Nathan Ridge 9510b09402 [clangd] Factor out the heuristic resolver code into its own class
The patch also does some cleanup on the interface of the entry
points from TargetFinder into the heuristic resolution code.

Since the heuristic resolver is created in a place where the
ASTContext is available, it can store the ASTContext and the
NameFactory hack can be removed.

Differential revision: https://reviews.llvm.org/D92290
2021-02-16 04:10:52 -05:00

949 lines
37 KiB
C++

//===--- Rename.cpp - Symbol-rename refactorings -----------------*- C++-*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "refactor/Rename.h"
#include "AST.h"
#include "FindTarget.h"
#include "ParsedAST.h"
#include "Selection.h"
#include "SourceCode.h"
#include "index/SymbolCollector.h"
#include "support/Logger.h"
#include "support/Trace.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/ASTTypeTraits.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/ParentMapContext.h"
#include "clang/AST/Stmt.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Tooling/Syntax/Tokens.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/FormatVariadic.h"
#include <algorithm>
namespace clang {
namespace clangd {
namespace {
llvm::Optional<std::string> filePath(const SymbolLocation &Loc,
llvm::StringRef HintFilePath) {
if (!Loc)
return None;
auto Path = URI::resolve(Loc.FileURI, HintFilePath);
if (!Path) {
elog("Could not resolve URI {0}: {1}", Loc.FileURI, Path.takeError());
return None;
}
return *Path;
}
// Returns true if the given location is expanded from any macro body.
bool isInMacroBody(const SourceManager &SM, SourceLocation Loc) {
while (Loc.isMacroID()) {
if (SM.isMacroBodyExpansion(Loc))
return true;
Loc = SM.getImmediateMacroCallerLoc(Loc);
}
return false;
}
// Canonical declarations help simplify the process of renaming. Examples:
// - Template's canonical decl is the templated declaration (i.e.
// ClassTemplateDecl is canonicalized to its child CXXRecordDecl,
// FunctionTemplateDecl - to child FunctionDecl)
// - Given a constructor/destructor, canonical declaration is the parent
// CXXRecordDecl because we want to rename both type name and its ctor/dtor.
// - All specializations are canonicalized to the primary template. For example:
//
// template <typename T, int U>
// bool Foo = true; (1)
//
// template <typename T>
// bool Foo<T, 0> = true; (2)
//
// template <>
// bool Foo<int, 0> = true; (3)
//
// Here, both partial (2) and full (3) specializations are canonicalized to (1)
// which ensures all three of them are renamed.
const NamedDecl *canonicalRenameDecl(const NamedDecl *D) {
if (const auto *VarTemplate = dyn_cast<VarTemplateSpecializationDecl>(D))
return canonicalRenameDecl(
VarTemplate->getSpecializedTemplate()->getTemplatedDecl());
if (const auto *Template = dyn_cast<TemplateDecl>(D))
if (const NamedDecl *TemplatedDecl = Template->getTemplatedDecl())
return canonicalRenameDecl(TemplatedDecl);
if (const auto *ClassTemplateSpecialization =
dyn_cast<ClassTemplateSpecializationDecl>(D))
return canonicalRenameDecl(
ClassTemplateSpecialization->getSpecializedTemplate()
->getTemplatedDecl());
if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
if (Method->getDeclKind() == Decl::Kind::CXXConstructor ||
Method->getDeclKind() == Decl::Kind::CXXDestructor)
return canonicalRenameDecl(Method->getParent());
if (const FunctionDecl *InstantiatedMethod =
Method->getInstantiatedFromMemberFunction())
Method = cast<CXXMethodDecl>(InstantiatedMethod);
// FIXME(kirillbobyrev): For virtual methods with
// size_overridden_methods() > 1, this will not rename all functions it
// overrides, because this code assumes there is a single canonical
// declaration.
while (Method->isVirtual() && Method->size_overridden_methods())
Method = *Method->overridden_methods().begin();
return Method->getCanonicalDecl();
}
if (const auto *Function = dyn_cast<FunctionDecl>(D))
if (const FunctionTemplateDecl *Template = Function->getPrimaryTemplate())
return canonicalRenameDecl(Template);
if (const auto *Field = dyn_cast<FieldDecl>(D)) {
// This is a hacky way to do something like
// CXXMethodDecl::getInstantiatedFromMemberFunction for the field because
// Clang AST does not store relevant information about the field that is
// instantiated.
const auto *FieldParent =
dyn_cast_or_null<CXXRecordDecl>(Field->getParent());
if (!FieldParent)
return Field->getCanonicalDecl();
FieldParent = FieldParent->getTemplateInstantiationPattern();
// Field is not instantiation.
if (!FieldParent || Field->getParent() == FieldParent)
return Field->getCanonicalDecl();
for (const FieldDecl *Candidate : FieldParent->fields())
if (Field->getDeclName() == Candidate->getDeclName())
return Candidate->getCanonicalDecl();
elog("FieldParent should have field with the same name as Field.");
}
if (const auto *VD = dyn_cast<VarDecl>(D)) {
if (const VarDecl *OriginalVD = VD->getInstantiatedFromStaticDataMember())
VD = OriginalVD;
return VD->getCanonicalDecl();
}
return dyn_cast<NamedDecl>(D->getCanonicalDecl());
}
llvm::DenseSet<const NamedDecl *> locateDeclAt(ParsedAST &AST,
SourceLocation TokenStartLoc) {
unsigned Offset =
AST.getSourceManager().getDecomposedSpellingLoc(TokenStartLoc).second;
SelectionTree Selection = SelectionTree::createRight(
AST.getASTContext(), AST.getTokens(), Offset, Offset);
const SelectionTree::Node *SelectedNode = Selection.commonAncestor();
if (!SelectedNode)
return {};
llvm::DenseSet<const NamedDecl *> Result;
for (const NamedDecl *D :
targetDecl(SelectedNode->ASTNode,
DeclRelation::Alias | DeclRelation::TemplatePattern,
AST.getHeuristicResolver())) {
Result.insert(canonicalRenameDecl(D));
}
return Result;
}
// By default, we exclude C++ standard symbols and protobuf symbols as rename
// these symbols would change system/generated files which are unlikely to be
// modified.
bool isExcluded(const NamedDecl &RenameDecl) {
if (isProtoFile(RenameDecl.getLocation(),
RenameDecl.getASTContext().getSourceManager()))
return true;
static const auto *StdSymbols = new llvm::DenseSet<llvm::StringRef>({
#define SYMBOL(Name, NameSpace, Header) {#NameSpace #Name},
#include "StdSymbolMap.inc"
#undef SYMBOL
});
return StdSymbols->count(printQualifiedName(RenameDecl));
}
enum class ReasonToReject {
NoSymbolFound,
NoIndexProvided,
NonIndexable,
UnsupportedSymbol,
AmbiguousSymbol,
// name validation.
RenameToKeywords,
SameName,
};
llvm::Optional<ReasonToReject> renameable(const NamedDecl &RenameDecl,
StringRef MainFilePath,
const SymbolIndex *Index) {
trace::Span Tracer("Renameable");
// Filter out symbols that are unsupported in both rename modes.
if (llvm::isa<NamespaceDecl>(&RenameDecl))
return ReasonToReject::UnsupportedSymbol;
if (const auto *FD = llvm::dyn_cast<FunctionDecl>(&RenameDecl)) {
if (FD->isOverloadedOperator())
return ReasonToReject::UnsupportedSymbol;
}
// function-local symbols is safe to rename.
if (RenameDecl.getParentFunctionOrMethod())
return None;
if (isExcluded(RenameDecl))
return ReasonToReject::UnsupportedSymbol;
// Check whether the symbol being rename is indexable.
auto &ASTCtx = RenameDecl.getASTContext();
bool MainFileIsHeader = isHeaderFile(MainFilePath, ASTCtx.getLangOpts());
bool DeclaredInMainFile =
isInsideMainFile(RenameDecl.getBeginLoc(), ASTCtx.getSourceManager());
bool IsMainFileOnly = true;
if (MainFileIsHeader)
// main file is a header, the symbol can't be main file only.
IsMainFileOnly = false;
else if (!DeclaredInMainFile)
IsMainFileOnly = false;
// If the symbol is not indexable, we disallow rename.
if (!SymbolCollector::shouldCollectSymbol(
RenameDecl, RenameDecl.getASTContext(), SymbolCollector::Options(),
IsMainFileOnly))
return ReasonToReject::NonIndexable;
// FIXME: Renaming virtual methods requires to rename all overridens in
// subclasses, our index doesn't have this information.
if (const auto *S = llvm::dyn_cast<CXXMethodDecl>(&RenameDecl)) {
if (S->isVirtual())
return ReasonToReject::UnsupportedSymbol;
}
return None;
}
llvm::Error makeError(ReasonToReject Reason) {
auto Message = [](ReasonToReject Reason) {
switch (Reason) {
case ReasonToReject::NoSymbolFound:
return "there is no symbol at the given location";
case ReasonToReject::NoIndexProvided:
return "no index provided";
case ReasonToReject::NonIndexable:
return "symbol may be used in other files (not eligible for indexing)";
case ReasonToReject::UnsupportedSymbol:
return "symbol is not a supported kind (e.g. namespace, macro)";
case ReasonToReject::AmbiguousSymbol:
return "there are multiple symbols at the given location";
case ReasonToReject::RenameToKeywords:
return "the chosen name is a keyword";
case ReasonToReject::SameName:
return "new name is the same as the old name";
}
llvm_unreachable("unhandled reason kind");
};
return error("Cannot rename symbol: {0}", Message(Reason));
}
// Return all rename occurrences in the main file.
std::vector<SourceLocation> findOccurrencesWithinFile(ParsedAST &AST,
const NamedDecl &ND) {
trace::Span Tracer("FindOccurrencesWithinFile");
assert(canonicalRenameDecl(&ND) == &ND &&
"ND should be already canonicalized.");
std::vector<SourceLocation> Results;
for (Decl *TopLevelDecl : AST.getLocalTopLevelDecls()) {
findExplicitReferences(
TopLevelDecl,
[&](ReferenceLoc Ref) {
if (Ref.Targets.empty())
return;
for (const auto *Target : Ref.Targets) {
if (canonicalRenameDecl(Target) == &ND) {
Results.push_back(Ref.NameLoc);
return;
}
}
},
AST.getHeuristicResolver());
}
return Results;
}
// Detect name conflict with othter DeclStmts in the same enclosing scope.
const NamedDecl *lookupSiblingWithinEnclosingScope(ASTContext &Ctx,
const NamedDecl &RenamedDecl,
StringRef NewName) {
// Store Parents list outside of GetSingleParent, so that returned pointer is
// not invalidated.
DynTypedNodeList Storage(DynTypedNode::create(RenamedDecl));
auto GetSingleParent = [&](const DynTypedNode &Node) -> const DynTypedNode * {
Storage = Ctx.getParents(Node);
return (Storage.size() == 1) ? Storage.begin() : nullptr;
};
// We need to get to the enclosing scope: NamedDecl's parent is typically
// DeclStmt (or FunctionProtoTypeLoc in case of function arguments), so
// enclosing scope would be the second order parent.
const auto *Parent = GetSingleParent(DynTypedNode::create(RenamedDecl));
if (!Parent || !(Parent->get<DeclStmt>() || Parent->get<TypeLoc>()))
return nullptr;
Parent = GetSingleParent(*Parent);
// The following helpers check corresponding AST nodes for variable
// declarations with the name collision.
auto CheckDeclStmt = [&](const DeclStmt *DS,
StringRef Name) -> const NamedDecl * {
if (!DS)
return nullptr;
for (const auto &Child : DS->getDeclGroup())
if (const auto *ND = dyn_cast<NamedDecl>(Child))
if (ND != &RenamedDecl && ND->getName() == Name)
return ND;
return nullptr;
};
auto CheckCompoundStmt = [&](const Stmt *S,
StringRef Name) -> const NamedDecl * {
if (const auto *CS = dyn_cast_or_null<CompoundStmt>(S))
for (const auto *Node : CS->children())
if (const auto *Result = CheckDeclStmt(dyn_cast<DeclStmt>(Node), Name))
return Result;
return nullptr;
};
auto CheckConditionVariable = [&](const auto *Scope,
StringRef Name) -> const NamedDecl * {
if (!Scope)
return nullptr;
return CheckDeclStmt(Scope->getConditionVariableDeclStmt(), Name);
};
// CompoundStmt is the most common enclosing scope for function-local symbols
// In the simplest case we just iterate through sibling DeclStmts and check
// for collisions.
if (const auto *EnclosingCS = Parent->get<CompoundStmt>()) {
if (const auto *Result = CheckCompoundStmt(EnclosingCS, NewName))
return Result;
const auto *ScopeParent = GetSingleParent(*Parent);
// CompoundStmt may be found within if/while/for. In these cases, rename can
// collide with the init-statement variable decalaration, they should be
// checked.
if (const auto *Result =
CheckConditionVariable(ScopeParent->get<IfStmt>(), NewName))
return Result;
if (const auto *Result =
CheckConditionVariable(ScopeParent->get<WhileStmt>(), NewName))
return Result;
if (const auto *For = ScopeParent->get<ForStmt>())
if (const auto *Result = CheckDeclStmt(
dyn_cast_or_null<DeclStmt>(For->getInit()), NewName))
return Result;
// Also check if there is a name collision with function arguments.
if (const auto *Function = ScopeParent->get<FunctionDecl>())
for (const auto *Parameter : Function->parameters())
if (Parameter->getName() == NewName)
return Parameter;
return nullptr;
}
// When renaming a variable within init-statement within if/while/for
// condition, also check the CompoundStmt in the body.
if (const auto *EnclosingIf = Parent->get<IfStmt>()) {
if (const auto *Result = CheckCompoundStmt(EnclosingIf->getElse(), NewName))
return Result;
return CheckCompoundStmt(EnclosingIf->getThen(), NewName);
}
if (const auto *EnclosingWhile = Parent->get<WhileStmt>())
return CheckCompoundStmt(EnclosingWhile->getBody(), NewName);
if (const auto *EnclosingFor = Parent->get<ForStmt>()) {
// Check for conflicts with other declarations within initialization
// statement.
if (const auto *Result = CheckDeclStmt(
dyn_cast_or_null<DeclStmt>(EnclosingFor->getInit()), NewName))
return Result;
return CheckCompoundStmt(EnclosingFor->getBody(), NewName);
}
if (const auto *EnclosingFunction = Parent->get<FunctionDecl>()) {
// Check for conflicts with other arguments.
for (const auto *Parameter : EnclosingFunction->parameters())
if (Parameter != &RenamedDecl && Parameter->getName() == NewName)
return Parameter;
// FIXME: We don't modify all references to function parameters when
// renaming from forward declaration now, so using a name colliding with
// something in the definition's body is a valid transformation.
if (!EnclosingFunction->doesThisDeclarationHaveABody())
return nullptr;
return CheckCompoundStmt(EnclosingFunction->getBody(), NewName);
}
return nullptr;
}
// Lookup the declarations (if any) with the given Name in the context of
// RenameDecl.
const NamedDecl *lookupSiblingsWithinContext(ASTContext &Ctx,
const NamedDecl &RenamedDecl,
llvm::StringRef NewName) {
const auto &II = Ctx.Idents.get(NewName);
DeclarationName LookupName(&II);
DeclContextLookupResult LookupResult;
const auto *DC = RenamedDecl.getDeclContext();
while (DC && DC->isTransparentContext())
DC = DC->getParent();
switch (DC->getDeclKind()) {
// The enclosing DeclContext may not be the enclosing scope, it might have
// false positives and negatives, so we only choose "confident" DeclContexts
// that don't have any subscopes that are neither DeclContexts nor
// transparent.
//
// Notably, FunctionDecl is excluded -- because local variables are not scoped
// to the function, but rather to the CompoundStmt that is its body. Lookup
// will not find function-local variables.
case Decl::TranslationUnit:
case Decl::Namespace:
case Decl::Record:
case Decl::Enum:
case Decl::CXXRecord:
LookupResult = DC->lookup(LookupName);
break;
default:
break;
}
// Lookup may contain the RenameDecl itself, exclude it.
for (const auto *D : LookupResult)
if (D->getCanonicalDecl() != RenamedDecl.getCanonicalDecl())
return D;
return nullptr;
}
const NamedDecl *lookupSiblingWithName(ASTContext &Ctx,
const NamedDecl &RenamedDecl,
llvm::StringRef NewName) {
trace::Span Tracer("LookupSiblingWithName");
if (const auto *Result =
lookupSiblingsWithinContext(Ctx, RenamedDecl, NewName))
return Result;
return lookupSiblingWithinEnclosingScope(Ctx, RenamedDecl, NewName);
}
struct InvalidName {
enum Kind {
Keywords,
Conflict,
};
Kind K;
std::string Details;
};
std::string toString(InvalidName::Kind K) {
switch (K) {
case InvalidName::Keywords:
return "Keywords";
case InvalidName::Conflict:
return "Conflict";
}
llvm_unreachable("unhandled InvalidName kind");
}
llvm::Error makeError(InvalidName Reason) {
auto Message = [](InvalidName Reason) {
switch (Reason.K) {
case InvalidName::Keywords:
return llvm::formatv("the chosen name \"{0}\" is a keyword",
Reason.Details);
case InvalidName::Conflict:
return llvm::formatv("conflict with the symbol in {0}", Reason.Details);
}
llvm_unreachable("unhandled InvalidName kind");
};
return error("invalid name: {0}", Message(Reason));
}
// Check if we can rename the given RenameDecl into NewName.
// Return details if the rename would produce a conflict.
llvm::Optional<InvalidName> checkName(const NamedDecl &RenameDecl,
llvm::StringRef NewName) {
trace::Span Tracer("CheckName");
static constexpr trace::Metric InvalidNameMetric(
"rename_name_invalid", trace::Metric::Counter, "invalid_kind");
auto &ASTCtx = RenameDecl.getASTContext();
llvm::Optional<InvalidName> Result;
if (isKeyword(NewName, ASTCtx.getLangOpts()))
Result = InvalidName{InvalidName::Keywords, NewName.str()};
else {
// Name conflict detection.
// Function conflicts are subtle (overloading), so ignore them.
if (RenameDecl.getKind() != Decl::Function) {
if (auto *Conflict = lookupSiblingWithName(ASTCtx, RenameDecl, NewName))
Result = InvalidName{
InvalidName::Conflict,
Conflict->getLocation().printToString(ASTCtx.getSourceManager())};
}
}
if (Result)
InvalidNameMetric.record(1, toString(Result->K));
return Result;
}
// AST-based rename, it renames all occurrences in the main file.
llvm::Expected<tooling::Replacements>
renameWithinFile(ParsedAST &AST, const NamedDecl &RenameDecl,
llvm::StringRef NewName) {
trace::Span Tracer("RenameWithinFile");
const SourceManager &SM = AST.getSourceManager();
tooling::Replacements FilteredChanges;
for (SourceLocation Loc : findOccurrencesWithinFile(AST, RenameDecl)) {
SourceLocation RenameLoc = Loc;
// We don't rename in any macro bodies, but we allow rename the symbol
// spelled in a top-level macro argument in the main file.
if (RenameLoc.isMacroID()) {
if (isInMacroBody(SM, RenameLoc))
continue;
RenameLoc = SM.getSpellingLoc(Loc);
}
// Filter out locations not from main file.
// We traverse only main file decls, but locations could come from an
// non-preamble #include file e.g.
// void test() {
// int f^oo;
// #include "use_foo.inc"
// }
if (!isInsideMainFile(RenameLoc, SM))
continue;
if (auto Err = FilteredChanges.add(tooling::Replacement(
SM, CharSourceRange::getTokenRange(RenameLoc), NewName)))
return std::move(Err);
}
return FilteredChanges;
}
Range toRange(const SymbolLocation &L) {
Range R;
R.start.line = L.Start.line();
R.start.character = L.Start.column();
R.end.line = L.End.line();
R.end.character = L.End.column();
return R;
}
// Return all rename occurrences (using the index) outside of the main file,
// grouped by the absolute file path.
llvm::Expected<llvm::StringMap<std::vector<Range>>>
findOccurrencesOutsideFile(const NamedDecl &RenameDecl,
llvm::StringRef MainFile, const SymbolIndex &Index,
size_t MaxLimitFiles) {
trace::Span Tracer("FindOccurrencesOutsideFile");
RefsRequest RQuest;
RQuest.IDs.insert(getSymbolID(&RenameDecl));
// Absolute file path => rename occurrences in that file.
llvm::StringMap<std::vector<Range>> AffectedFiles;
bool HasMore = Index.refs(RQuest, [&](const Ref &R) {
if (AffectedFiles.size() >= MaxLimitFiles)
return;
if ((R.Kind & RefKind::Spelled) == RefKind::Unknown)
return;
if (auto RefFilePath = filePath(R.Location, /*HintFilePath=*/MainFile)) {
if (!pathEqual(*RefFilePath, MainFile))
AffectedFiles[*RefFilePath].push_back(toRange(R.Location));
}
});
if (AffectedFiles.size() >= MaxLimitFiles)
return error("The number of affected files exceeds the max limit {0}",
MaxLimitFiles);
if (HasMore)
return error("The symbol {0} has too many occurrences",
RenameDecl.getQualifiedNameAsString());
// Sort and deduplicate the results, in case that index returns duplications.
for (auto &FileAndOccurrences : AffectedFiles) {
auto &Ranges = FileAndOccurrences.getValue();
llvm::sort(Ranges);
Ranges.erase(std::unique(Ranges.begin(), Ranges.end()), Ranges.end());
SPAN_ATTACH(Tracer, FileAndOccurrences.first(),
static_cast<int64_t>(Ranges.size()));
}
return AffectedFiles;
}
// Index-based rename, it renames all occurrences outside of the main file.
//
// The cross-file rename is purely based on the index, as we don't want to
// build all ASTs for affected files, which may cause a performance hit.
// We choose to trade off some correctness for performance and scalability.
//
// Clangd builds a dynamic index for all opened files on top of the static
// index of the whole codebase. Dynamic index is up-to-date (respects dirty
// buffers) as long as clangd finishes processing opened files, while static
// index (background index) is relatively stale. We choose the dirty buffers
// as the file content we rename on, and fallback to file content on disk if
// there is no dirty buffer.
llvm::Expected<FileEdits> renameOutsideFile(
const NamedDecl &RenameDecl, llvm::StringRef MainFilePath,
llvm::StringRef NewName, const SymbolIndex &Index, size_t MaxLimitFiles,
llvm::function_ref<llvm::Expected<std::string>(PathRef)> GetFileContent) {
trace::Span Tracer("RenameOutsideFile");
auto AffectedFiles = findOccurrencesOutsideFile(RenameDecl, MainFilePath,
Index, MaxLimitFiles);
if (!AffectedFiles)
return AffectedFiles.takeError();
FileEdits Results;
for (auto &FileAndOccurrences : *AffectedFiles) {
llvm::StringRef FilePath = FileAndOccurrences.first();
auto AffectedFileCode = GetFileContent(FilePath);
if (!AffectedFileCode) {
elog("Fail to read file content: {0}", AffectedFileCode.takeError());
continue;
}
auto RenameRanges =
adjustRenameRanges(*AffectedFileCode, RenameDecl.getNameAsString(),
std::move(FileAndOccurrences.second),
RenameDecl.getASTContext().getLangOpts());
if (!RenameRanges) {
// Our heuristics fails to adjust rename ranges to the current state of
// the file, it is most likely the index is stale, so we give up the
// entire rename.
return error("Index results don't match the content of file {0} "
"(the index may be stale)",
FilePath);
}
auto RenameEdit =
buildRenameEdit(FilePath, *AffectedFileCode, *RenameRanges, NewName);
if (!RenameEdit)
return error("failed to rename in file {0}: {1}", FilePath,
RenameEdit.takeError());
if (!RenameEdit->Replacements.empty())
Results.insert({FilePath, std::move(*RenameEdit)});
}
return Results;
}
// A simple edit is either changing line or column, but not both.
bool impliesSimpleEdit(const Position &LHS, const Position &RHS) {
return LHS.line == RHS.line || LHS.character == RHS.character;
}
// Performs a DFS to enumerate all possible near-miss matches.
// It finds the locations where the indexed occurrences are now spelled in
// Lexed occurrences, a near miss is defined as:
// - a near miss maps all of the **name** occurrences from the index onto a
// *subset* of lexed occurrences (we allow a single name refers to more
// than one symbol)
// - all indexed occurrences must be mapped, and Result must be distinct and
// preserve order (only support detecting simple edits to ensure a
// robust mapping)
// - each indexed -> lexed occurrences mapping correspondence may change the
// *line* or *column*, but not both (increases chance of a robust mapping)
void findNearMiss(
std::vector<size_t> &PartialMatch, ArrayRef<Range> IndexedRest,
ArrayRef<Range> LexedRest, int LexedIndex, int &Fuel,
llvm::function_ref<void(const std::vector<size_t> &)> MatchedCB) {
if (--Fuel < 0)
return;
if (IndexedRest.size() > LexedRest.size())
return;
if (IndexedRest.empty()) {
MatchedCB(PartialMatch);
return;
}
if (impliesSimpleEdit(IndexedRest.front().start, LexedRest.front().start)) {
PartialMatch.push_back(LexedIndex);
findNearMiss(PartialMatch, IndexedRest.drop_front(), LexedRest.drop_front(),
LexedIndex + 1, Fuel, MatchedCB);
PartialMatch.pop_back();
}
findNearMiss(PartialMatch, IndexedRest, LexedRest.drop_front(),
LexedIndex + 1, Fuel, MatchedCB);
}
} // namespace
llvm::Expected<RenameResult> rename(const RenameInputs &RInputs) {
trace::Span Tracer("Rename flow");
const auto &Opts = RInputs.Opts;
ParsedAST &AST = RInputs.AST;
const SourceManager &SM = AST.getSourceManager();
llvm::StringRef MainFileCode = SM.getBufferData(SM.getMainFileID());
auto GetFileContent = [&RInputs,
&SM](PathRef AbsPath) -> llvm::Expected<std::string> {
llvm::Optional<std::string> DirtyBuffer;
if (RInputs.GetDirtyBuffer &&
(DirtyBuffer = RInputs.GetDirtyBuffer(AbsPath)))
return std::move(*DirtyBuffer);
auto Content =
SM.getFileManager().getVirtualFileSystem().getBufferForFile(AbsPath);
if (!Content)
return error("Fail to open file {0}: {1}", AbsPath,
Content.getError().message());
if (!*Content)
return error("Got no buffer for file {0}", AbsPath);
return (*Content)->getBuffer().str();
};
// Try to find the tokens adjacent to the cursor position.
auto Loc = sourceLocationInMainFile(SM, RInputs.Pos);
if (!Loc)
return Loc.takeError();
const syntax::Token *IdentifierToken =
spelledIdentifierTouching(*Loc, AST.getTokens());
// Renames should only triggered on identifiers.
if (!IdentifierToken)
return makeError(ReasonToReject::NoSymbolFound);
Range CurrentIdentifier = halfOpenToRange(
SM, CharSourceRange::getCharRange(IdentifierToken->location(),
IdentifierToken->endLocation()));
// FIXME: Renaming macros is not supported yet, the macro-handling code should
// be moved to rename tooling library.
if (locateMacroAt(*IdentifierToken, AST.getPreprocessor()))
return makeError(ReasonToReject::UnsupportedSymbol);
auto DeclsUnderCursor = locateDeclAt(AST, IdentifierToken->location());
if (DeclsUnderCursor.empty())
return makeError(ReasonToReject::NoSymbolFound);
if (DeclsUnderCursor.size() > 1)
return makeError(ReasonToReject::AmbiguousSymbol);
const auto &RenameDecl = **DeclsUnderCursor.begin();
const auto *ID = RenameDecl.getIdentifier();
if (!ID)
return makeError(ReasonToReject::UnsupportedSymbol);
if (ID->getName() == RInputs.NewName)
return makeError(ReasonToReject::SameName);
auto Invalid = checkName(RenameDecl, RInputs.NewName);
if (Invalid)
return makeError(*Invalid);
auto Reject = renameable(RenameDecl, RInputs.MainFilePath, RInputs.Index);
if (Reject)
return makeError(*Reject);
// We have two implementations of the rename:
// - AST-based rename: used for renaming local symbols, e.g. variables
// defined in a function body;
// - index-based rename: used for renaming non-local symbols, and not
// feasible for local symbols (as by design our index don't index these
// symbols by design;
// To make cross-file rename work for local symbol, we use a hybrid solution:
// - run AST-based rename on the main file;
// - run index-based rename on other affected files;
auto MainFileRenameEdit = renameWithinFile(AST, RenameDecl, RInputs.NewName);
if (!MainFileRenameEdit)
return MainFileRenameEdit.takeError();
RenameResult Result;
Result.Target = CurrentIdentifier;
Edit MainFileEdits = Edit(MainFileCode, std::move(*MainFileRenameEdit));
llvm::for_each(MainFileEdits.asTextEdits(), [&Result](const TextEdit &TE) {
Result.LocalChanges.push_back(TE.range);
});
// return the main file edit if this is a within-file rename or the symbol
// being renamed is function local.
if (RenameDecl.getParentFunctionOrMethod()) {
Result.GlobalChanges = FileEdits(
{std::make_pair(RInputs.MainFilePath, std::move(MainFileEdits))});
return Result;
}
// If the index is nullptr, we don't know the completeness of the result, so
// we don't populate the field GlobalChanges.
if (!RInputs.Index) {
assert(Result.GlobalChanges.empty());
return Result;
}
auto OtherFilesEdits = renameOutsideFile(
RenameDecl, RInputs.MainFilePath, RInputs.NewName, *RInputs.Index,
Opts.LimitFiles == 0 ? std::numeric_limits<size_t>::max()
: Opts.LimitFiles,
GetFileContent);
if (!OtherFilesEdits)
return OtherFilesEdits.takeError();
Result.GlobalChanges = *OtherFilesEdits;
// Attach the rename edits for the main file.
Result.GlobalChanges.try_emplace(RInputs.MainFilePath,
std::move(MainFileEdits));
return Result;
}
llvm::Expected<Edit> buildRenameEdit(llvm::StringRef AbsFilePath,
llvm::StringRef InitialCode,
std::vector<Range> Occurrences,
llvm::StringRef NewName) {
trace::Span Tracer("BuildRenameEdit");
SPAN_ATTACH(Tracer, "file_path", AbsFilePath);
SPAN_ATTACH(Tracer, "rename_occurrences",
static_cast<int64_t>(Occurrences.size()));
assert(std::is_sorted(Occurrences.begin(), Occurrences.end()));
assert(std::unique(Occurrences.begin(), Occurrences.end()) ==
Occurrences.end() &&
"Occurrences must be unique");
// These two always correspond to the same position.
Position LastPos{0, 0};
size_t LastOffset = 0;
auto Offset = [&](const Position &P) -> llvm::Expected<size_t> {
assert(LastPos <= P && "malformed input");
Position Shifted = {
P.line - LastPos.line,
P.line > LastPos.line ? P.character : P.character - LastPos.character};
auto ShiftedOffset =
positionToOffset(InitialCode.substr(LastOffset), Shifted);
if (!ShiftedOffset)
return error("fail to convert the position {0} to offset ({1})", P,
ShiftedOffset.takeError());
LastPos = P;
LastOffset += *ShiftedOffset;
return LastOffset;
};
std::vector<std::pair</*start*/ size_t, /*end*/ size_t>> OccurrencesOffsets;
for (const auto &R : Occurrences) {
auto StartOffset = Offset(R.start);
if (!StartOffset)
return StartOffset.takeError();
auto EndOffset = Offset(R.end);
if (!EndOffset)
return EndOffset.takeError();
OccurrencesOffsets.push_back({*StartOffset, *EndOffset});
}
tooling::Replacements RenameEdit;
for (const auto &R : OccurrencesOffsets) {
auto ByteLength = R.second - R.first;
if (auto Err = RenameEdit.add(
tooling::Replacement(AbsFilePath, R.first, ByteLength, NewName)))
return std::move(Err);
}
return Edit(InitialCode, std::move(RenameEdit));
}
// Details:
// - lex the draft code to get all rename candidates, this yields a superset
// of candidates.
// - apply range patching heuristics to generate "authoritative" occurrences,
// cases we consider:
// (a) index returns a subset of candidates, we use the indexed results.
// - fully equal, we are sure the index is up-to-date
// - proper subset, index is correct in most cases? there may be false
// positives (e.g. candidates got appended), but rename is still safe
// (b) index returns non-candidate results, we attempt to map the indexed
// ranges onto candidates in a plausible way (e.g. guess that lines
// were inserted). If such a "near miss" is found, the rename is still
// possible
llvm::Optional<std::vector<Range>>
adjustRenameRanges(llvm::StringRef DraftCode, llvm::StringRef Identifier,
std::vector<Range> Indexed, const LangOptions &LangOpts) {
trace::Span Tracer("AdjustRenameRanges");
assert(!Indexed.empty());
assert(std::is_sorted(Indexed.begin(), Indexed.end()));
std::vector<Range> Lexed =
collectIdentifierRanges(Identifier, DraftCode, LangOpts);
llvm::sort(Lexed);
return getMappedRanges(Indexed, Lexed);
}
llvm::Optional<std::vector<Range>> getMappedRanges(ArrayRef<Range> Indexed,
ArrayRef<Range> Lexed) {
trace::Span Tracer("GetMappedRanges");
assert(!Indexed.empty());
assert(std::is_sorted(Indexed.begin(), Indexed.end()));
assert(std::is_sorted(Lexed.begin(), Lexed.end()));
if (Indexed.size() > Lexed.size()) {
vlog("The number of lexed occurrences is less than indexed occurrences");
SPAN_ATTACH(
Tracer, "error",
"The number of lexed occurrences is less than indexed occurrences");
return llvm::None;
}
// Fast check for the special subset case.
if (std::includes(Indexed.begin(), Indexed.end(), Lexed.begin(), Lexed.end()))
return Indexed.vec();
std::vector<size_t> Best;
size_t BestCost = std::numeric_limits<size_t>::max();
bool HasMultiple = 0;
std::vector<size_t> ResultStorage;
int Fuel = 10000;
findNearMiss(ResultStorage, Indexed, Lexed, 0, Fuel,
[&](const std::vector<size_t> &Matched) {
size_t MCost =
renameRangeAdjustmentCost(Indexed, Lexed, Matched);
if (MCost < BestCost) {
BestCost = MCost;
Best = std::move(Matched);
HasMultiple = false; // reset
return;
}
if (MCost == BestCost)
HasMultiple = true;
});
if (HasMultiple) {
vlog("The best near miss is not unique.");
SPAN_ATTACH(Tracer, "error", "The best near miss is not unique");
return llvm::None;
}
if (Best.empty()) {
vlog("Didn't find a near miss.");
SPAN_ATTACH(Tracer, "error", "Didn't find a near miss");
return llvm::None;
}
std::vector<Range> Mapped;
for (auto I : Best)
Mapped.push_back(Lexed[I]);
SPAN_ATTACH(Tracer, "mapped_ranges", static_cast<int64_t>(Mapped.size()));
return Mapped;
}
// The cost is the sum of the implied edit sizes between successive diffs, only
// simple edits are considered:
// - insert/remove a line (change line offset)
// - insert/remove a character on an existing line (change column offset)
//
// Example I, total result is 1 + 1 = 2.
// diff[0]: line + 1 <- insert a line before edit 0.
// diff[1]: line + 1
// diff[2]: line + 1
// diff[3]: line + 2 <- insert a line before edits 2 and 3.
//
// Example II, total result is 1 + 1 + 1 = 3.
// diff[0]: line + 1 <- insert a line before edit 0.
// diff[1]: column + 1 <- remove a line between edits 0 and 1, and insert a
// character on edit 1.
size_t renameRangeAdjustmentCost(ArrayRef<Range> Indexed, ArrayRef<Range> Lexed,
ArrayRef<size_t> MappedIndex) {
assert(Indexed.size() == MappedIndex.size());
assert(std::is_sorted(Indexed.begin(), Indexed.end()));
assert(std::is_sorted(Lexed.begin(), Lexed.end()));
int LastLine = -1;
int LastDLine = 0, LastDColumn = 0;
int Cost = 0;
for (size_t I = 0; I < Indexed.size(); ++I) {
int DLine = Indexed[I].start.line - Lexed[MappedIndex[I]].start.line;
int DColumn =
Indexed[I].start.character - Lexed[MappedIndex[I]].start.character;
int Line = Indexed[I].start.line;
if (Line != LastLine)
LastDColumn = 0; // column offsets don't carry cross lines.
Cost += abs(DLine - LastDLine) + abs(DColumn - LastDColumn);
std::tie(LastLine, LastDLine, LastDColumn) = std::tie(Line, DLine, DColumn);
}
return Cost;
}
} // namespace clangd
} // namespace clang