Jez Ng 3313b84481 [lld-macho] ICF: Do more work in equalsConstant, less in equalsVariable
In particular, relocations to absolute symbols or literal sections can
be handled in equalsConstant(), since their output addresses will not
change across each iteration of ICF. Offsets and addends can also be
dealt with entirely in equalsConstant(), making the code somewhat easier
to reason about. Only ConcatInputSections need to be handled in
equalsVariable().

LLD-ELF's implementation takes a similar approach.

Although this should make ICF do less work, in practice it seems like
there is no stat sig difference in time taken when linking
chromium_framework.

This refactor is motivated by an upcoming diff which improves ICF's handling of
addends.

Reviewed By: #lld-macho, gkm

Differential Revision: https://reviews.llvm.org/D106212
2021-07-23 11:49:00 -04:00

370 lines
14 KiB
C++

//===- ICF.cpp ------------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "ICF.h"
#include "ConcatOutputSection.h"
#include "InputSection.h"
#include "Symbols.h"
#include "UnwindInfoSection.h"
#include "llvm/Support/Parallel.h"
#include "llvm/Support/TimeProfiler.h"
#include <atomic>
using namespace llvm;
using namespace lld;
using namespace lld::macho;
class ICF {
public:
ICF(std::vector<ConcatInputSection *> &inputs);
void run();
void segregate(size_t begin, size_t end,
std::function<bool(const ConcatInputSection *,
const ConcatInputSection *)>
equals);
size_t findBoundary(size_t begin, size_t end);
void forEachClassRange(size_t begin, size_t end,
std::function<void(size_t, size_t)> func);
void forEachClass(std::function<void(size_t, size_t)> func);
// ICF needs a copy of the inputs vector because its equivalence-class
// segregation algorithm destroys the proper sequence.
std::vector<ConcatInputSection *> icfInputs;
};
ICF::ICF(std::vector<ConcatInputSection *> &inputs) {
icfInputs.assign(inputs.begin(), inputs.end());
}
// ICF = Identical Code Folding
//
// We only fold __TEXT,__text, so this is really "code" folding, and not
// "COMDAT" folding. String and scalar constant literals are deduplicated
// elsewhere.
//
// Summary of segments & sections:
//
// The __TEXT segment is readonly at the MMU. Some sections are already
// deduplicated elsewhere (__TEXT,__cstring & __TEXT,__literal*) and some are
// synthetic and inherently free of duplicates (__TEXT,__stubs &
// __TEXT,__unwind_info). Note that we don't yet run ICF on __TEXT,__const,
// because doing so induces many test failures.
//
// The __LINKEDIT segment is readonly at the MMU, yet entirely synthetic, and
// thus ineligible for ICF.
//
// The __DATA_CONST segment is read/write at the MMU, but is logically const to
// the application after dyld applies fixups to pointer data. We currently
// fold only the __DATA_CONST,__cfstring section.
//
// The __DATA segment is read/write at the MMU, and as application-writeable
// data, none of its sections are eligible for ICF.
//
// Please see the large block comment in lld/ELF/ICF.cpp for an explanation
// of the segregation algorithm.
//
// FIXME(gkm): implement keep-unique attributes
// FIXME(gkm): implement address-significance tables for MachO object files
static unsigned icfPass = 0;
static std::atomic<bool> icfRepeat{false};
// Compare "non-moving" parts of two ConcatInputSections, namely everything
// except references to other ConcatInputSections.
static bool equalsConstant(const ConcatInputSection *ia,
const ConcatInputSection *ib) {
// We can only fold within the same OutputSection.
if (ia->parent != ib->parent)
return false;
if (ia->data.size() != ib->data.size())
return false;
if (ia->data != ib->data)
return false;
if (ia->relocs.size() != ib->relocs.size())
return false;
auto f = [](const Reloc &ra, const Reloc &rb) {
if (ra.type != rb.type)
return false;
if (ra.pcrel != rb.pcrel)
return false;
if (ra.length != rb.length)
return false;
if (ra.offset != rb.offset)
return false;
if (ra.addend != rb.addend)
return false;
if (ra.referent.is<Symbol *>() != rb.referent.is<Symbol *>())
return false;
InputSection *isecA, *isecB;
if (ra.referent.is<Symbol *>()) {
const auto *sa = ra.referent.get<Symbol *>();
const auto *sb = rb.referent.get<Symbol *>();
if (sa->kind() != sb->kind())
return false;
if (isa<Defined>(sa)) {
const auto *da = cast<Defined>(sa);
const auto *db = cast<Defined>(sb);
if (da->isec && db->isec) {
isecA = da->isec;
isecB = db->isec;
} else {
assert(da->isAbsolute() && db->isAbsolute());
return da->value == db->value;
}
} else {
assert(isa<DylibSymbol>(sa));
return sa == sb;
}
} else {
isecA = ra.referent.get<InputSection *>();
isecB = rb.referent.get<InputSection *>();
}
if (isecA->parent != isecB->parent)
return false;
// Sections with identical parents should be of the same kind.
assert(isecA->kind() == isecB->kind());
// We will compare ConcatInputSection contents in equalsVariable.
if (isa<ConcatInputSection>(isecA))
return true;
// Else we have two literal sections. References to them are equal iff their
// offsets in the output section are equal.
return isecA->getOffset(ra.addend) == isecB->getOffset(rb.addend);
};
return std::equal(ia->relocs.begin(), ia->relocs.end(), ib->relocs.begin(),
f);
}
// Compare the "moving" parts of two ConcatInputSections -- i.e. everything not
// handled by equalsConstant().
static bool equalsVariable(const ConcatInputSection *ia,
const ConcatInputSection *ib) {
assert(ia->relocs.size() == ib->relocs.size());
auto f = [](const Reloc &ra, const Reloc &rb) {
// We already filtered out mismatching values/addends in equalsConstant.
if (ra.referent == rb.referent)
return true;
const ConcatInputSection *isecA, *isecB;
if (ra.referent.is<Symbol *>()) {
// Matching DylibSymbols are already filtered out by the
// identical-referent check above. Non-matching DylibSymbols were filtered
// out in equalsConstant(). So we can safely cast to Defined here.
const auto *da = cast<Defined>(ra.referent.get<Symbol *>());
const auto *db = cast<Defined>(rb.referent.get<Symbol *>());
if (da->isAbsolute())
return true;
isecA = dyn_cast<ConcatInputSection>(da->isec);
if (!isecA)
return true; // literal sections were checked in equalsConstant.
isecB = cast<ConcatInputSection>(db->isec);
} else {
const auto *sa = ra.referent.get<InputSection *>();
const auto *sb = rb.referent.get<InputSection *>();
isecA = dyn_cast<ConcatInputSection>(sa);
if (!isecA)
return true;
isecB = cast<ConcatInputSection>(sb);
}
return isecA->icfEqClass[icfPass % 2] == isecB->icfEqClass[icfPass % 2];
};
return std::equal(ia->relocs.begin(), ia->relocs.end(), ib->relocs.begin(),
f);
}
// Find the first InputSection after BEGIN whose equivalence class differs
size_t ICF::findBoundary(size_t begin, size_t end) {
uint64_t beginHash = icfInputs[begin]->icfEqClass[icfPass % 2];
for (size_t i = begin + 1; i < end; ++i)
if (beginHash != icfInputs[i]->icfEqClass[icfPass % 2])
return i;
return end;
}
// Invoke FUNC on subranges with matching equivalence class
void ICF::forEachClassRange(size_t begin, size_t end,
std::function<void(size_t, size_t)> func) {
while (begin < end) {
size_t mid = findBoundary(begin, end);
func(begin, mid);
begin = mid;
}
}
// Split icfInputs into shards, then parallelize invocation of FUNC on subranges
// with matching equivalence class
void ICF::forEachClass(std::function<void(size_t, size_t)> func) {
// Only use threads when the benefits outweigh the overhead.
const size_t threadingThreshold = 1024;
if (icfInputs.size() < threadingThreshold) {
forEachClassRange(0, icfInputs.size(), func);
++icfPass;
return;
}
// Shard into non-overlapping intervals, and call FUNC in parallel. The
// sharding must be completed before any calls to FUNC are made so that FUNC
// can modify the InputSection in its shard without causing data races.
const size_t shards = 256;
size_t step = icfInputs.size() / shards;
size_t boundaries[shards + 1];
boundaries[0] = 0;
boundaries[shards] = icfInputs.size();
parallelForEachN(1, shards, [&](size_t i) {
boundaries[i] = findBoundary((i - 1) * step, icfInputs.size());
});
parallelForEachN(1, shards + 1, [&](size_t i) {
if (boundaries[i - 1] < boundaries[i]) {
forEachClassRange(boundaries[i - 1], boundaries[i], func);
}
});
++icfPass;
}
void ICF::run() {
// Into each origin-section hash, combine all reloc referent section hashes.
for (icfPass = 0; icfPass < 2; ++icfPass) {
parallelForEach(icfInputs, [&](ConcatInputSection *isec) {
uint64_t hash = isec->icfEqClass[icfPass % 2];
for (const Reloc &r : isec->relocs) {
if (auto *sym = r.referent.dyn_cast<Symbol *>()) {
if (auto *dylibSym = dyn_cast<DylibSymbol>(sym))
hash += dylibSym->stubsHelperIndex;
else if (auto *defined = dyn_cast<Defined>(sym)) {
if (defined->isec) {
if (auto isec = dyn_cast<ConcatInputSection>(defined->isec))
hash += defined->value + isec->icfEqClass[icfPass % 2];
else
hash += defined->isec->kind() +
defined->isec->getOffset(defined->value);
} else {
hash += defined->value;
}
} else
llvm_unreachable("foldIdenticalSections symbol kind");
}
}
// Set MSB to 1 to avoid collisions with non-hashed classes.
isec->icfEqClass[(icfPass + 1) % 2] = hash | (1ull << 63);
});
}
llvm::stable_sort(
icfInputs, [](const ConcatInputSection *a, const ConcatInputSection *b) {
return a->icfEqClass[0] < b->icfEqClass[0];
});
forEachClass(
[&](size_t begin, size_t end) { segregate(begin, end, equalsConstant); });
// Split equivalence groups by comparing relocations until convergence
do {
icfRepeat = false;
forEachClass([&](size_t begin, size_t end) {
segregate(begin, end, equalsVariable);
});
} while (icfRepeat);
log("ICF needed " + Twine(icfPass) + " iterations");
// Fold sections within equivalence classes
forEachClass([&](size_t begin, size_t end) {
if (end - begin < 2)
return;
ConcatInputSection *beginIsec = icfInputs[begin];
for (size_t i = begin + 1; i < end; ++i)
beginIsec->foldIdentical(icfInputs[i]);
});
}
// Split an equivalence class into smaller classes.
void ICF::segregate(
size_t begin, size_t end,
std::function<bool(const ConcatInputSection *, const ConcatInputSection *)>
equals) {
while (begin < end) {
// Divide [begin, end) into two. Let mid be the start index of the
// second group.
auto bound = std::stable_partition(icfInputs.begin() + begin + 1,
icfInputs.begin() + end,
[&](ConcatInputSection *isec) {
return equals(icfInputs[begin], isec);
});
size_t mid = bound - icfInputs.begin();
// Split [begin, end) into [begin, mid) and [mid, end). We use mid as an
// equivalence class ID because every group ends with a unique index.
for (size_t i = begin; i < mid; ++i)
icfInputs[i]->icfEqClass[(icfPass + 1) % 2] = mid;
// If we created a group, we need to iterate the main loop again.
if (mid != end)
icfRepeat = true;
begin = mid;
}
}
template <class Ptr>
DenseSet<const InputSection *> findFunctionsWithUnwindInfo() {
DenseSet<const InputSection *> result;
for (ConcatInputSection *isec : in.unwindInfo->getInputs()) {
for (size_t i = 0; i < isec->relocs.size(); ++i) {
Reloc &r = isec->relocs[i];
assert(target->hasAttr(r.type, RelocAttrBits::UNSIGNED));
if (r.offset % sizeof(CompactUnwindEntry<Ptr>) !=
offsetof(CompactUnwindEntry<Ptr>, functionAddress))
continue;
result.insert(r.referent.get<InputSection *>());
}
}
return result;
}
void macho::foldIdenticalSections() {
TimeTraceScope timeScope("Fold Identical Code Sections");
// The ICF equivalence-class segregation algorithm relies on pre-computed
// hashes of InputSection::data for the ConcatOutputSection::inputs and all
// sections referenced by their relocs. We could recursively traverse the
// relocs to find every referenced InputSection, but that precludes easy
// parallelization. Therefore, we hash every InputSection here where we have
// them all accessible as simple vectors.
// ICF can't fold functions with unwind info
DenseSet<const InputSection *> functionsWithUnwindInfo =
target->wordSize == 8 ? findFunctionsWithUnwindInfo<uint64_t>()
: findFunctionsWithUnwindInfo<uint32_t>();
// If an InputSection is ineligible for ICF, we give it a unique ID to force
// it into an unfoldable singleton equivalence class. Begin the unique-ID
// space at inputSections.size(), so that it will never intersect with
// equivalence-class IDs which begin at 0. Since hashes & unique IDs never
// coexist with equivalence-class IDs, this is not necessary, but might help
// someone keep the numbers straight in case we ever need to debug the
// ICF::segregate()
std::vector<ConcatInputSection *> hashable;
uint64_t icfUniqueID = inputSections.size();
for (ConcatInputSection *isec : inputSections) {
// FIXME: consider non-code __text sections as hashable?
bool isHashable = (isCodeSection(isec) || isCfStringSection(isec)) &&
!isec->shouldOmitFromOutput() &&
!functionsWithUnwindInfo.contains(isec) &&
isec->isHashableForICF();
if (isHashable)
hashable.push_back(isec);
else
isec->icfEqClass[0] = ++icfUniqueID;
}
parallelForEach(hashable,
[](ConcatInputSection *isec) { isec->hashForICF(); });
// Now that every input section is either hashed or marked as unique, run the
// segregation algorithm to detect foldable subsections.
ICF(hashable).run();
}