST) const {
|
|
// Report as many errors as possible before aborting the compilation.
|
|
bool IsSatisfiable = true;
|
|
auto TargetVer = ST.getSPIRVVersion();
|
|
|
|
if (!MaxVersion.empty() && !TargetVer.empty() && MaxVersion < TargetVer) {
|
|
LLVM_DEBUG(
|
|
dbgs() << "Target SPIR-V version too high for required features\n"
|
|
<< "Required max version: " << MaxVersion << " target version "
|
|
<< TargetVer << "\n");
|
|
IsSatisfiable = false;
|
|
}
|
|
|
|
if (!MinVersion.empty() && !TargetVer.empty() && MinVersion > TargetVer) {
|
|
LLVM_DEBUG(dbgs() << "Target SPIR-V version too low for required features\n"
|
|
<< "Required min version: " << MinVersion
|
|
<< " target version " << TargetVer << "\n");
|
|
IsSatisfiable = false;
|
|
}
|
|
|
|
if (!MinVersion.empty() && !MaxVersion.empty() && MinVersion > MaxVersion) {
|
|
LLVM_DEBUG(
|
|
dbgs()
|
|
<< "Version is too low for some features and too high for others.\n"
|
|
<< "Required SPIR-V min version: " << MinVersion
|
|
<< " required SPIR-V max version " << MaxVersion << "\n");
|
|
IsSatisfiable = false;
|
|
}
|
|
|
|
for (auto Cap : MinimalCaps) {
|
|
if (AvailableCaps.contains(Cap))
|
|
continue;
|
|
LLVM_DEBUG(dbgs() << "Capability not supported: "
|
|
<< getSymbolicOperandMnemonic(
|
|
OperandCategory::CapabilityOperand, Cap)
|
|
<< "\n");
|
|
IsSatisfiable = false;
|
|
}
|
|
|
|
for (auto Ext : AllExtensions) {
|
|
if (ST.canUseExtension(Ext))
|
|
continue;
|
|
LLVM_DEBUG(dbgs() << "Extension not supported: "
|
|
<< getSymbolicOperandMnemonic(
|
|
OperandCategory::ExtensionOperand, Ext)
|
|
<< "\n");
|
|
IsSatisfiable = false;
|
|
}
|
|
|
|
if (!IsSatisfiable)
|
|
report_fatal_error("Unable to meet SPIR-V requirements for this target.");
|
|
}
|
|
|
|
// Add the given capabilities and all their implicitly defined capabilities too.
|
|
void SPIRV::RequirementHandler::addAvailableCaps(const CapabilityList &ToAdd) {
|
|
for (const auto Cap : ToAdd)
|
|
if (AvailableCaps.insert(Cap).second)
|
|
addAvailableCaps(getSymbolicOperandCapabilities(
|
|
SPIRV::OperandCategory::CapabilityOperand, Cap));
|
|
}
|
|
|
|
void SPIRV::RequirementHandler::removeCapabilityIf(
|
|
const Capability::Capability ToRemove,
|
|
const Capability::Capability IfPresent) {
|
|
if (AllCaps.contains(IfPresent))
|
|
AllCaps.erase(ToRemove);
|
|
}
|
|
|
|
namespace llvm {
|
|
namespace SPIRV {
|
|
void RequirementHandler::initAvailableCapabilities(const SPIRVSubtarget &ST) {
|
|
// Provided by both all supported Vulkan versions and OpenCl.
|
|
addAvailableCaps({Capability::Shader, Capability::Linkage, Capability::Int8,
|
|
Capability::Int16});
|
|
|
|
if (ST.isAtLeastSPIRVVer(VersionTuple(1, 3)))
|
|
addAvailableCaps({Capability::GroupNonUniform,
|
|
Capability::GroupNonUniformVote,
|
|
Capability::GroupNonUniformArithmetic,
|
|
Capability::GroupNonUniformBallot,
|
|
Capability::GroupNonUniformClustered,
|
|
Capability::GroupNonUniformShuffle,
|
|
Capability::GroupNonUniformShuffleRelative});
|
|
|
|
if (ST.isAtLeastSPIRVVer(VersionTuple(1, 6)))
|
|
addAvailableCaps({Capability::DotProduct, Capability::DotProductInputAll,
|
|
Capability::DotProductInput4x8Bit,
|
|
Capability::DotProductInput4x8BitPacked,
|
|
Capability::DemoteToHelperInvocation});
|
|
|
|
// Add capabilities enabled by extensions.
|
|
for (auto Extension : ST.getAllAvailableExtensions()) {
|
|
CapabilityList EnabledCapabilities =
|
|
getCapabilitiesEnabledByExtension(Extension);
|
|
addAvailableCaps(EnabledCapabilities);
|
|
}
|
|
|
|
if (ST.isOpenCLEnv()) {
|
|
initAvailableCapabilitiesForOpenCL(ST);
|
|
return;
|
|
}
|
|
|
|
if (ST.isVulkanEnv()) {
|
|
initAvailableCapabilitiesForVulkan(ST);
|
|
return;
|
|
}
|
|
|
|
report_fatal_error("Unimplemented environment for SPIR-V generation.");
|
|
}
|
|
|
|
void RequirementHandler::initAvailableCapabilitiesForOpenCL(
|
|
const SPIRVSubtarget &ST) {
|
|
// Add the min requirements for different OpenCL and SPIR-V versions.
|
|
addAvailableCaps({Capability::Addresses, Capability::Float16Buffer,
|
|
Capability::Kernel, Capability::Vector16,
|
|
Capability::Groups, Capability::GenericPointer,
|
|
Capability::StorageImageWriteWithoutFormat,
|
|
Capability::StorageImageReadWithoutFormat});
|
|
if (ST.hasOpenCLFullProfile())
|
|
addAvailableCaps({Capability::Int64, Capability::Int64Atomics});
|
|
if (ST.hasOpenCLImageSupport()) {
|
|
addAvailableCaps({Capability::ImageBasic, Capability::LiteralSampler,
|
|
Capability::Image1D, Capability::SampledBuffer,
|
|
Capability::ImageBuffer});
|
|
if (ST.isAtLeastOpenCLVer(VersionTuple(2, 0)))
|
|
addAvailableCaps({Capability::ImageReadWrite});
|
|
}
|
|
if (ST.isAtLeastSPIRVVer(VersionTuple(1, 1)) &&
|
|
ST.isAtLeastOpenCLVer(VersionTuple(2, 2)))
|
|
addAvailableCaps({Capability::SubgroupDispatch, Capability::PipeStorage});
|
|
if (ST.isAtLeastSPIRVVer(VersionTuple(1, 4)))
|
|
addAvailableCaps({Capability::DenormPreserve, Capability::DenormFlushToZero,
|
|
Capability::SignedZeroInfNanPreserve,
|
|
Capability::RoundingModeRTE,
|
|
Capability::RoundingModeRTZ});
|
|
// TODO: verify if this needs some checks.
|
|
addAvailableCaps({Capability::Float16, Capability::Float64});
|
|
|
|
// TODO: add OpenCL extensions.
|
|
}
|
|
|
|
void RequirementHandler::initAvailableCapabilitiesForVulkan(
|
|
const SPIRVSubtarget &ST) {
|
|
|
|
// Core in Vulkan 1.1 and earlier.
|
|
addAvailableCaps({Capability::Int64, Capability::Float16, Capability::Float64,
|
|
Capability::GroupNonUniform, Capability::Image1D,
|
|
Capability::SampledBuffer, Capability::ImageBuffer,
|
|
Capability::UniformBufferArrayDynamicIndexing,
|
|
Capability::SampledImageArrayDynamicIndexing,
|
|
Capability::StorageBufferArrayDynamicIndexing,
|
|
Capability::StorageImageArrayDynamicIndexing});
|
|
|
|
// Became core in Vulkan 1.2
|
|
if (ST.isAtLeastSPIRVVer(VersionTuple(1, 5))) {
|
|
addAvailableCaps(
|
|
{Capability::ShaderNonUniformEXT, Capability::RuntimeDescriptorArrayEXT,
|
|
Capability::InputAttachmentArrayDynamicIndexingEXT,
|
|
Capability::UniformTexelBufferArrayDynamicIndexingEXT,
|
|
Capability::StorageTexelBufferArrayDynamicIndexingEXT,
|
|
Capability::UniformBufferArrayNonUniformIndexingEXT,
|
|
Capability::SampledImageArrayNonUniformIndexingEXT,
|
|
Capability::StorageBufferArrayNonUniformIndexingEXT,
|
|
Capability::StorageImageArrayNonUniformIndexingEXT,
|
|
Capability::InputAttachmentArrayNonUniformIndexingEXT,
|
|
Capability::UniformTexelBufferArrayNonUniformIndexingEXT,
|
|
Capability::StorageTexelBufferArrayNonUniformIndexingEXT});
|
|
}
|
|
|
|
// Became core in Vulkan 1.3
|
|
if (ST.isAtLeastSPIRVVer(VersionTuple(1, 6)))
|
|
addAvailableCaps({Capability::StorageImageWriteWithoutFormat,
|
|
Capability::StorageImageReadWithoutFormat});
|
|
}
|
|
|
|
} // namespace SPIRV
|
|
} // namespace llvm
|
|
|
|
// Add the required capabilities from a decoration instruction (including
|
|
// BuiltIns).
|
|
static void addOpDecorateReqs(const MachineInstr &MI, unsigned DecIndex,
|
|
SPIRV::RequirementHandler &Reqs,
|
|
const SPIRVSubtarget &ST) {
|
|
int64_t DecOp = MI.getOperand(DecIndex).getImm();
|
|
auto Dec = static_cast<SPIRV::Decoration::Decoration>(DecOp);
|
|
Reqs.addRequirements(getSymbolicOperandRequirements(
|
|
SPIRV::OperandCategory::DecorationOperand, Dec, ST, Reqs));
|
|
|
|
if (Dec == SPIRV::Decoration::BuiltIn) {
|
|
int64_t BuiltInOp = MI.getOperand(DecIndex + 1).getImm();
|
|
auto BuiltIn = static_cast<SPIRV::BuiltIn::BuiltIn>(BuiltInOp);
|
|
Reqs.addRequirements(getSymbolicOperandRequirements(
|
|
SPIRV::OperandCategory::BuiltInOperand, BuiltIn, ST, Reqs));
|
|
} else if (Dec == SPIRV::Decoration::LinkageAttributes) {
|
|
int64_t LinkageOp = MI.getOperand(MI.getNumOperands() - 1).getImm();
|
|
SPIRV::LinkageType::LinkageType LnkType =
|
|
static_cast<SPIRV::LinkageType::LinkageType>(LinkageOp);
|
|
if (LnkType == SPIRV::LinkageType::LinkOnceODR)
|
|
Reqs.addExtension(SPIRV::Extension::SPV_KHR_linkonce_odr);
|
|
} else if (Dec == SPIRV::Decoration::CacheControlLoadINTEL ||
|
|
Dec == SPIRV::Decoration::CacheControlStoreINTEL) {
|
|
Reqs.addExtension(SPIRV::Extension::SPV_INTEL_cache_controls);
|
|
} else if (Dec == SPIRV::Decoration::HostAccessINTEL) {
|
|
Reqs.addExtension(SPIRV::Extension::SPV_INTEL_global_variable_host_access);
|
|
} else if (Dec == SPIRV::Decoration::InitModeINTEL ||
|
|
Dec == SPIRV::Decoration::ImplementInRegisterMapINTEL) {
|
|
Reqs.addExtension(
|
|
SPIRV::Extension::SPV_INTEL_global_variable_fpga_decorations);
|
|
} else if (Dec == SPIRV::Decoration::NonUniformEXT) {
|
|
Reqs.addRequirements(SPIRV::Capability::ShaderNonUniformEXT);
|
|
} else if (Dec == SPIRV::Decoration::FPMaxErrorDecorationINTEL) {
|
|
Reqs.addRequirements(SPIRV::Capability::FPMaxErrorINTEL);
|
|
Reqs.addExtension(SPIRV::Extension::SPV_INTEL_fp_max_error);
|
|
}
|
|
}
|
|
|
|
// Add requirements for image handling.
|
|
static void addOpTypeImageReqs(const MachineInstr &MI,
|
|
SPIRV::RequirementHandler &Reqs,
|
|
const SPIRVSubtarget &ST) {
|
|
assert(MI.getNumOperands() >= 8 && "Insufficient operands for OpTypeImage");
|
|
// The operand indices used here are based on the OpTypeImage layout, which
|
|
// the MachineInstr follows as well.
|
|
int64_t ImgFormatOp = MI.getOperand(7).getImm();
|
|
auto ImgFormat = static_cast<SPIRV::ImageFormat::ImageFormat>(ImgFormatOp);
|
|
Reqs.getAndAddRequirements(SPIRV::OperandCategory::ImageFormatOperand,
|
|
ImgFormat, ST);
|
|
|
|
bool IsArrayed = MI.getOperand(4).getImm() == 1;
|
|
bool IsMultisampled = MI.getOperand(5).getImm() == 1;
|
|
bool NoSampler = MI.getOperand(6).getImm() == 2;
|
|
// Add dimension requirements.
|
|
assert(MI.getOperand(2).isImm());
|
|
switch (MI.getOperand(2).getImm()) {
|
|
case SPIRV::Dim::DIM_1D:
|
|
Reqs.addRequirements(NoSampler ? SPIRV::Capability::Image1D
|
|
: SPIRV::Capability::Sampled1D);
|
|
break;
|
|
case SPIRV::Dim::DIM_2D:
|
|
if (IsMultisampled && NoSampler)
|
|
Reqs.addRequirements(SPIRV::Capability::ImageMSArray);
|
|
break;
|
|
case SPIRV::Dim::DIM_Cube:
|
|
Reqs.addRequirements(SPIRV::Capability::Shader);
|
|
if (IsArrayed)
|
|
Reqs.addRequirements(NoSampler ? SPIRV::Capability::ImageCubeArray
|
|
: SPIRV::Capability::SampledCubeArray);
|
|
break;
|
|
case SPIRV::Dim::DIM_Rect:
|
|
Reqs.addRequirements(NoSampler ? SPIRV::Capability::ImageRect
|
|
: SPIRV::Capability::SampledRect);
|
|
break;
|
|
case SPIRV::Dim::DIM_Buffer:
|
|
Reqs.addRequirements(NoSampler ? SPIRV::Capability::ImageBuffer
|
|
: SPIRV::Capability::SampledBuffer);
|
|
break;
|
|
case SPIRV::Dim::DIM_SubpassData:
|
|
Reqs.addRequirements(SPIRV::Capability::InputAttachment);
|
|
break;
|
|
}
|
|
|
|
// Has optional access qualifier.
|
|
if (ST.isOpenCLEnv()) {
|
|
if (MI.getNumOperands() > 8 &&
|
|
MI.getOperand(8).getImm() == SPIRV::AccessQualifier::ReadWrite)
|
|
Reqs.addRequirements(SPIRV::Capability::ImageReadWrite);
|
|
else
|
|
Reqs.addRequirements(SPIRV::Capability::ImageBasic);
|
|
}
|
|
}
|
|
|
|
// Add requirements for handling atomic float instructions
|
|
#define ATOM_FLT_REQ_EXT_MSG(ExtName) \
|
|
"The atomic float instruction requires the following SPIR-V " \
|
|
"extension: SPV_EXT_shader_atomic_float" ExtName
|
|
static void AddAtomicFloatRequirements(const MachineInstr &MI,
|
|
SPIRV::RequirementHandler &Reqs,
|
|
const SPIRVSubtarget &ST) {
|
|
assert(MI.getOperand(1).isReg() &&
|
|
"Expect register operand in atomic float instruction");
|
|
Register TypeReg = MI.getOperand(1).getReg();
|
|
SPIRVType *TypeDef = MI.getMF()->getRegInfo().getVRegDef(TypeReg);
|
|
if (TypeDef->getOpcode() != SPIRV::OpTypeFloat)
|
|
report_fatal_error("Result type of an atomic float instruction must be a "
|
|
"floating-point type scalar");
|
|
|
|
unsigned BitWidth = TypeDef->getOperand(1).getImm();
|
|
unsigned Op = MI.getOpcode();
|
|
if (Op == SPIRV::OpAtomicFAddEXT) {
|
|
if (!ST.canUseExtension(SPIRV::Extension::SPV_EXT_shader_atomic_float_add))
|
|
report_fatal_error(ATOM_FLT_REQ_EXT_MSG("_add"), false);
|
|
Reqs.addExtension(SPIRV::Extension::SPV_EXT_shader_atomic_float_add);
|
|
switch (BitWidth) {
|
|
case 16:
|
|
if (!ST.canUseExtension(
|
|
SPIRV::Extension::SPV_EXT_shader_atomic_float16_add))
|
|
report_fatal_error(ATOM_FLT_REQ_EXT_MSG("16_add"), false);
|
|
Reqs.addExtension(SPIRV::Extension::SPV_EXT_shader_atomic_float16_add);
|
|
Reqs.addCapability(SPIRV::Capability::AtomicFloat16AddEXT);
|
|
break;
|
|
case 32:
|
|
Reqs.addCapability(SPIRV::Capability::AtomicFloat32AddEXT);
|
|
break;
|
|
case 64:
|
|
Reqs.addCapability(SPIRV::Capability::AtomicFloat64AddEXT);
|
|
break;
|
|
default:
|
|
report_fatal_error(
|
|
"Unexpected floating-point type width in atomic float instruction");
|
|
}
|
|
} else {
|
|
if (!ST.canUseExtension(
|
|
SPIRV::Extension::SPV_EXT_shader_atomic_float_min_max))
|
|
report_fatal_error(ATOM_FLT_REQ_EXT_MSG("_min_max"), false);
|
|
Reqs.addExtension(SPIRV::Extension::SPV_EXT_shader_atomic_float_min_max);
|
|
switch (BitWidth) {
|
|
case 16:
|
|
Reqs.addCapability(SPIRV::Capability::AtomicFloat16MinMaxEXT);
|
|
break;
|
|
case 32:
|
|
Reqs.addCapability(SPIRV::Capability::AtomicFloat32MinMaxEXT);
|
|
break;
|
|
case 64:
|
|
Reqs.addCapability(SPIRV::Capability::AtomicFloat64MinMaxEXT);
|
|
break;
|
|
default:
|
|
report_fatal_error(
|
|
"Unexpected floating-point type width in atomic float instruction");
|
|
}
|
|
}
|
|
}
|
|
|
|
bool isUniformTexelBuffer(MachineInstr *ImageInst) {
|
|
if (ImageInst->getOpcode() != SPIRV::OpTypeImage)
|
|
return false;
|
|
uint32_t Dim = ImageInst->getOperand(2).getImm();
|
|
uint32_t Sampled = ImageInst->getOperand(6).getImm();
|
|
return Dim == SPIRV::Dim::DIM_Buffer && Sampled == 1;
|
|
}
|
|
|
|
bool isStorageTexelBuffer(MachineInstr *ImageInst) {
|
|
if (ImageInst->getOpcode() != SPIRV::OpTypeImage)
|
|
return false;
|
|
uint32_t Dim = ImageInst->getOperand(2).getImm();
|
|
uint32_t Sampled = ImageInst->getOperand(6).getImm();
|
|
return Dim == SPIRV::Dim::DIM_Buffer && Sampled == 2;
|
|
}
|
|
|
|
bool isSampledImage(MachineInstr *ImageInst) {
|
|
if (ImageInst->getOpcode() != SPIRV::OpTypeImage)
|
|
return false;
|
|
uint32_t Dim = ImageInst->getOperand(2).getImm();
|
|
uint32_t Sampled = ImageInst->getOperand(6).getImm();
|
|
return Dim != SPIRV::Dim::DIM_Buffer && Sampled == 1;
|
|
}
|
|
|
|
bool isInputAttachment(MachineInstr *ImageInst) {
|
|
if (ImageInst->getOpcode() != SPIRV::OpTypeImage)
|
|
return false;
|
|
uint32_t Dim = ImageInst->getOperand(2).getImm();
|
|
uint32_t Sampled = ImageInst->getOperand(6).getImm();
|
|
return Dim == SPIRV::Dim::DIM_SubpassData && Sampled == 2;
|
|
}
|
|
|
|
bool isStorageImage(MachineInstr *ImageInst) {
|
|
if (ImageInst->getOpcode() != SPIRV::OpTypeImage)
|
|
return false;
|
|
uint32_t Dim = ImageInst->getOperand(2).getImm();
|
|
uint32_t Sampled = ImageInst->getOperand(6).getImm();
|
|
return Dim != SPIRV::Dim::DIM_Buffer && Sampled == 2;
|
|
}
|
|
|
|
bool isCombinedImageSampler(MachineInstr *SampledImageInst) {
|
|
if (SampledImageInst->getOpcode() != SPIRV::OpTypeSampledImage)
|
|
return false;
|
|
|
|
const MachineRegisterInfo &MRI = SampledImageInst->getMF()->getRegInfo();
|
|
Register ImageReg = SampledImageInst->getOperand(1).getReg();
|
|
auto *ImageInst = MRI.getUniqueVRegDef(ImageReg);
|
|
return isSampledImage(ImageInst);
|
|
}
|
|
|
|
bool hasNonUniformDecoration(Register Reg, const MachineRegisterInfo &MRI) {
|
|
for (const auto &MI : MRI.reg_instructions(Reg)) {
|
|
if (MI.getOpcode() != SPIRV::OpDecorate)
|
|
continue;
|
|
|
|
uint32_t Dec = MI.getOperand(1).getImm();
|
|
if (Dec == SPIRV::Decoration::NonUniformEXT)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void addOpAccessChainReqs(const MachineInstr &Instr,
|
|
SPIRV::RequirementHandler &Handler,
|
|
const SPIRVSubtarget &Subtarget) {
|
|
const MachineRegisterInfo &MRI = Instr.getMF()->getRegInfo();
|
|
// Get the result type. If it is an image type, then the shader uses
|
|
// descriptor indexing. The appropriate capabilities will be added based
|
|
// on the specifics of the image.
|
|
Register ResTypeReg = Instr.getOperand(1).getReg();
|
|
MachineInstr *ResTypeInst = MRI.getUniqueVRegDef(ResTypeReg);
|
|
|
|
assert(ResTypeInst->getOpcode() == SPIRV::OpTypePointer);
|
|
uint32_t StorageClass = ResTypeInst->getOperand(1).getImm();
|
|
if (StorageClass != SPIRV::StorageClass::StorageClass::UniformConstant &&
|
|
StorageClass != SPIRV::StorageClass::StorageClass::Uniform &&
|
|
StorageClass != SPIRV::StorageClass::StorageClass::StorageBuffer) {
|
|
return;
|
|
}
|
|
|
|
Register PointeeTypeReg = ResTypeInst->getOperand(2).getReg();
|
|
MachineInstr *PointeeType = MRI.getUniqueVRegDef(PointeeTypeReg);
|
|
if (PointeeType->getOpcode() != SPIRV::OpTypeImage &&
|
|
PointeeType->getOpcode() != SPIRV::OpTypeSampledImage &&
|
|
PointeeType->getOpcode() != SPIRV::OpTypeSampler) {
|
|
return;
|
|
}
|
|
|
|
bool IsNonUniform =
|
|
hasNonUniformDecoration(Instr.getOperand(0).getReg(), MRI);
|
|
if (isUniformTexelBuffer(PointeeType)) {
|
|
if (IsNonUniform)
|
|
Handler.addRequirements(
|
|
SPIRV::Capability::UniformTexelBufferArrayNonUniformIndexingEXT);
|
|
else
|
|
Handler.addRequirements(
|
|
SPIRV::Capability::UniformTexelBufferArrayDynamicIndexingEXT);
|
|
} else if (isInputAttachment(PointeeType)) {
|
|
if (IsNonUniform)
|
|
Handler.addRequirements(
|
|
SPIRV::Capability::InputAttachmentArrayNonUniformIndexingEXT);
|
|
else
|
|
Handler.addRequirements(
|
|
SPIRV::Capability::InputAttachmentArrayDynamicIndexingEXT);
|
|
} else if (isStorageTexelBuffer(PointeeType)) {
|
|
if (IsNonUniform)
|
|
Handler.addRequirements(
|
|
SPIRV::Capability::StorageTexelBufferArrayNonUniformIndexingEXT);
|
|
else
|
|
Handler.addRequirements(
|
|
SPIRV::Capability::StorageTexelBufferArrayDynamicIndexingEXT);
|
|
} else if (isSampledImage(PointeeType) ||
|
|
isCombinedImageSampler(PointeeType) ||
|
|
PointeeType->getOpcode() == SPIRV::OpTypeSampler) {
|
|
if (IsNonUniform)
|
|
Handler.addRequirements(
|
|
SPIRV::Capability::SampledImageArrayNonUniformIndexingEXT);
|
|
else
|
|
Handler.addRequirements(
|
|
SPIRV::Capability::SampledImageArrayDynamicIndexing);
|
|
} else if (isStorageImage(PointeeType)) {
|
|
if (IsNonUniform)
|
|
Handler.addRequirements(
|
|
SPIRV::Capability::StorageImageArrayNonUniformIndexingEXT);
|
|
else
|
|
Handler.addRequirements(
|
|
SPIRV::Capability::StorageImageArrayDynamicIndexing);
|
|
}
|
|
}
|
|
|
|
static bool isImageTypeWithUnknownFormat(SPIRVType *TypeInst) {
|
|
if (TypeInst->getOpcode() != SPIRV::OpTypeImage)
|
|
return false;
|
|
assert(TypeInst->getOperand(7).isImm() && "The image format must be an imm.");
|
|
return TypeInst->getOperand(7).getImm() == 0;
|
|
}
|
|
|
|
static void AddDotProductRequirements(const MachineInstr &MI,
|
|
SPIRV::RequirementHandler &Reqs,
|
|
const SPIRVSubtarget &ST) {
|
|
if (ST.canUseExtension(SPIRV::Extension::SPV_KHR_integer_dot_product))
|
|
Reqs.addExtension(SPIRV::Extension::SPV_KHR_integer_dot_product);
|
|
Reqs.addCapability(SPIRV::Capability::DotProduct);
|
|
|
|
const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
|
|
assert(MI.getOperand(2).isReg() && "Unexpected operand in dot");
|
|
// We do not consider what the previous instruction is. This is just used
|
|
// to get the input register and to check the type.
|
|
const MachineInstr *Input = MRI.getVRegDef(MI.getOperand(2).getReg());
|
|
assert(Input->getOperand(1).isReg() && "Unexpected operand in dot input");
|
|
Register InputReg = Input->getOperand(1).getReg();
|
|
|
|
SPIRVType *TypeDef = MRI.getVRegDef(InputReg);
|
|
if (TypeDef->getOpcode() == SPIRV::OpTypeInt) {
|
|
assert(TypeDef->getOperand(1).getImm() == 32);
|
|
Reqs.addCapability(SPIRV::Capability::DotProductInput4x8BitPacked);
|
|
} else if (TypeDef->getOpcode() == SPIRV::OpTypeVector) {
|
|
SPIRVType *ScalarTypeDef = MRI.getVRegDef(TypeDef->getOperand(1).getReg());
|
|
assert(ScalarTypeDef->getOpcode() == SPIRV::OpTypeInt);
|
|
if (ScalarTypeDef->getOperand(1).getImm() == 8) {
|
|
assert(TypeDef->getOperand(2).getImm() == 4 &&
|
|
"Dot operand of 8-bit integer type requires 4 components");
|
|
Reqs.addCapability(SPIRV::Capability::DotProductInput4x8Bit);
|
|
} else {
|
|
Reqs.addCapability(SPIRV::Capability::DotProductInputAll);
|
|
}
|
|
}
|
|
}
|
|
|
|
void addInstrRequirements(const MachineInstr &MI,
|
|
SPIRV::RequirementHandler &Reqs,
|
|
const SPIRVSubtarget &ST) {
|
|
switch (MI.getOpcode()) {
|
|
case SPIRV::OpMemoryModel: {
|
|
int64_t Addr = MI.getOperand(0).getImm();
|
|
Reqs.getAndAddRequirements(SPIRV::OperandCategory::AddressingModelOperand,
|
|
Addr, ST);
|
|
int64_t Mem = MI.getOperand(1).getImm();
|
|
Reqs.getAndAddRequirements(SPIRV::OperandCategory::MemoryModelOperand, Mem,
|
|
ST);
|
|
break;
|
|
}
|
|
case SPIRV::OpEntryPoint: {
|
|
int64_t Exe = MI.getOperand(0).getImm();
|
|
Reqs.getAndAddRequirements(SPIRV::OperandCategory::ExecutionModelOperand,
|
|
Exe, ST);
|
|
break;
|
|
}
|
|
case SPIRV::OpExecutionMode:
|
|
case SPIRV::OpExecutionModeId: {
|
|
int64_t Exe = MI.getOperand(1).getImm();
|
|
Reqs.getAndAddRequirements(SPIRV::OperandCategory::ExecutionModeOperand,
|
|
Exe, ST);
|
|
break;
|
|
}
|
|
case SPIRV::OpTypeMatrix:
|
|
Reqs.addCapability(SPIRV::Capability::Matrix);
|
|
break;
|
|
case SPIRV::OpTypeInt: {
|
|
unsigned BitWidth = MI.getOperand(1).getImm();
|
|
if (BitWidth == 64)
|
|
Reqs.addCapability(SPIRV::Capability::Int64);
|
|
else if (BitWidth == 16)
|
|
Reqs.addCapability(SPIRV::Capability::Int16);
|
|
else if (BitWidth == 8)
|
|
Reqs.addCapability(SPIRV::Capability::Int8);
|
|
break;
|
|
}
|
|
case SPIRV::OpTypeFloat: {
|
|
unsigned BitWidth = MI.getOperand(1).getImm();
|
|
if (BitWidth == 64)
|
|
Reqs.addCapability(SPIRV::Capability::Float64);
|
|
else if (BitWidth == 16)
|
|
Reqs.addCapability(SPIRV::Capability::Float16);
|
|
break;
|
|
}
|
|
case SPIRV::OpTypeVector: {
|
|
unsigned NumComponents = MI.getOperand(2).getImm();
|
|
if (NumComponents == 8 || NumComponents == 16)
|
|
Reqs.addCapability(SPIRV::Capability::Vector16);
|
|
break;
|
|
}
|
|
case SPIRV::OpTypePointer: {
|
|
auto SC = MI.getOperand(1).getImm();
|
|
Reqs.getAndAddRequirements(SPIRV::OperandCategory::StorageClassOperand, SC,
|
|
ST);
|
|
// If it's a type of pointer to float16 targeting OpenCL, add Float16Buffer
|
|
// capability.
|
|
if (!ST.isOpenCLEnv())
|
|
break;
|
|
assert(MI.getOperand(2).isReg());
|
|
const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
|
|
SPIRVType *TypeDef = MRI.getVRegDef(MI.getOperand(2).getReg());
|
|
if (TypeDef->getOpcode() == SPIRV::OpTypeFloat &&
|
|
TypeDef->getOperand(1).getImm() == 16)
|
|
Reqs.addCapability(SPIRV::Capability::Float16Buffer);
|
|
break;
|
|
}
|
|
case SPIRV::OpExtInst: {
|
|
if (MI.getOperand(2).getImm() ==
|
|
static_cast<int64_t>(
|
|
SPIRV::InstructionSet::NonSemantic_Shader_DebugInfo_100)) {
|
|
Reqs.addExtension(SPIRV::Extension::SPV_KHR_non_semantic_info);
|
|
}
|
|
break;
|
|
}
|
|
case SPIRV::OpAliasDomainDeclINTEL:
|
|
case SPIRV::OpAliasScopeDeclINTEL:
|
|
case SPIRV::OpAliasScopeListDeclINTEL: {
|
|
Reqs.addExtension(SPIRV::Extension::SPV_INTEL_memory_access_aliasing);
|
|
Reqs.addCapability(SPIRV::Capability::MemoryAccessAliasingINTEL);
|
|
break;
|
|
}
|
|
case SPIRV::OpBitReverse:
|
|
case SPIRV::OpBitFieldInsert:
|
|
case SPIRV::OpBitFieldSExtract:
|
|
case SPIRV::OpBitFieldUExtract:
|
|
if (!ST.canUseExtension(SPIRV::Extension::SPV_KHR_bit_instructions)) {
|
|
Reqs.addCapability(SPIRV::Capability::Shader);
|
|
break;
|
|
}
|
|
Reqs.addExtension(SPIRV::Extension::SPV_KHR_bit_instructions);
|
|
Reqs.addCapability(SPIRV::Capability::BitInstructions);
|
|
break;
|
|
case SPIRV::OpTypeRuntimeArray:
|
|
Reqs.addCapability(SPIRV::Capability::Shader);
|
|
break;
|
|
case SPIRV::OpTypeOpaque:
|
|
case SPIRV::OpTypeEvent:
|
|
Reqs.addCapability(SPIRV::Capability::Kernel);
|
|
break;
|
|
case SPIRV::OpTypePipe:
|
|
case SPIRV::OpTypeReserveId:
|
|
Reqs.addCapability(SPIRV::Capability::Pipes);
|
|
break;
|
|
case SPIRV::OpTypeDeviceEvent:
|
|
case SPIRV::OpTypeQueue:
|
|
case SPIRV::OpBuildNDRange:
|
|
Reqs.addCapability(SPIRV::Capability::DeviceEnqueue);
|
|
break;
|
|
case SPIRV::OpDecorate:
|
|
case SPIRV::OpDecorateId:
|
|
case SPIRV::OpDecorateString:
|
|
addOpDecorateReqs(MI, 1, Reqs, ST);
|
|
break;
|
|
case SPIRV::OpMemberDecorate:
|
|
case SPIRV::OpMemberDecorateString:
|
|
addOpDecorateReqs(MI, 2, Reqs, ST);
|
|
break;
|
|
case SPIRV::OpInBoundsPtrAccessChain:
|
|
Reqs.addCapability(SPIRV::Capability::Addresses);
|
|
break;
|
|
case SPIRV::OpConstantSampler:
|
|
Reqs.addCapability(SPIRV::Capability::LiteralSampler);
|
|
break;
|
|
case SPIRV::OpInBoundsAccessChain:
|
|
case SPIRV::OpAccessChain:
|
|
addOpAccessChainReqs(MI, Reqs, ST);
|
|
break;
|
|
case SPIRV::OpTypeImage:
|
|
addOpTypeImageReqs(MI, Reqs, ST);
|
|
break;
|
|
case SPIRV::OpTypeSampler:
|
|
if (!ST.isVulkanEnv()) {
|
|
Reqs.addCapability(SPIRV::Capability::ImageBasic);
|
|
}
|
|
break;
|
|
case SPIRV::OpTypeForwardPointer:
|
|
// TODO: check if it's OpenCL's kernel.
|
|
Reqs.addCapability(SPIRV::Capability::Addresses);
|
|
break;
|
|
case SPIRV::OpAtomicFlagTestAndSet:
|
|
case SPIRV::OpAtomicLoad:
|
|
case SPIRV::OpAtomicStore:
|
|
case SPIRV::OpAtomicExchange:
|
|
case SPIRV::OpAtomicCompareExchange:
|
|
case SPIRV::OpAtomicIIncrement:
|
|
case SPIRV::OpAtomicIDecrement:
|
|
case SPIRV::OpAtomicIAdd:
|
|
case SPIRV::OpAtomicISub:
|
|
case SPIRV::OpAtomicUMin:
|
|
case SPIRV::OpAtomicUMax:
|
|
case SPIRV::OpAtomicSMin:
|
|
case SPIRV::OpAtomicSMax:
|
|
case SPIRV::OpAtomicAnd:
|
|
case SPIRV::OpAtomicOr:
|
|
case SPIRV::OpAtomicXor: {
|
|
const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
|
|
const MachineInstr *InstrPtr = &MI;
|
|
if (MI.getOpcode() == SPIRV::OpAtomicStore) {
|
|
assert(MI.getOperand(3).isReg());
|
|
InstrPtr = MRI.getVRegDef(MI.getOperand(3).getReg());
|
|
assert(InstrPtr && "Unexpected type instruction for OpAtomicStore");
|
|
}
|
|
assert(InstrPtr->getOperand(1).isReg() && "Unexpected operand in atomic");
|
|
Register TypeReg = InstrPtr->getOperand(1).getReg();
|
|
SPIRVType *TypeDef = MRI.getVRegDef(TypeReg);
|
|
if (TypeDef->getOpcode() == SPIRV::OpTypeInt) {
|
|
unsigned BitWidth = TypeDef->getOperand(1).getImm();
|
|
if (BitWidth == 64)
|
|
Reqs.addCapability(SPIRV::Capability::Int64Atomics);
|
|
}
|
|
break;
|
|
}
|
|
case SPIRV::OpGroupNonUniformIAdd:
|
|
case SPIRV::OpGroupNonUniformFAdd:
|
|
case SPIRV::OpGroupNonUniformIMul:
|
|
case SPIRV::OpGroupNonUniformFMul:
|
|
case SPIRV::OpGroupNonUniformSMin:
|
|
case SPIRV::OpGroupNonUniformUMin:
|
|
case SPIRV::OpGroupNonUniformFMin:
|
|
case SPIRV::OpGroupNonUniformSMax:
|
|
case SPIRV::OpGroupNonUniformUMax:
|
|
case SPIRV::OpGroupNonUniformFMax:
|
|
case SPIRV::OpGroupNonUniformBitwiseAnd:
|
|
case SPIRV::OpGroupNonUniformBitwiseOr:
|
|
case SPIRV::OpGroupNonUniformBitwiseXor:
|
|
case SPIRV::OpGroupNonUniformLogicalAnd:
|
|
case SPIRV::OpGroupNonUniformLogicalOr:
|
|
case SPIRV::OpGroupNonUniformLogicalXor: {
|
|
assert(MI.getOperand(3).isImm());
|
|
int64_t GroupOp = MI.getOperand(3).getImm();
|
|
switch (GroupOp) {
|
|
case SPIRV::GroupOperation::Reduce:
|
|
case SPIRV::GroupOperation::InclusiveScan:
|
|
case SPIRV::GroupOperation::ExclusiveScan:
|
|
Reqs.addCapability(SPIRV::Capability::GroupNonUniformArithmetic);
|
|
break;
|
|
case SPIRV::GroupOperation::ClusteredReduce:
|
|
Reqs.addCapability(SPIRV::Capability::GroupNonUniformClustered);
|
|
break;
|
|
case SPIRV::GroupOperation::PartitionedReduceNV:
|
|
case SPIRV::GroupOperation::PartitionedInclusiveScanNV:
|
|
case SPIRV::GroupOperation::PartitionedExclusiveScanNV:
|
|
Reqs.addCapability(SPIRV::Capability::GroupNonUniformPartitionedNV);
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
case SPIRV::OpGroupNonUniformShuffle:
|
|
case SPIRV::OpGroupNonUniformShuffleXor:
|
|
Reqs.addCapability(SPIRV::Capability::GroupNonUniformShuffle);
|
|
break;
|
|
case SPIRV::OpGroupNonUniformShuffleUp:
|
|
case SPIRV::OpGroupNonUniformShuffleDown:
|
|
Reqs.addCapability(SPIRV::Capability::GroupNonUniformShuffleRelative);
|
|
break;
|
|
case SPIRV::OpGroupAll:
|
|
case SPIRV::OpGroupAny:
|
|
case SPIRV::OpGroupBroadcast:
|
|
case SPIRV::OpGroupIAdd:
|
|
case SPIRV::OpGroupFAdd:
|
|
case SPIRV::OpGroupFMin:
|
|
case SPIRV::OpGroupUMin:
|
|
case SPIRV::OpGroupSMin:
|
|
case SPIRV::OpGroupFMax:
|
|
case SPIRV::OpGroupUMax:
|
|
case SPIRV::OpGroupSMax:
|
|
Reqs.addCapability(SPIRV::Capability::Groups);
|
|
break;
|
|
case SPIRV::OpGroupNonUniformElect:
|
|
Reqs.addCapability(SPIRV::Capability::GroupNonUniform);
|
|
break;
|
|
case SPIRV::OpGroupNonUniformAll:
|
|
case SPIRV::OpGroupNonUniformAny:
|
|
case SPIRV::OpGroupNonUniformAllEqual:
|
|
Reqs.addCapability(SPIRV::Capability::GroupNonUniformVote);
|
|
break;
|
|
case SPIRV::OpGroupNonUniformBroadcast:
|
|
case SPIRV::OpGroupNonUniformBroadcastFirst:
|
|
case SPIRV::OpGroupNonUniformBallot:
|
|
case SPIRV::OpGroupNonUniformInverseBallot:
|
|
case SPIRV::OpGroupNonUniformBallotBitExtract:
|
|
case SPIRV::OpGroupNonUniformBallotBitCount:
|
|
case SPIRV::OpGroupNonUniformBallotFindLSB:
|
|
case SPIRV::OpGroupNonUniformBallotFindMSB:
|
|
Reqs.addCapability(SPIRV::Capability::GroupNonUniformBallot);
|
|
break;
|
|
case SPIRV::OpSubgroupShuffleINTEL:
|
|
case SPIRV::OpSubgroupShuffleDownINTEL:
|
|
case SPIRV::OpSubgroupShuffleUpINTEL:
|
|
case SPIRV::OpSubgroupShuffleXorINTEL:
|
|
if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_subgroups)) {
|
|
Reqs.addExtension(SPIRV::Extension::SPV_INTEL_subgroups);
|
|
Reqs.addCapability(SPIRV::Capability::SubgroupShuffleINTEL);
|
|
}
|
|
break;
|
|
case SPIRV::OpSubgroupBlockReadINTEL:
|
|
case SPIRV::OpSubgroupBlockWriteINTEL:
|
|
if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_subgroups)) {
|
|
Reqs.addExtension(SPIRV::Extension::SPV_INTEL_subgroups);
|
|
Reqs.addCapability(SPIRV::Capability::SubgroupBufferBlockIOINTEL);
|
|
}
|
|
break;
|
|
case SPIRV::OpSubgroupImageBlockReadINTEL:
|
|
case SPIRV::OpSubgroupImageBlockWriteINTEL:
|
|
if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_subgroups)) {
|
|
Reqs.addExtension(SPIRV::Extension::SPV_INTEL_subgroups);
|
|
Reqs.addCapability(SPIRV::Capability::SubgroupImageBlockIOINTEL);
|
|
}
|
|
break;
|
|
case SPIRV::OpSubgroupImageMediaBlockReadINTEL:
|
|
case SPIRV::OpSubgroupImageMediaBlockWriteINTEL:
|
|
if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_media_block_io)) {
|
|
Reqs.addExtension(SPIRV::Extension::SPV_INTEL_media_block_io);
|
|
Reqs.addCapability(SPIRV::Capability::SubgroupImageMediaBlockIOINTEL);
|
|
}
|
|
break;
|
|
case SPIRV::OpAssumeTrueKHR:
|
|
case SPIRV::OpExpectKHR:
|
|
if (ST.canUseExtension(SPIRV::Extension::SPV_KHR_expect_assume)) {
|
|
Reqs.addExtension(SPIRV::Extension::SPV_KHR_expect_assume);
|
|
Reqs.addCapability(SPIRV::Capability::ExpectAssumeKHR);
|
|
}
|
|
break;
|
|
case SPIRV::OpPtrCastToCrossWorkgroupINTEL:
|
|
case SPIRV::OpCrossWorkgroupCastToPtrINTEL:
|
|
if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_usm_storage_classes)) {
|
|
Reqs.addExtension(SPIRV::Extension::SPV_INTEL_usm_storage_classes);
|
|
Reqs.addCapability(SPIRV::Capability::USMStorageClassesINTEL);
|
|
}
|
|
break;
|
|
case SPIRV::OpConstantFunctionPointerINTEL:
|
|
if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_function_pointers)) {
|
|
Reqs.addExtension(SPIRV::Extension::SPV_INTEL_function_pointers);
|
|
Reqs.addCapability(SPIRV::Capability::FunctionPointersINTEL);
|
|
}
|
|
break;
|
|
case SPIRV::OpGroupNonUniformRotateKHR:
|
|
if (!ST.canUseExtension(SPIRV::Extension::SPV_KHR_subgroup_rotate))
|
|
report_fatal_error("OpGroupNonUniformRotateKHR instruction requires the "
|
|
"following SPIR-V extension: SPV_KHR_subgroup_rotate",
|
|
false);
|
|
Reqs.addExtension(SPIRV::Extension::SPV_KHR_subgroup_rotate);
|
|
Reqs.addCapability(SPIRV::Capability::GroupNonUniformRotateKHR);
|
|
Reqs.addCapability(SPIRV::Capability::GroupNonUniform);
|
|
break;
|
|
case SPIRV::OpGroupIMulKHR:
|
|
case SPIRV::OpGroupFMulKHR:
|
|
case SPIRV::OpGroupBitwiseAndKHR:
|
|
case SPIRV::OpGroupBitwiseOrKHR:
|
|
case SPIRV::OpGroupBitwiseXorKHR:
|
|
case SPIRV::OpGroupLogicalAndKHR:
|
|
case SPIRV::OpGroupLogicalOrKHR:
|
|
case SPIRV::OpGroupLogicalXorKHR:
|
|
if (ST.canUseExtension(
|
|
SPIRV::Extension::SPV_KHR_uniform_group_instructions)) {
|
|
Reqs.addExtension(SPIRV::Extension::SPV_KHR_uniform_group_instructions);
|
|
Reqs.addCapability(SPIRV::Capability::GroupUniformArithmeticKHR);
|
|
}
|
|
break;
|
|
case SPIRV::OpReadClockKHR:
|
|
if (!ST.canUseExtension(SPIRV::Extension::SPV_KHR_shader_clock))
|
|
report_fatal_error("OpReadClockKHR instruction requires the "
|
|
"following SPIR-V extension: SPV_KHR_shader_clock",
|
|
false);
|
|
Reqs.addExtension(SPIRV::Extension::SPV_KHR_shader_clock);
|
|
Reqs.addCapability(SPIRV::Capability::ShaderClockKHR);
|
|
break;
|
|
case SPIRV::OpFunctionPointerCallINTEL:
|
|
if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_function_pointers)) {
|
|
Reqs.addExtension(SPIRV::Extension::SPV_INTEL_function_pointers);
|
|
Reqs.addCapability(SPIRV::Capability::FunctionPointersINTEL);
|
|
}
|
|
break;
|
|
case SPIRV::OpAtomicFAddEXT:
|
|
case SPIRV::OpAtomicFMinEXT:
|
|
case SPIRV::OpAtomicFMaxEXT:
|
|
AddAtomicFloatRequirements(MI, Reqs, ST);
|
|
break;
|
|
case SPIRV::OpConvertBF16ToFINTEL:
|
|
case SPIRV::OpConvertFToBF16INTEL:
|
|
if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_bfloat16_conversion)) {
|
|
Reqs.addExtension(SPIRV::Extension::SPV_INTEL_bfloat16_conversion);
|
|
Reqs.addCapability(SPIRV::Capability::BFloat16ConversionINTEL);
|
|
}
|
|
break;
|
|
case SPIRV::OpVariableLengthArrayINTEL:
|
|
case SPIRV::OpSaveMemoryINTEL:
|
|
case SPIRV::OpRestoreMemoryINTEL:
|
|
if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_variable_length_array)) {
|
|
Reqs.addExtension(SPIRV::Extension::SPV_INTEL_variable_length_array);
|
|
Reqs.addCapability(SPIRV::Capability::VariableLengthArrayINTEL);
|
|
}
|
|
break;
|
|
case SPIRV::OpAsmTargetINTEL:
|
|
case SPIRV::OpAsmINTEL:
|
|
case SPIRV::OpAsmCallINTEL:
|
|
if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_inline_assembly)) {
|
|
Reqs.addExtension(SPIRV::Extension::SPV_INTEL_inline_assembly);
|
|
Reqs.addCapability(SPIRV::Capability::AsmINTEL);
|
|
}
|
|
break;
|
|
case SPIRV::OpTypeCooperativeMatrixKHR:
|
|
if (!ST.canUseExtension(SPIRV::Extension::SPV_KHR_cooperative_matrix))
|
|
report_fatal_error(
|
|
"OpTypeCooperativeMatrixKHR type requires the "
|
|
"following SPIR-V extension: SPV_KHR_cooperative_matrix",
|
|
false);
|
|
Reqs.addExtension(SPIRV::Extension::SPV_KHR_cooperative_matrix);
|
|
Reqs.addCapability(SPIRV::Capability::CooperativeMatrixKHR);
|
|
break;
|
|
case SPIRV::OpArithmeticFenceEXT:
|
|
if (!ST.canUseExtension(SPIRV::Extension::SPV_EXT_arithmetic_fence))
|
|
report_fatal_error("OpArithmeticFenceEXT requires the "
|
|
"following SPIR-V extension: SPV_EXT_arithmetic_fence",
|
|
false);
|
|
Reqs.addExtension(SPIRV::Extension::SPV_EXT_arithmetic_fence);
|
|
Reqs.addCapability(SPIRV::Capability::ArithmeticFenceEXT);
|
|
break;
|
|
case SPIRV::OpControlBarrierArriveINTEL:
|
|
case SPIRV::OpControlBarrierWaitINTEL:
|
|
if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_split_barrier)) {
|
|
Reqs.addExtension(SPIRV::Extension::SPV_INTEL_split_barrier);
|
|
Reqs.addCapability(SPIRV::Capability::SplitBarrierINTEL);
|
|
}
|
|
break;
|
|
case SPIRV::OpCooperativeMatrixMulAddKHR: {
|
|
if (!ST.canUseExtension(SPIRV::Extension::SPV_KHR_cooperative_matrix))
|
|
report_fatal_error("Cooperative matrix instructions require the "
|
|
"following SPIR-V extension: "
|
|
"SPV_KHR_cooperative_matrix",
|
|
false);
|
|
Reqs.addExtension(SPIRV::Extension::SPV_KHR_cooperative_matrix);
|
|
Reqs.addCapability(SPIRV::Capability::CooperativeMatrixKHR);
|
|
constexpr unsigned MulAddMaxSize = 6;
|
|
if (MI.getNumOperands() != MulAddMaxSize)
|
|
break;
|
|
const int64_t CoopOperands = MI.getOperand(MulAddMaxSize - 1).getImm();
|
|
if (CoopOperands &
|
|
SPIRV::CooperativeMatrixOperands::MatrixAAndBTF32ComponentsINTEL) {
|
|
if (!ST.canUseExtension(SPIRV::Extension::SPV_INTEL_joint_matrix))
|
|
report_fatal_error("MatrixAAndBTF32ComponentsINTEL type interpretation "
|
|
"require the following SPIR-V extension: "
|
|
"SPV_INTEL_joint_matrix",
|
|
false);
|
|
Reqs.addExtension(SPIRV::Extension::SPV_INTEL_joint_matrix);
|
|
Reqs.addCapability(
|
|
SPIRV::Capability::CooperativeMatrixTF32ComponentTypeINTEL);
|
|
}
|
|
if (CoopOperands & SPIRV::CooperativeMatrixOperands::
|
|
MatrixAAndBBFloat16ComponentsINTEL ||
|
|
CoopOperands &
|
|
SPIRV::CooperativeMatrixOperands::MatrixCBFloat16ComponentsINTEL ||
|
|
CoopOperands & SPIRV::CooperativeMatrixOperands::
|
|
MatrixResultBFloat16ComponentsINTEL) {
|
|
if (!ST.canUseExtension(SPIRV::Extension::SPV_INTEL_joint_matrix))
|
|
report_fatal_error("***BF16ComponentsINTEL type interpretations "
|
|
"require the following SPIR-V extension: "
|
|
"SPV_INTEL_joint_matrix",
|
|
false);
|
|
Reqs.addExtension(SPIRV::Extension::SPV_INTEL_joint_matrix);
|
|
Reqs.addCapability(
|
|
SPIRV::Capability::CooperativeMatrixBFloat16ComponentTypeINTEL);
|
|
}
|
|
break;
|
|
}
|
|
case SPIRV::OpCooperativeMatrixLoadKHR:
|
|
case SPIRV::OpCooperativeMatrixStoreKHR:
|
|
case SPIRV::OpCooperativeMatrixLoadCheckedINTEL:
|
|
case SPIRV::OpCooperativeMatrixStoreCheckedINTEL:
|
|
case SPIRV::OpCooperativeMatrixPrefetchINTEL: {
|
|
if (!ST.canUseExtension(SPIRV::Extension::SPV_KHR_cooperative_matrix))
|
|
report_fatal_error("Cooperative matrix instructions require the "
|
|
"following SPIR-V extension: "
|
|
"SPV_KHR_cooperative_matrix",
|
|
false);
|
|
Reqs.addExtension(SPIRV::Extension::SPV_KHR_cooperative_matrix);
|
|
Reqs.addCapability(SPIRV::Capability::CooperativeMatrixKHR);
|
|
|
|
// Check Layout operand in case if it's not a standard one and add the
|
|
// appropriate capability.
|
|
std::unordered_map<unsigned, unsigned> LayoutToInstMap = {
|
|
{SPIRV::OpCooperativeMatrixLoadKHR, 3},
|
|
{SPIRV::OpCooperativeMatrixStoreKHR, 2},
|
|
{SPIRV::OpCooperativeMatrixLoadCheckedINTEL, 5},
|
|
{SPIRV::OpCooperativeMatrixStoreCheckedINTEL, 4},
|
|
{SPIRV::OpCooperativeMatrixPrefetchINTEL, 4}};
|
|
|
|
const auto OpCode = MI.getOpcode();
|
|
const unsigned LayoutNum = LayoutToInstMap[OpCode];
|
|
Register RegLayout = MI.getOperand(LayoutNum).getReg();
|
|
const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
|
|
MachineInstr *MILayout = MRI.getUniqueVRegDef(RegLayout);
|
|
if (MILayout->getOpcode() == SPIRV::OpConstantI) {
|
|
const unsigned LayoutVal = MILayout->getOperand(2).getImm();
|
|
if (LayoutVal ==
|
|
static_cast<unsigned>(SPIRV::CooperativeMatrixLayout::PackedINTEL)) {
|
|
if (!ST.canUseExtension(SPIRV::Extension::SPV_INTEL_joint_matrix))
|
|
report_fatal_error("PackedINTEL layout require the following SPIR-V "
|
|
"extension: SPV_INTEL_joint_matrix",
|
|
false);
|
|
Reqs.addExtension(SPIRV::Extension::SPV_INTEL_joint_matrix);
|
|
Reqs.addCapability(SPIRV::Capability::PackedCooperativeMatrixINTEL);
|
|
}
|
|
}
|
|
|
|
// Nothing to do.
|
|
if (OpCode == SPIRV::OpCooperativeMatrixLoadKHR ||
|
|
OpCode == SPIRV::OpCooperativeMatrixStoreKHR)
|
|
break;
|
|
|
|
std::string InstName;
|
|
switch (OpCode) {
|
|
case SPIRV::OpCooperativeMatrixPrefetchINTEL:
|
|
InstName = "OpCooperativeMatrixPrefetchINTEL";
|
|
break;
|
|
case SPIRV::OpCooperativeMatrixLoadCheckedINTEL:
|
|
InstName = "OpCooperativeMatrixLoadCheckedINTEL";
|
|
break;
|
|
case SPIRV::OpCooperativeMatrixStoreCheckedINTEL:
|
|
InstName = "OpCooperativeMatrixStoreCheckedINTEL";
|
|
break;
|
|
}
|
|
|
|
if (!ST.canUseExtension(SPIRV::Extension::SPV_INTEL_joint_matrix)) {
|
|
const std::string ErrorMsg =
|
|
InstName + " instruction requires the "
|
|
"following SPIR-V extension: SPV_INTEL_joint_matrix";
|
|
report_fatal_error(ErrorMsg.c_str(), false);
|
|
}
|
|
Reqs.addExtension(SPIRV::Extension::SPV_INTEL_joint_matrix);
|
|
if (OpCode == SPIRV::OpCooperativeMatrixPrefetchINTEL) {
|
|
Reqs.addCapability(SPIRV::Capability::CooperativeMatrixPrefetchINTEL);
|
|
break;
|
|
}
|
|
Reqs.addCapability(
|
|
SPIRV::Capability::CooperativeMatrixCheckedInstructionsINTEL);
|
|
break;
|
|
}
|
|
case SPIRV::OpCooperativeMatrixConstructCheckedINTEL:
|
|
if (!ST.canUseExtension(SPIRV::Extension::SPV_INTEL_joint_matrix))
|
|
report_fatal_error("OpCooperativeMatrixConstructCheckedINTEL "
|
|
"instructions require the following SPIR-V extension: "
|
|
"SPV_INTEL_joint_matrix",
|
|
false);
|
|
Reqs.addExtension(SPIRV::Extension::SPV_INTEL_joint_matrix);
|
|
Reqs.addCapability(
|
|
SPIRV::Capability::CooperativeMatrixCheckedInstructionsINTEL);
|
|
break;
|
|
case SPIRV::OpCooperativeMatrixGetElementCoordINTEL:
|
|
if (!ST.canUseExtension(SPIRV::Extension::SPV_INTEL_joint_matrix))
|
|
report_fatal_error("OpCooperativeMatrixGetElementCoordINTEL requires the "
|
|
"following SPIR-V extension: SPV_INTEL_joint_matrix",
|
|
false);
|
|
Reqs.addExtension(SPIRV::Extension::SPV_INTEL_joint_matrix);
|
|
Reqs.addCapability(
|
|
SPIRV::Capability::CooperativeMatrixInvocationInstructionsINTEL);
|
|
break;
|
|
case SPIRV::OpConvertHandleToImageINTEL:
|
|
case SPIRV::OpConvertHandleToSamplerINTEL:
|
|
case SPIRV::OpConvertHandleToSampledImageINTEL:
|
|
if (!ST.canUseExtension(SPIRV::Extension::SPV_INTEL_bindless_images))
|
|
report_fatal_error("OpConvertHandleTo[Image/Sampler/SampledImage]INTEL "
|
|
"instructions require the following SPIR-V extension: "
|
|
"SPV_INTEL_bindless_images",
|
|
false);
|
|
Reqs.addExtension(SPIRV::Extension::SPV_INTEL_bindless_images);
|
|
Reqs.addCapability(SPIRV::Capability::BindlessImagesINTEL);
|
|
break;
|
|
case SPIRV::OpKill: {
|
|
Reqs.addCapability(SPIRV::Capability::Shader);
|
|
} break;
|
|
case SPIRV::OpDemoteToHelperInvocation:
|
|
Reqs.addCapability(SPIRV::Capability::DemoteToHelperInvocation);
|
|
|
|
if (ST.canUseExtension(
|
|
SPIRV::Extension::SPV_EXT_demote_to_helper_invocation)) {
|
|
if (!ST.isAtLeastSPIRVVer(llvm::VersionTuple(1, 6)))
|
|
Reqs.addExtension(
|
|
SPIRV::Extension::SPV_EXT_demote_to_helper_invocation);
|
|
}
|
|
break;
|
|
case SPIRV::OpSDot:
|
|
case SPIRV::OpUDot:
|
|
case SPIRV::OpSUDot:
|
|
case SPIRV::OpSDotAccSat:
|
|
case SPIRV::OpUDotAccSat:
|
|
case SPIRV::OpSUDotAccSat:
|
|
AddDotProductRequirements(MI, Reqs, ST);
|
|
break;
|
|
case SPIRV::OpImageRead: {
|
|
Register ImageReg = MI.getOperand(2).getReg();
|
|
SPIRVType *TypeDef = ST.getSPIRVGlobalRegistry()->getResultType(
|
|
ImageReg, const_cast<MachineFunction *>(MI.getMF()));
|
|
// OpImageRead and OpImageWrite can use Unknown Image Formats
|
|
// when the Kernel capability is declared. In the OpenCL environment we are
|
|
// not allowed to produce
|
|
// StorageImageReadWithoutFormat/StorageImageWriteWithoutFormat, see
|
|
// https://github.com/KhronosGroup/SPIRV-Headers/issues/487
|
|
if (isImageTypeWithUnknownFormat(TypeDef) && !ST.isOpenCLEnv())
|
|
Reqs.addCapability(SPIRV::Capability::StorageImageReadWithoutFormat);
|
|
break;
|
|
}
|
|
case SPIRV::OpImageWrite: {
|
|
Register ImageReg = MI.getOperand(0).getReg();
|
|
SPIRVType *TypeDef = ST.getSPIRVGlobalRegistry()->getResultType(
|
|
ImageReg, const_cast<MachineFunction *>(MI.getMF()));
|
|
// OpImageRead and OpImageWrite can use Unknown Image Formats
|
|
// when the Kernel capability is declared. In the OpenCL environment we are
|
|
// not allowed to produce
|
|
// StorageImageReadWithoutFormat/StorageImageWriteWithoutFormat, see
|
|
// https://github.com/KhronosGroup/SPIRV-Headers/issues/487
|
|
if (isImageTypeWithUnknownFormat(TypeDef) && !ST.isOpenCLEnv())
|
|
Reqs.addCapability(SPIRV::Capability::StorageImageWriteWithoutFormat);
|
|
break;
|
|
}
|
|
case SPIRV::OpTypeStructContinuedINTEL:
|
|
case SPIRV::OpConstantCompositeContinuedINTEL:
|
|
case SPIRV::OpSpecConstantCompositeContinuedINTEL:
|
|
case SPIRV::OpCompositeConstructContinuedINTEL: {
|
|
if (!ST.canUseExtension(SPIRV::Extension::SPV_INTEL_long_composites))
|
|
report_fatal_error(
|
|
"Continued instructions require the "
|
|
"following SPIR-V extension: SPV_INTEL_long_composites",
|
|
false);
|
|
Reqs.addExtension(SPIRV::Extension::SPV_INTEL_long_composites);
|
|
Reqs.addCapability(SPIRV::Capability::LongCompositesINTEL);
|
|
break;
|
|
}
|
|
case SPIRV::OpBitwiseFunctionINTEL: {
|
|
if (!ST.canUseExtension(
|
|
SPIRV::Extension::SPV_INTEL_ternary_bitwise_function))
|
|
report_fatal_error(
|
|
"OpBitwiseFunctionINTEL instruction requires the following SPIR-V "
|
|
"extension: SPV_INTEL_ternary_bitwise_function",
|
|
false);
|
|
Reqs.addExtension(SPIRV::Extension::SPV_INTEL_ternary_bitwise_function);
|
|
Reqs.addCapability(SPIRV::Capability::TernaryBitwiseFunctionINTEL);
|
|
break;
|
|
}
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
// If we require capability Shader, then we can remove the requirement for
|
|
// the BitInstructions capability, since Shader is a superset capability
|
|
// of BitInstructions.
|
|
Reqs.removeCapabilityIf(SPIRV::Capability::BitInstructions,
|
|
SPIRV::Capability::Shader);
|
|
}
|
|
|
|
static void collectReqs(const Module &M, SPIRV::ModuleAnalysisInfo &MAI,
|
|
MachineModuleInfo *MMI, const SPIRVSubtarget &ST) {
|
|
// Collect requirements for existing instructions.
|
|
for (auto F = M.begin(), E = M.end(); F != E; ++F) {
|
|
MachineFunction *MF = MMI->getMachineFunction(*F);
|
|
if (!MF)
|
|
continue;
|
|
for (const MachineBasicBlock &MBB : *MF)
|
|
for (const MachineInstr &MI : MBB)
|
|
addInstrRequirements(MI, MAI.Reqs, ST);
|
|
}
|
|
// Collect requirements for OpExecutionMode instructions.
|
|
auto Node = M.getNamedMetadata("spirv.ExecutionMode");
|
|
if (Node) {
|
|
bool RequireFloatControls = false, RequireFloatControls2 = false,
|
|
VerLower14 = !ST.isAtLeastSPIRVVer(VersionTuple(1, 4));
|
|
bool HasFloatControls2 =
|
|
ST.canUseExtension(SPIRV::Extension::SPV_INTEL_float_controls2);
|
|
for (unsigned i = 0; i < Node->getNumOperands(); i++) {
|
|
MDNode *MDN = cast<MDNode>(Node->getOperand(i));
|
|
const MDOperand &MDOp = MDN->getOperand(1);
|
|
if (auto *CMeta = dyn_cast<ConstantAsMetadata>(MDOp)) {
|
|
Constant *C = CMeta->getValue();
|
|
if (ConstantInt *Const = dyn_cast<ConstantInt>(C)) {
|
|
auto EM = Const->getZExtValue();
|
|
// SPV_KHR_float_controls is not available until v1.4:
|
|
// add SPV_KHR_float_controls if the version is too low
|
|
switch (EM) {
|
|
case SPIRV::ExecutionMode::DenormPreserve:
|
|
case SPIRV::ExecutionMode::DenormFlushToZero:
|
|
case SPIRV::ExecutionMode::SignedZeroInfNanPreserve:
|
|
case SPIRV::ExecutionMode::RoundingModeRTE:
|
|
case SPIRV::ExecutionMode::RoundingModeRTZ:
|
|
RequireFloatControls = VerLower14;
|
|
MAI.Reqs.getAndAddRequirements(
|
|
SPIRV::OperandCategory::ExecutionModeOperand, EM, ST);
|
|
break;
|
|
case SPIRV::ExecutionMode::RoundingModeRTPINTEL:
|
|
case SPIRV::ExecutionMode::RoundingModeRTNINTEL:
|
|
case SPIRV::ExecutionMode::FloatingPointModeALTINTEL:
|
|
case SPIRV::ExecutionMode::FloatingPointModeIEEEINTEL:
|
|
if (HasFloatControls2) {
|
|
RequireFloatControls2 = true;
|
|
MAI.Reqs.getAndAddRequirements(
|
|
SPIRV::OperandCategory::ExecutionModeOperand, EM, ST);
|
|
}
|
|
break;
|
|
default:
|
|
MAI.Reqs.getAndAddRequirements(
|
|
SPIRV::OperandCategory::ExecutionModeOperand, EM, ST);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (RequireFloatControls &&
|
|
ST.canUseExtension(SPIRV::Extension::SPV_KHR_float_controls))
|
|
MAI.Reqs.addExtension(SPIRV::Extension::SPV_KHR_float_controls);
|
|
if (RequireFloatControls2)
|
|
MAI.Reqs.addExtension(SPIRV::Extension::SPV_INTEL_float_controls2);
|
|
}
|
|
for (auto FI = M.begin(), E = M.end(); FI != E; ++FI) {
|
|
const Function &F = *FI;
|
|
if (F.isDeclaration())
|
|
continue;
|
|
if (F.getMetadata("reqd_work_group_size"))
|
|
MAI.Reqs.getAndAddRequirements(
|
|
SPIRV::OperandCategory::ExecutionModeOperand,
|
|
SPIRV::ExecutionMode::LocalSize, ST);
|
|
if (F.getFnAttribute("hlsl.numthreads").isValid()) {
|
|
MAI.Reqs.getAndAddRequirements(
|
|
SPIRV::OperandCategory::ExecutionModeOperand,
|
|
SPIRV::ExecutionMode::LocalSize, ST);
|
|
}
|
|
if (F.getMetadata("work_group_size_hint"))
|
|
MAI.Reqs.getAndAddRequirements(
|
|
SPIRV::OperandCategory::ExecutionModeOperand,
|
|
SPIRV::ExecutionMode::LocalSizeHint, ST);
|
|
if (F.getMetadata("intel_reqd_sub_group_size"))
|
|
MAI.Reqs.getAndAddRequirements(
|
|
SPIRV::OperandCategory::ExecutionModeOperand,
|
|
SPIRV::ExecutionMode::SubgroupSize, ST);
|
|
if (F.getMetadata("vec_type_hint"))
|
|
MAI.Reqs.getAndAddRequirements(
|
|
SPIRV::OperandCategory::ExecutionModeOperand,
|
|
SPIRV::ExecutionMode::VecTypeHint, ST);
|
|
|
|
if (F.hasOptNone()) {
|
|
if (ST.canUseExtension(SPIRV::Extension::SPV_INTEL_optnone)) {
|
|
MAI.Reqs.addExtension(SPIRV::Extension::SPV_INTEL_optnone);
|
|
MAI.Reqs.addCapability(SPIRV::Capability::OptNoneINTEL);
|
|
} else if (ST.canUseExtension(SPIRV::Extension::SPV_EXT_optnone)) {
|
|
MAI.Reqs.addExtension(SPIRV::Extension::SPV_EXT_optnone);
|
|
MAI.Reqs.addCapability(SPIRV::Capability::OptNoneEXT);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static unsigned getFastMathFlags(const MachineInstr &I) {
|
|
unsigned Flags = SPIRV::FPFastMathMode::None;
|
|
if (I.getFlag(MachineInstr::MIFlag::FmNoNans))
|
|
Flags |= SPIRV::FPFastMathMode::NotNaN;
|
|
if (I.getFlag(MachineInstr::MIFlag::FmNoInfs))
|
|
Flags |= SPIRV::FPFastMathMode::NotInf;
|
|
if (I.getFlag(MachineInstr::MIFlag::FmNsz))
|
|
Flags |= SPIRV::FPFastMathMode::NSZ;
|
|
if (I.getFlag(MachineInstr::MIFlag::FmArcp))
|
|
Flags |= SPIRV::FPFastMathMode::AllowRecip;
|
|
if (I.getFlag(MachineInstr::MIFlag::FmReassoc))
|
|
Flags |= SPIRV::FPFastMathMode::Fast;
|
|
return Flags;
|
|
}
|
|
|
|
static void handleMIFlagDecoration(MachineInstr &I, const SPIRVSubtarget &ST,
|
|
const SPIRVInstrInfo &TII,
|
|
SPIRV::RequirementHandler &Reqs) {
|
|
if (I.getFlag(MachineInstr::MIFlag::NoSWrap) && TII.canUseNSW(I) &&
|
|
getSymbolicOperandRequirements(SPIRV::OperandCategory::DecorationOperand,
|
|
SPIRV::Decoration::NoSignedWrap, ST, Reqs)
|
|
.IsSatisfiable) {
|
|
buildOpDecorate(I.getOperand(0).getReg(), I, TII,
|
|
SPIRV::Decoration::NoSignedWrap, {});
|
|
}
|
|
if (I.getFlag(MachineInstr::MIFlag::NoUWrap) && TII.canUseNUW(I) &&
|
|
getSymbolicOperandRequirements(SPIRV::OperandCategory::DecorationOperand,
|
|
SPIRV::Decoration::NoUnsignedWrap, ST,
|
|
Reqs)
|
|
.IsSatisfiable) {
|
|
buildOpDecorate(I.getOperand(0).getReg(), I, TII,
|
|
SPIRV::Decoration::NoUnsignedWrap, {});
|
|
}
|
|
if (!TII.canUseFastMathFlags(I))
|
|
return;
|
|
unsigned FMFlags = getFastMathFlags(I);
|
|
if (FMFlags == SPIRV::FPFastMathMode::None)
|
|
return;
|
|
Register DstReg = I.getOperand(0).getReg();
|
|
buildOpDecorate(DstReg, I, TII, SPIRV::Decoration::FPFastMathMode, {FMFlags});
|
|
}
|
|
|
|
// Walk all functions and add decorations related to MI flags.
|
|
static void addDecorations(const Module &M, const SPIRVInstrInfo &TII,
|
|
MachineModuleInfo *MMI, const SPIRVSubtarget &ST,
|
|
SPIRV::ModuleAnalysisInfo &MAI) {
|
|
for (auto F = M.begin(), E = M.end(); F != E; ++F) {
|
|
MachineFunction *MF = MMI->getMachineFunction(*F);
|
|
if (!MF)
|
|
continue;
|
|
for (auto &MBB : *MF)
|
|
for (auto &MI : MBB)
|
|
handleMIFlagDecoration(MI, ST, TII, MAI.Reqs);
|
|
}
|
|
}
|
|
|
|
static void addMBBNames(const Module &M, const SPIRVInstrInfo &TII,
|
|
MachineModuleInfo *MMI, const SPIRVSubtarget &ST,
|
|
SPIRV::ModuleAnalysisInfo &MAI) {
|
|
for (auto F = M.begin(), E = M.end(); F != E; ++F) {
|
|
MachineFunction *MF = MMI->getMachineFunction(*F);
|
|
if (!MF)
|
|
continue;
|
|
MachineRegisterInfo &MRI = MF->getRegInfo();
|
|
for (auto &MBB : *MF) {
|
|
if (!MBB.hasName() || MBB.empty())
|
|
continue;
|
|
// Emit basic block names.
|
|
Register Reg = MRI.createGenericVirtualRegister(LLT::scalar(64));
|
|
MRI.setRegClass(Reg, &SPIRV::IDRegClass);
|
|
buildOpName(Reg, MBB.getName(), *std::prev(MBB.end()), TII);
|
|
MCRegister GlobalReg = MAI.getOrCreateMBBRegister(MBB);
|
|
MAI.setRegisterAlias(MF, Reg, GlobalReg);
|
|
}
|
|
}
|
|
}
|
|
|
|
// patching Instruction::PHI to SPIRV::OpPhi
|
|
static void patchPhis(const Module &M, SPIRVGlobalRegistry *GR,
|
|
const SPIRVInstrInfo &TII, MachineModuleInfo *MMI) {
|
|
for (auto F = M.begin(), E = M.end(); F != E; ++F) {
|
|
MachineFunction *MF = MMI->getMachineFunction(*F);
|
|
if (!MF)
|
|
continue;
|
|
for (auto &MBB : *MF) {
|
|
for (MachineInstr &MI : MBB) {
|
|
if (MI.getOpcode() != TargetOpcode::PHI)
|
|
continue;
|
|
MI.setDesc(TII.get(SPIRV::OpPhi));
|
|
Register ResTypeReg = GR->getSPIRVTypeID(
|
|
GR->getSPIRVTypeForVReg(MI.getOperand(0).getReg(), MF));
|
|
MI.insert(MI.operands_begin() + 1,
|
|
{MachineOperand::CreateReg(ResTypeReg, false)});
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
struct SPIRV::ModuleAnalysisInfo SPIRVModuleAnalysis::MAI;
|
|
|
|
void SPIRVModuleAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.addRequired<TargetPassConfig>();
|
|
AU.addRequired<MachineModuleInfoWrapperPass>();
|
|
}
|
|
|
|
bool SPIRVModuleAnalysis::runOnModule(Module &M) {
|
|
SPIRVTargetMachine &TM =
|
|
getAnalysis<TargetPassConfig>().getTM<SPIRVTargetMachine>();
|
|
ST = TM.getSubtargetImpl();
|
|
GR = ST->getSPIRVGlobalRegistry();
|
|
TII = ST->getInstrInfo();
|
|
|
|
MMI = &getAnalysis<MachineModuleInfoWrapperPass>().getMMI();
|
|
|
|
setBaseInfo(M);
|
|
|
|
patchPhis(M, GR, *TII, MMI);
|
|
|
|
addMBBNames(M, *TII, MMI, *ST, MAI);
|
|
addDecorations(M, *TII, MMI, *ST, MAI);
|
|
|
|
collectReqs(M, MAI, MMI, *ST);
|
|
|
|
// Process type/const/global var/func decl instructions, number their
|
|
// destination registers from 0 to N, collect Extensions and Capabilities.
|
|
collectReqs(M, MAI, MMI, *ST);
|
|
collectDeclarations(M);
|
|
|
|
// Number rest of registers from N+1 onwards.
|
|
numberRegistersGlobally(M);
|
|
|
|
// Collect OpName, OpEntryPoint, OpDecorate etc, process other instructions.
|
|
processOtherInstrs(M);
|
|
|
|
// If there are no entry points, we need the Linkage capability.
|
|
if (MAI.MS[SPIRV::MB_EntryPoints].empty())
|
|
MAI.Reqs.addCapability(SPIRV::Capability::Linkage);
|
|
|
|
// Set maximum ID used.
|
|
GR->setBound(MAI.MaxID);
|
|
|
|
return false;
|
|
}
|