Archibald Elliott 38ac4093d9 [NFCI][Support] Avoid ASSERT_/EXPECT_TRUE(A <op> B)
The error messages in tests are far better when a test fails if the test
is written using ASSERT_/EXPECT_<operator>(A, B) rather than
ASSERT_/EXPECT_TRUE(A <operator> B).

This commit updates all of llvm/unittests/Support to use these macros
where possible.

This change has not been possible in:
- llvm/unittests/Support/FSUniqueIDTest.cpp - due to not overloading
  operators beyond ==, != and <.
- llvm/unittests/Support/BranchProbabilityTest.cpp - where the unchanged
  tests are of the operator overloads themselves.

There are other possibilities of this conversion not being valid, which
have not applied in these tests, as they do not use NULL (they use
nullptr), and they do not use const char* (they use std::string or
StringRef).

Reviewed By: mubashar_

Differential Revision: https://reviews.llvm.org/D117319
2022-01-21 13:15:04 +00:00

411 lines
11 KiB
C++

//===---------- llvm/unittest/Support/Casting.cpp - Casting tests ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/Support/Casting.h"
#include "llvm/IR/User.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "gtest/gtest.h"
#include <cstdlib>
namespace llvm {
// Used to test illegal cast. If a cast doesn't match any of the "real" ones,
// it will match this one.
struct IllegalCast;
template <typename T> IllegalCast *cast(...) { return nullptr; }
// set up two example classes
// with conversion facility
//
struct bar {
bar() {}
struct foo *baz();
struct foo *caz();
struct foo *daz();
struct foo *naz();
private:
bar(const bar &);
};
struct foo {
void ext() const;
/* static bool classof(const bar *X) {
cerr << "Classof: " << X << "\n";
return true;
}*/
};
struct base {
virtual ~base() {}
};
struct derived : public base {
static bool classof(const base *B) { return true; }
};
template <> struct isa_impl<foo, bar> {
static inline bool doit(const bar &Val) {
dbgs() << "Classof: " << &Val << "\n";
return true;
}
};
template <typename T> struct isa_impl<foo, T> {
static inline bool doit(const T &Val) { return false; }
};
foo *bar::baz() {
return cast<foo>(this);
}
foo *bar::caz() {
return cast_or_null<foo>(this);
}
foo *bar::daz() {
return dyn_cast<foo>(this);
}
foo *bar::naz() {
return dyn_cast_or_null<foo>(this);
}
bar *fub();
template <> struct simplify_type<foo> {
typedef int SimpleType;
static SimpleType getSimplifiedValue(foo &Val) { return 0; }
};
} // End llvm namespace
using namespace llvm;
// Test the peculiar behavior of Use in simplify_type.
static_assert(std::is_same<simplify_type<Use>::SimpleType, Value *>::value,
"Use doesn't simplify correctly!");
static_assert(std::is_same<simplify_type<Use *>::SimpleType, Value *>::value,
"Use doesn't simplify correctly!");
// Test that a regular class behaves as expected.
static_assert(std::is_same<simplify_type<foo>::SimpleType, int>::value,
"Unexpected simplify_type result!");
static_assert(std::is_same<simplify_type<foo *>::SimpleType, foo *>::value,
"Unexpected simplify_type result!");
namespace {
const foo *null_foo = nullptr;
bar B;
extern bar &B1;
bar &B1 = B;
extern const bar *B2;
// test various configurations of const
const bar &B3 = B1;
const bar *const B4 = B2;
TEST(CastingTest, isa) {
EXPECT_TRUE(isa<foo>(B1));
EXPECT_TRUE(isa<foo>(B2));
EXPECT_TRUE(isa<foo>(B3));
EXPECT_TRUE(isa<foo>(B4));
}
TEST(CastingTest, isa_and_nonnull) {
EXPECT_TRUE(isa_and_nonnull<foo>(B2));
EXPECT_TRUE(isa_and_nonnull<foo>(B4));
EXPECT_FALSE(isa_and_nonnull<foo>(fub()));
}
TEST(CastingTest, cast) {
foo &F1 = cast<foo>(B1);
EXPECT_NE(&F1, null_foo);
const foo *F3 = cast<foo>(B2);
EXPECT_NE(F3, null_foo);
const foo *F4 = cast<foo>(B2);
EXPECT_NE(F4, null_foo);
const foo &F5 = cast<foo>(B3);
EXPECT_NE(&F5, null_foo);
const foo *F6 = cast<foo>(B4);
EXPECT_NE(F6, null_foo);
// Can't pass null pointer to cast<>.
// foo *F7 = cast<foo>(fub());
// EXPECT_EQ(F7, null_foo);
foo *F8 = B1.baz();
EXPECT_NE(F8, null_foo);
std::unique_ptr<const bar> BP(B2);
auto FP = cast<foo>(std::move(BP));
static_assert(std::is_same<std::unique_ptr<const foo>, decltype(FP)>::value,
"Incorrect deduced return type!");
EXPECT_NE(FP.get(), null_foo);
FP.release();
}
TEST(CastingTest, cast_or_null) {
const foo *F11 = cast_or_null<foo>(B2);
EXPECT_NE(F11, null_foo);
const foo *F12 = cast_or_null<foo>(B2);
EXPECT_NE(F12, null_foo);
const foo *F13 = cast_or_null<foo>(B4);
EXPECT_NE(F13, null_foo);
const foo *F14 = cast_or_null<foo>(fub()); // Shouldn't print.
EXPECT_EQ(F14, null_foo);
foo *F15 = B1.caz();
EXPECT_NE(F15, null_foo);
std::unique_ptr<const bar> BP(fub());
auto FP = cast_or_null<foo>(std::move(BP));
EXPECT_EQ(FP.get(), null_foo);
}
TEST(CastingTest, dyn_cast) {
const foo *F1 = dyn_cast<foo>(B2);
EXPECT_NE(F1, null_foo);
const foo *F2 = dyn_cast<foo>(B2);
EXPECT_NE(F2, null_foo);
const foo *F3 = dyn_cast<foo>(B4);
EXPECT_NE(F3, null_foo);
// Can't pass null pointer to dyn_cast<>.
// foo *F4 = dyn_cast<foo>(fub());
// EXPECT_EQ(F4, null_foo);
foo *F5 = B1.daz();
EXPECT_NE(F5, null_foo);
}
TEST(CastingTest, dyn_cast_or_null) {
const foo *F1 = dyn_cast_or_null<foo>(B2);
EXPECT_NE(F1, null_foo);
const foo *F2 = dyn_cast_or_null<foo>(B2);
EXPECT_NE(F2, null_foo);
const foo *F3 = dyn_cast_or_null<foo>(B4);
EXPECT_NE(F3, null_foo);
foo *F4 = dyn_cast_or_null<foo>(fub());
EXPECT_EQ(F4, null_foo);
foo *F5 = B1.naz();
EXPECT_NE(F5, null_foo);
}
std::unique_ptr<derived> newd() { return std::make_unique<derived>(); }
std::unique_ptr<base> newb() { return std::make_unique<derived>(); }
TEST(CastingTest, unique_dyn_cast) {
derived *OrigD = nullptr;
auto D = std::make_unique<derived>();
OrigD = D.get();
// Converting from D to itself is valid, it should return a new unique_ptr
// and the old one should become nullptr.
auto NewD = unique_dyn_cast<derived>(D);
ASSERT_EQ(OrigD, NewD.get());
ASSERT_EQ(nullptr, D);
// Converting from D to B is valid, B should have a value and D should be
// nullptr.
auto B = unique_dyn_cast<base>(NewD);
ASSERT_EQ(OrigD, B.get());
ASSERT_EQ(nullptr, NewD);
// Converting from B to itself is valid, it should return a new unique_ptr
// and the old one should become nullptr.
auto NewB = unique_dyn_cast<base>(B);
ASSERT_EQ(OrigD, NewB.get());
ASSERT_EQ(nullptr, B);
// Converting from B to D is valid, D should have a value and B should be
// nullptr;
D = unique_dyn_cast<derived>(NewB);
ASSERT_EQ(OrigD, D.get());
ASSERT_EQ(nullptr, NewB);
// Converting between unrelated types should fail. The original value should
// remain unchanged and it should return nullptr.
auto F = unique_dyn_cast<foo>(D);
ASSERT_EQ(nullptr, F);
ASSERT_EQ(OrigD, D.get());
// All of the above should also hold for temporaries.
auto D2 = unique_dyn_cast<derived>(newd());
EXPECT_NE(nullptr, D2);
auto B2 = unique_dyn_cast<derived>(newb());
EXPECT_NE(nullptr, B2);
auto B3 = unique_dyn_cast<base>(newb());
EXPECT_NE(nullptr, B3);
auto F2 = unique_dyn_cast<foo>(newb());
EXPECT_EQ(nullptr, F2);
}
// These lines are errors...
//foo *F20 = cast<foo>(B2); // Yields const foo*
//foo &F21 = cast<foo>(B3); // Yields const foo&
//foo *F22 = cast<foo>(B4); // Yields const foo*
//foo &F23 = cast_or_null<foo>(B1);
//const foo &F24 = cast_or_null<foo>(B3);
const bar *B2 = &B;
} // anonymous namespace
bar *llvm::fub() { return nullptr; }
namespace {
namespace inferred_upcasting {
// This test case verifies correct behavior of inferred upcasts when the
// types are statically known to be OK to upcast. This is the case when,
// for example, Derived inherits from Base, and we do `isa<Base>(Derived)`.
// Note: This test will actually fail to compile without inferred
// upcasting.
class Base {
public:
// No classof. We are testing that the upcast is inferred.
Base() {}
};
class Derived : public Base {
public:
Derived() {}
};
// Even with no explicit classof() in Base, we should still be able to cast
// Derived to its base class.
TEST(CastingTest, UpcastIsInferred) {
Derived D;
EXPECT_TRUE(isa<Base>(D));
Base *BP = dyn_cast<Base>(&D);
EXPECT_NE(BP, nullptr);
}
// This test verifies that the inferred upcast takes precedence over an
// explicitly written one. This is important because it verifies that the
// dynamic check gets optimized away.
class UseInferredUpcast {
public:
int Dummy;
static bool classof(const UseInferredUpcast *) {
return false;
}
};
TEST(CastingTest, InferredUpcastTakesPrecedence) {
UseInferredUpcast UIU;
// Since the explicit classof() returns false, this will fail if the
// explicit one is used.
EXPECT_TRUE(isa<UseInferredUpcast>(&UIU));
}
} // end namespace inferred_upcasting
} // end anonymous namespace
// Test that we reject casts of temporaries (and so the illegal cast gets used).
namespace TemporaryCast {
struct pod {};
IllegalCast *testIllegalCast() { return cast<foo>(pod()); }
}
namespace {
namespace pointer_wrappers {
struct Base {
bool IsDerived;
Base(bool IsDerived = false) : IsDerived(IsDerived) {}
};
struct Derived : Base {
Derived() : Base(true) {}
static bool classof(const Base *B) { return B->IsDerived; }
};
class PTy {
Base *B;
public:
PTy(Base *B) : B(B) {}
explicit operator bool() const { return get(); }
Base *get() const { return B; }
};
} // end namespace pointer_wrappers
} // end namespace
namespace llvm {
template <> struct simplify_type<pointer_wrappers::PTy> {
typedef pointer_wrappers::Base *SimpleType;
static SimpleType getSimplifiedValue(pointer_wrappers::PTy &P) {
return P.get();
}
};
template <> struct simplify_type<const pointer_wrappers::PTy> {
typedef pointer_wrappers::Base *SimpleType;
static SimpleType getSimplifiedValue(const pointer_wrappers::PTy &P) {
return P.get();
}
};
} // end namespace llvm
namespace {
namespace pointer_wrappers {
// Some objects.
pointer_wrappers::Base B;
pointer_wrappers::Derived D;
// Mutable "smart" pointers.
pointer_wrappers::PTy MN(nullptr);
pointer_wrappers::PTy MB(&B);
pointer_wrappers::PTy MD(&D);
// Const "smart" pointers.
const pointer_wrappers::PTy CN(nullptr);
const pointer_wrappers::PTy CB(&B);
const pointer_wrappers::PTy CD(&D);
TEST(CastingTest, smart_isa) {
EXPECT_TRUE(!isa<pointer_wrappers::Derived>(MB));
EXPECT_TRUE(!isa<pointer_wrappers::Derived>(CB));
EXPECT_TRUE(isa<pointer_wrappers::Derived>(MD));
EXPECT_TRUE(isa<pointer_wrappers::Derived>(CD));
}
TEST(CastingTest, smart_cast) {
EXPECT_EQ(cast<pointer_wrappers::Derived>(MD), &D);
EXPECT_EQ(cast<pointer_wrappers::Derived>(CD), &D);
}
TEST(CastingTest, smart_cast_or_null) {
EXPECT_EQ(cast_or_null<pointer_wrappers::Derived>(MN), nullptr);
EXPECT_EQ(cast_or_null<pointer_wrappers::Derived>(CN), nullptr);
EXPECT_EQ(cast_or_null<pointer_wrappers::Derived>(MD), &D);
EXPECT_EQ(cast_or_null<pointer_wrappers::Derived>(CD), &D);
}
TEST(CastingTest, smart_dyn_cast) {
EXPECT_EQ(dyn_cast<pointer_wrappers::Derived>(MB), nullptr);
EXPECT_EQ(dyn_cast<pointer_wrappers::Derived>(CB), nullptr);
EXPECT_EQ(dyn_cast<pointer_wrappers::Derived>(MD), &D);
EXPECT_EQ(dyn_cast<pointer_wrappers::Derived>(CD), &D);
}
TEST(CastingTest, smart_dyn_cast_or_null) {
EXPECT_EQ(dyn_cast_or_null<pointer_wrappers::Derived>(MN), nullptr);
EXPECT_EQ(dyn_cast_or_null<pointer_wrappers::Derived>(CN), nullptr);
EXPECT_EQ(dyn_cast_or_null<pointer_wrappers::Derived>(MB), nullptr);
EXPECT_EQ(dyn_cast_or_null<pointer_wrappers::Derived>(CB), nullptr);
EXPECT_EQ(dyn_cast_or_null<pointer_wrappers::Derived>(MD), &D);
EXPECT_EQ(dyn_cast_or_null<pointer_wrappers::Derived>(CD), &D);
}
} // end namespace pointer_wrappers
} // end namespace