llvm-project/llvm/lib/Target/AMDGPU/AMDGPUTargetMachine.cpp
Reshabh Sharma 5173854f19 [AMDGPU] Handle functions in llvm's global ctors and dtors list
This patch introduces a new code object metadata field, ".kind"
which is used to add support for init and fini kernels.

HSAStreamer will use function attributes, "device-init" and
"device-fini" to distinguish between init and fini kernels from
the regular kernels and will emit metadata with ".kind" set to
"init" and "fini" respectively.

To reduce the number of init and fini kernels, the ctors and
dtors present in the llvm's global.ctors and global.dtors lists
are called from a single init and fini kernel respectively.

Reviewed by: yaxunl

Differential Revision: https://reviews.llvm.org/D105682
2021-08-06 15:53:33 +05:30

1639 lines
57 KiB
C++

//===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// The AMDGPU target machine contains all of the hardware specific
/// information needed to emit code for R600 and SI GPUs.
//
//===----------------------------------------------------------------------===//
#include "AMDGPUTargetMachine.h"
#include "AMDGPU.h"
#include "AMDGPUAliasAnalysis.h"
#include "AMDGPUExportClustering.h"
#include "AMDGPUMacroFusion.h"
#include "AMDGPUTargetObjectFile.h"
#include "AMDGPUTargetTransformInfo.h"
#include "GCNIterativeScheduler.h"
#include "GCNSchedStrategy.h"
#include "R600MachineScheduler.h"
#include "SIMachineFunctionInfo.h"
#include "SIMachineScheduler.h"
#include "TargetInfo/AMDGPUTargetInfo.h"
#include "llvm/Analysis/CGSCCPassManager.h"
#include "llvm/CodeGen/GlobalISel/IRTranslator.h"
#include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
#include "llvm/CodeGen/GlobalISel/Legalizer.h"
#include "llvm/CodeGen/GlobalISel/Localizer.h"
#include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
#include "llvm/CodeGen/MIRParser/MIParser.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/RegAllocRegistry.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/IR/PassManager.h"
#include "llvm/InitializePasses.h"
#include "llvm/Passes/PassBuilder.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/IPO/AlwaysInliner.h"
#include "llvm/Transforms/IPO/GlobalDCE.h"
#include "llvm/Transforms/IPO/Internalize.h"
#include "llvm/Transforms/IPO/PassManagerBuilder.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Scalar/GVN.h"
#include "llvm/Transforms/Scalar/InferAddressSpaces.h"
#include "llvm/Transforms/Utils.h"
#include "llvm/Transforms/Utils/SimplifyLibCalls.h"
#include "llvm/Transforms/Vectorize.h"
using namespace llvm;
namespace {
class SGPRRegisterRegAlloc : public RegisterRegAllocBase<SGPRRegisterRegAlloc> {
public:
SGPRRegisterRegAlloc(const char *N, const char *D, FunctionPassCtor C)
: RegisterRegAllocBase(N, D, C) {}
};
class VGPRRegisterRegAlloc : public RegisterRegAllocBase<VGPRRegisterRegAlloc> {
public:
VGPRRegisterRegAlloc(const char *N, const char *D, FunctionPassCtor C)
: RegisterRegAllocBase(N, D, C) {}
};
static bool onlyAllocateSGPRs(const TargetRegisterInfo &TRI,
const TargetRegisterClass &RC) {
return static_cast<const SIRegisterInfo &>(TRI).isSGPRClass(&RC);
}
static bool onlyAllocateVGPRs(const TargetRegisterInfo &TRI,
const TargetRegisterClass &RC) {
return !static_cast<const SIRegisterInfo &>(TRI).isSGPRClass(&RC);
}
/// -{sgpr|vgpr}-regalloc=... command line option.
static FunctionPass *useDefaultRegisterAllocator() { return nullptr; }
/// A dummy default pass factory indicates whether the register allocator is
/// overridden on the command line.
static llvm::once_flag InitializeDefaultSGPRRegisterAllocatorFlag;
static llvm::once_flag InitializeDefaultVGPRRegisterAllocatorFlag;
static SGPRRegisterRegAlloc
defaultSGPRRegAlloc("default",
"pick SGPR register allocator based on -O option",
useDefaultRegisterAllocator);
static cl::opt<SGPRRegisterRegAlloc::FunctionPassCtor, false,
RegisterPassParser<SGPRRegisterRegAlloc>>
SGPRRegAlloc("sgpr-regalloc", cl::Hidden, cl::init(&useDefaultRegisterAllocator),
cl::desc("Register allocator to use for SGPRs"));
static cl::opt<VGPRRegisterRegAlloc::FunctionPassCtor, false,
RegisterPassParser<VGPRRegisterRegAlloc>>
VGPRRegAlloc("vgpr-regalloc", cl::Hidden, cl::init(&useDefaultRegisterAllocator),
cl::desc("Register allocator to use for VGPRs"));
static void initializeDefaultSGPRRegisterAllocatorOnce() {
RegisterRegAlloc::FunctionPassCtor Ctor = SGPRRegisterRegAlloc::getDefault();
if (!Ctor) {
Ctor = SGPRRegAlloc;
SGPRRegisterRegAlloc::setDefault(SGPRRegAlloc);
}
}
static void initializeDefaultVGPRRegisterAllocatorOnce() {
RegisterRegAlloc::FunctionPassCtor Ctor = VGPRRegisterRegAlloc::getDefault();
if (!Ctor) {
Ctor = VGPRRegAlloc;
VGPRRegisterRegAlloc::setDefault(VGPRRegAlloc);
}
}
static FunctionPass *createBasicSGPRRegisterAllocator() {
return createBasicRegisterAllocator(onlyAllocateSGPRs);
}
static FunctionPass *createGreedySGPRRegisterAllocator() {
return createGreedyRegisterAllocator(onlyAllocateSGPRs);
}
static FunctionPass *createFastSGPRRegisterAllocator() {
return createFastRegisterAllocator(onlyAllocateSGPRs, false);
}
static FunctionPass *createBasicVGPRRegisterAllocator() {
return createBasicRegisterAllocator(onlyAllocateVGPRs);
}
static FunctionPass *createGreedyVGPRRegisterAllocator() {
return createGreedyRegisterAllocator(onlyAllocateVGPRs);
}
static FunctionPass *createFastVGPRRegisterAllocator() {
return createFastRegisterAllocator(onlyAllocateVGPRs, true);
}
static SGPRRegisterRegAlloc basicRegAllocSGPR(
"basic", "basic register allocator", createBasicSGPRRegisterAllocator);
static SGPRRegisterRegAlloc greedyRegAllocSGPR(
"greedy", "greedy register allocator", createGreedySGPRRegisterAllocator);
static SGPRRegisterRegAlloc fastRegAllocSGPR(
"fast", "fast register allocator", createFastSGPRRegisterAllocator);
static VGPRRegisterRegAlloc basicRegAllocVGPR(
"basic", "basic register allocator", createBasicVGPRRegisterAllocator);
static VGPRRegisterRegAlloc greedyRegAllocVGPR(
"greedy", "greedy register allocator", createGreedyVGPRRegisterAllocator);
static VGPRRegisterRegAlloc fastRegAllocVGPR(
"fast", "fast register allocator", createFastVGPRRegisterAllocator);
}
static cl::opt<bool> EnableR600StructurizeCFG(
"r600-ir-structurize",
cl::desc("Use StructurizeCFG IR pass"),
cl::init(true));
static cl::opt<bool> EnableSROA(
"amdgpu-sroa",
cl::desc("Run SROA after promote alloca pass"),
cl::ReallyHidden,
cl::init(true));
static cl::opt<bool>
EnableEarlyIfConversion("amdgpu-early-ifcvt", cl::Hidden,
cl::desc("Run early if-conversion"),
cl::init(false));
static cl::opt<bool>
OptExecMaskPreRA("amdgpu-opt-exec-mask-pre-ra", cl::Hidden,
cl::desc("Run pre-RA exec mask optimizations"),
cl::init(true));
static cl::opt<bool> EnableR600IfConvert(
"r600-if-convert",
cl::desc("Use if conversion pass"),
cl::ReallyHidden,
cl::init(true));
// Option to disable vectorizer for tests.
static cl::opt<bool> EnableLoadStoreVectorizer(
"amdgpu-load-store-vectorizer",
cl::desc("Enable load store vectorizer"),
cl::init(true),
cl::Hidden);
// Option to control global loads scalarization
static cl::opt<bool> ScalarizeGlobal(
"amdgpu-scalarize-global-loads",
cl::desc("Enable global load scalarization"),
cl::init(true),
cl::Hidden);
// Option to run internalize pass.
static cl::opt<bool> InternalizeSymbols(
"amdgpu-internalize-symbols",
cl::desc("Enable elimination of non-kernel functions and unused globals"),
cl::init(false),
cl::Hidden);
// Option to inline all early.
static cl::opt<bool> EarlyInlineAll(
"amdgpu-early-inline-all",
cl::desc("Inline all functions early"),
cl::init(false),
cl::Hidden);
static cl::opt<bool> EnableSDWAPeephole(
"amdgpu-sdwa-peephole",
cl::desc("Enable SDWA peepholer"),
cl::init(true));
static cl::opt<bool> EnableDPPCombine(
"amdgpu-dpp-combine",
cl::desc("Enable DPP combiner"),
cl::init(true));
// Enable address space based alias analysis
static cl::opt<bool> EnableAMDGPUAliasAnalysis("enable-amdgpu-aa", cl::Hidden,
cl::desc("Enable AMDGPU Alias Analysis"),
cl::init(true));
// Option to run late CFG structurizer
static cl::opt<bool, true> LateCFGStructurize(
"amdgpu-late-structurize",
cl::desc("Enable late CFG structurization"),
cl::location(AMDGPUTargetMachine::EnableLateStructurizeCFG),
cl::Hidden);
static cl::opt<bool, true> EnableAMDGPUFunctionCallsOpt(
"amdgpu-function-calls",
cl::desc("Enable AMDGPU function call support"),
cl::location(AMDGPUTargetMachine::EnableFunctionCalls),
cl::init(true),
cl::Hidden);
static cl::opt<bool, true> EnableAMDGPUFixedFunctionABIOpt(
"amdgpu-fixed-function-abi",
cl::desc("Enable all implicit function arguments"),
cl::location(AMDGPUTargetMachine::EnableFixedFunctionABI),
cl::init(false),
cl::Hidden);
// Enable lib calls simplifications
static cl::opt<bool> EnableLibCallSimplify(
"amdgpu-simplify-libcall",
cl::desc("Enable amdgpu library simplifications"),
cl::init(true),
cl::Hidden);
static cl::opt<bool> EnableLowerKernelArguments(
"amdgpu-ir-lower-kernel-arguments",
cl::desc("Lower kernel argument loads in IR pass"),
cl::init(true),
cl::Hidden);
static cl::opt<bool> EnableRegReassign(
"amdgpu-reassign-regs",
cl::desc("Enable register reassign optimizations on gfx10+"),
cl::init(true),
cl::Hidden);
static cl::opt<bool> OptVGPRLiveRange(
"amdgpu-opt-vgpr-liverange",
cl::desc("Enable VGPR liverange optimizations for if-else structure"),
cl::init(true), cl::Hidden);
// Enable atomic optimization
static cl::opt<bool> EnableAtomicOptimizations(
"amdgpu-atomic-optimizations",
cl::desc("Enable atomic optimizations"),
cl::init(false),
cl::Hidden);
// Enable Mode register optimization
static cl::opt<bool> EnableSIModeRegisterPass(
"amdgpu-mode-register",
cl::desc("Enable mode register pass"),
cl::init(true),
cl::Hidden);
// Option is used in lit tests to prevent deadcoding of patterns inspected.
static cl::opt<bool>
EnableDCEInRA("amdgpu-dce-in-ra",
cl::init(true), cl::Hidden,
cl::desc("Enable machine DCE inside regalloc"));
static cl::opt<bool> EnableScalarIRPasses(
"amdgpu-scalar-ir-passes",
cl::desc("Enable scalar IR passes"),
cl::init(true),
cl::Hidden);
static cl::opt<bool> EnableStructurizerWorkarounds(
"amdgpu-enable-structurizer-workarounds",
cl::desc("Enable workarounds for the StructurizeCFG pass"), cl::init(true),
cl::Hidden);
static cl::opt<bool> EnableLDSReplaceWithPointer(
"amdgpu-enable-lds-replace-with-pointer",
cl::desc("Enable LDS replace with pointer pass"), cl::init(false),
cl::Hidden);
static cl::opt<bool, true> EnableLowerModuleLDS(
"amdgpu-enable-lower-module-lds", cl::desc("Enable lower module lds pass"),
cl::location(AMDGPUTargetMachine::EnableLowerModuleLDS), cl::init(true),
cl::Hidden);
static cl::opt<bool> EnablePreRAOptimizations(
"amdgpu-enable-pre-ra-optimizations",
cl::desc("Enable Pre-RA optimizations pass"), cl::init(true),
cl::Hidden);
extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUTarget() {
// Register the target
RegisterTargetMachine<R600TargetMachine> X(getTheAMDGPUTarget());
RegisterTargetMachine<GCNTargetMachine> Y(getTheGCNTarget());
PassRegistry *PR = PassRegistry::getPassRegistry();
initializeR600ClauseMergePassPass(*PR);
initializeR600ControlFlowFinalizerPass(*PR);
initializeR600PacketizerPass(*PR);
initializeR600ExpandSpecialInstrsPassPass(*PR);
initializeR600VectorRegMergerPass(*PR);
initializeGlobalISel(*PR);
initializeAMDGPUDAGToDAGISelPass(*PR);
initializeGCNDPPCombinePass(*PR);
initializeSILowerI1CopiesPass(*PR);
initializeSILowerSGPRSpillsPass(*PR);
initializeSIFixSGPRCopiesPass(*PR);
initializeSIFixVGPRCopiesPass(*PR);
initializeSIFoldOperandsPass(*PR);
initializeSIPeepholeSDWAPass(*PR);
initializeSIShrinkInstructionsPass(*PR);
initializeSIOptimizeExecMaskingPreRAPass(*PR);
initializeSIOptimizeVGPRLiveRangePass(*PR);
initializeSILoadStoreOptimizerPass(*PR);
initializeAMDGPUFixFunctionBitcastsPass(*PR);
initializeAMDGPUCtorDtorLoweringPass(*PR);
initializeAMDGPUAlwaysInlinePass(*PR);
initializeAMDGPUAttributorPass(*PR);
initializeAMDGPUAnnotateKernelFeaturesPass(*PR);
initializeAMDGPUAnnotateUniformValuesPass(*PR);
initializeAMDGPUArgumentUsageInfoPass(*PR);
initializeAMDGPUAtomicOptimizerPass(*PR);
initializeAMDGPULowerKernelArgumentsPass(*PR);
initializeAMDGPULowerKernelAttributesPass(*PR);
initializeAMDGPULowerIntrinsicsPass(*PR);
initializeAMDGPUOpenCLEnqueuedBlockLoweringPass(*PR);
initializeAMDGPUPostLegalizerCombinerPass(*PR);
initializeAMDGPUPreLegalizerCombinerPass(*PR);
initializeAMDGPURegBankCombinerPass(*PR);
initializeAMDGPUPromoteAllocaPass(*PR);
initializeAMDGPUPromoteAllocaToVectorPass(*PR);
initializeAMDGPUCodeGenPreparePass(*PR);
initializeAMDGPULateCodeGenPreparePass(*PR);
initializeAMDGPUPropagateAttributesEarlyPass(*PR);
initializeAMDGPUPropagateAttributesLatePass(*PR);
initializeAMDGPUReplaceLDSUseWithPointerPass(*PR);
initializeAMDGPULowerModuleLDSPass(*PR);
initializeAMDGPURewriteOutArgumentsPass(*PR);
initializeAMDGPUUnifyMetadataPass(*PR);
initializeSIAnnotateControlFlowPass(*PR);
initializeSIInsertHardClausesPass(*PR);
initializeSIInsertWaitcntsPass(*PR);
initializeSIModeRegisterPass(*PR);
initializeSIWholeQuadModePass(*PR);
initializeSILowerControlFlowPass(*PR);
initializeSIPreEmitPeepholePass(*PR);
initializeSILateBranchLoweringPass(*PR);
initializeSIMemoryLegalizerPass(*PR);
initializeSIOptimizeExecMaskingPass(*PR);
initializeSIPreAllocateWWMRegsPass(*PR);
initializeSIFormMemoryClausesPass(*PR);
initializeSIPostRABundlerPass(*PR);
initializeAMDGPUUnifyDivergentExitNodesPass(*PR);
initializeAMDGPUAAWrapperPassPass(*PR);
initializeAMDGPUExternalAAWrapperPass(*PR);
initializeAMDGPUUseNativeCallsPass(*PR);
initializeAMDGPUSimplifyLibCallsPass(*PR);
initializeAMDGPUPrintfRuntimeBindingPass(*PR);
initializeAMDGPUResourceUsageAnalysisPass(*PR);
initializeGCNNSAReassignPass(*PR);
initializeGCNPreRAOptimizationsPass(*PR);
}
static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
return std::make_unique<AMDGPUTargetObjectFile>();
}
static ScheduleDAGInstrs *createR600MachineScheduler(MachineSchedContext *C) {
return new ScheduleDAGMILive(C, std::make_unique<R600SchedStrategy>());
}
static ScheduleDAGInstrs *createSIMachineScheduler(MachineSchedContext *C) {
return new SIScheduleDAGMI(C);
}
static ScheduleDAGInstrs *
createGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) {
ScheduleDAGMILive *DAG =
new GCNScheduleDAGMILive(C, std::make_unique<GCNMaxOccupancySchedStrategy>(C));
DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
DAG->addMutation(createAMDGPUMacroFusionDAGMutation());
DAG->addMutation(createAMDGPUExportClusteringDAGMutation());
return DAG;
}
static ScheduleDAGInstrs *
createIterativeGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) {
auto DAG = new GCNIterativeScheduler(C,
GCNIterativeScheduler::SCHEDULE_LEGACYMAXOCCUPANCY);
DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
return DAG;
}
static ScheduleDAGInstrs *createMinRegScheduler(MachineSchedContext *C) {
return new GCNIterativeScheduler(C,
GCNIterativeScheduler::SCHEDULE_MINREGFORCED);
}
static ScheduleDAGInstrs *
createIterativeILPMachineScheduler(MachineSchedContext *C) {
auto DAG = new GCNIterativeScheduler(C,
GCNIterativeScheduler::SCHEDULE_ILP);
DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
DAG->addMutation(createAMDGPUMacroFusionDAGMutation());
return DAG;
}
static MachineSchedRegistry
R600SchedRegistry("r600", "Run R600's custom scheduler",
createR600MachineScheduler);
static MachineSchedRegistry
SISchedRegistry("si", "Run SI's custom scheduler",
createSIMachineScheduler);
static MachineSchedRegistry
GCNMaxOccupancySchedRegistry("gcn-max-occupancy",
"Run GCN scheduler to maximize occupancy",
createGCNMaxOccupancyMachineScheduler);
static MachineSchedRegistry
IterativeGCNMaxOccupancySchedRegistry("gcn-max-occupancy-experimental",
"Run GCN scheduler to maximize occupancy (experimental)",
createIterativeGCNMaxOccupancyMachineScheduler);
static MachineSchedRegistry
GCNMinRegSchedRegistry("gcn-minreg",
"Run GCN iterative scheduler for minimal register usage (experimental)",
createMinRegScheduler);
static MachineSchedRegistry
GCNILPSchedRegistry("gcn-ilp",
"Run GCN iterative scheduler for ILP scheduling (experimental)",
createIterativeILPMachineScheduler);
static StringRef computeDataLayout(const Triple &TT) {
if (TT.getArch() == Triple::r600) {
// 32-bit pointers.
return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128"
"-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5-G1";
}
// 32-bit private, local, and region pointers. 64-bit global, constant and
// flat, non-integral buffer fat pointers.
return "e-p:64:64-p1:64:64-p2:32:32-p3:32:32-p4:64:64-p5:32:32-p6:32:32"
"-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128"
"-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5-G1"
"-ni:7";
}
LLVM_READNONE
static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) {
if (!GPU.empty())
return GPU;
// Need to default to a target with flat support for HSA.
if (TT.getArch() == Triple::amdgcn)
return TT.getOS() == Triple::AMDHSA ? "generic-hsa" : "generic";
return "r600";
}
static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) {
// The AMDGPU toolchain only supports generating shared objects, so we
// must always use PIC.
return Reloc::PIC_;
}
AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, const Triple &TT,
StringRef CPU, StringRef FS,
TargetOptions Options,
Optional<Reloc::Model> RM,
Optional<CodeModel::Model> CM,
CodeGenOpt::Level OptLevel)
: LLVMTargetMachine(T, computeDataLayout(TT), TT, getGPUOrDefault(TT, CPU),
FS, Options, getEffectiveRelocModel(RM),
getEffectiveCodeModel(CM, CodeModel::Small), OptLevel),
TLOF(createTLOF(getTargetTriple())) {
initAsmInfo();
if (TT.getArch() == Triple::amdgcn) {
if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize64"))
MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave64));
else if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize32"))
MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave32));
}
}
bool AMDGPUTargetMachine::EnableLateStructurizeCFG = false;
bool AMDGPUTargetMachine::EnableFunctionCalls = false;
bool AMDGPUTargetMachine::EnableFixedFunctionABI = false;
bool AMDGPUTargetMachine::EnableLowerModuleLDS = true;
AMDGPUTargetMachine::~AMDGPUTargetMachine() = default;
StringRef AMDGPUTargetMachine::getGPUName(const Function &F) const {
Attribute GPUAttr = F.getFnAttribute("target-cpu");
return GPUAttr.isValid() ? GPUAttr.getValueAsString() : getTargetCPU();
}
StringRef AMDGPUTargetMachine::getFeatureString(const Function &F) const {
Attribute FSAttr = F.getFnAttribute("target-features");
return FSAttr.isValid() ? FSAttr.getValueAsString()
: getTargetFeatureString();
}
/// Predicate for Internalize pass.
static bool mustPreserveGV(const GlobalValue &GV) {
if (const Function *F = dyn_cast<Function>(&GV))
return F->isDeclaration() || AMDGPU::isEntryFunctionCC(F->getCallingConv());
GV.removeDeadConstantUsers();
return !GV.use_empty();
}
void AMDGPUTargetMachine::adjustPassManager(PassManagerBuilder &Builder) {
Builder.DivergentTarget = true;
bool EnableOpt = getOptLevel() > CodeGenOpt::None;
bool Internalize = InternalizeSymbols;
bool EarlyInline = EarlyInlineAll && EnableOpt && !EnableFunctionCalls;
bool AMDGPUAA = EnableAMDGPUAliasAnalysis && EnableOpt;
bool LibCallSimplify = EnableLibCallSimplify && EnableOpt;
if (EnableFunctionCalls) {
delete Builder.Inliner;
Builder.Inliner = createFunctionInliningPass();
}
Builder.addExtension(
PassManagerBuilder::EP_ModuleOptimizerEarly,
[Internalize, EarlyInline, AMDGPUAA, this](const PassManagerBuilder &,
legacy::PassManagerBase &PM) {
if (AMDGPUAA) {
PM.add(createAMDGPUAAWrapperPass());
PM.add(createAMDGPUExternalAAWrapperPass());
}
PM.add(createAMDGPUUnifyMetadataPass());
PM.add(createAMDGPUPrintfRuntimeBinding());
if (Internalize)
PM.add(createInternalizePass(mustPreserveGV));
PM.add(createAMDGPUPropagateAttributesLatePass(this));
if (Internalize)
PM.add(createGlobalDCEPass());
if (EarlyInline)
PM.add(createAMDGPUAlwaysInlinePass(false));
});
Builder.addExtension(
PassManagerBuilder::EP_EarlyAsPossible,
[AMDGPUAA, LibCallSimplify, this](const PassManagerBuilder &,
legacy::PassManagerBase &PM) {
if (AMDGPUAA) {
PM.add(createAMDGPUAAWrapperPass());
PM.add(createAMDGPUExternalAAWrapperPass());
}
PM.add(llvm::createAMDGPUPropagateAttributesEarlyPass(this));
PM.add(llvm::createAMDGPUUseNativeCallsPass());
if (LibCallSimplify)
PM.add(llvm::createAMDGPUSimplifyLibCallsPass(this));
});
Builder.addExtension(
PassManagerBuilder::EP_CGSCCOptimizerLate,
[EnableOpt](const PassManagerBuilder &, legacy::PassManagerBase &PM) {
// Add infer address spaces pass to the opt pipeline after inlining
// but before SROA to increase SROA opportunities.
PM.add(createInferAddressSpacesPass());
// This should run after inlining to have any chance of doing anything,
// and before other cleanup optimizations.
PM.add(createAMDGPULowerKernelAttributesPass());
// Promote alloca to vector before SROA and loop unroll. If we manage
// to eliminate allocas before unroll we may choose to unroll less.
if (EnableOpt)
PM.add(createAMDGPUPromoteAllocaToVector());
});
}
void AMDGPUTargetMachine::registerDefaultAliasAnalyses(AAManager &AAM) {
AAM.registerFunctionAnalysis<AMDGPUAA>();
}
void AMDGPUTargetMachine::registerPassBuilderCallbacks(PassBuilder &PB) {
PB.registerPipelineParsingCallback(
[this](StringRef PassName, ModulePassManager &PM,
ArrayRef<PassBuilder::PipelineElement>) {
if (PassName == "amdgpu-propagate-attributes-late") {
PM.addPass(AMDGPUPropagateAttributesLatePass(*this));
return true;
}
if (PassName == "amdgpu-unify-metadata") {
PM.addPass(AMDGPUUnifyMetadataPass());
return true;
}
if (PassName == "amdgpu-printf-runtime-binding") {
PM.addPass(AMDGPUPrintfRuntimeBindingPass());
return true;
}
if (PassName == "amdgpu-always-inline") {
PM.addPass(AMDGPUAlwaysInlinePass());
return true;
}
if (PassName == "amdgpu-replace-lds-use-with-pointer") {
PM.addPass(AMDGPUReplaceLDSUseWithPointerPass());
return true;
}
if (PassName == "amdgpu-lower-module-lds") {
PM.addPass(AMDGPULowerModuleLDSPass());
return true;
}
return false;
});
PB.registerPipelineParsingCallback(
[this](StringRef PassName, FunctionPassManager &PM,
ArrayRef<PassBuilder::PipelineElement>) {
if (PassName == "amdgpu-simplifylib") {
PM.addPass(AMDGPUSimplifyLibCallsPass(*this));
return true;
}
if (PassName == "amdgpu-usenative") {
PM.addPass(AMDGPUUseNativeCallsPass());
return true;
}
if (PassName == "amdgpu-promote-alloca") {
PM.addPass(AMDGPUPromoteAllocaPass(*this));
return true;
}
if (PassName == "amdgpu-promote-alloca-to-vector") {
PM.addPass(AMDGPUPromoteAllocaToVectorPass(*this));
return true;
}
if (PassName == "amdgpu-lower-kernel-attributes") {
PM.addPass(AMDGPULowerKernelAttributesPass());
return true;
}
if (PassName == "amdgpu-propagate-attributes-early") {
PM.addPass(AMDGPUPropagateAttributesEarlyPass(*this));
return true;
}
return false;
});
PB.registerAnalysisRegistrationCallback([](FunctionAnalysisManager &FAM) {
FAM.registerPass([&] { return AMDGPUAA(); });
});
PB.registerParseAACallback([](StringRef AAName, AAManager &AAM) {
if (AAName == "amdgpu-aa") {
AAM.registerFunctionAnalysis<AMDGPUAA>();
return true;
}
return false;
});
PB.registerPipelineStartEPCallback(
[this](ModulePassManager &PM, OptimizationLevel Level) {
FunctionPassManager FPM;
FPM.addPass(AMDGPUPropagateAttributesEarlyPass(*this));
FPM.addPass(AMDGPUUseNativeCallsPass());
if (EnableLibCallSimplify && Level != OptimizationLevel::O0)
FPM.addPass(AMDGPUSimplifyLibCallsPass(*this));
PM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
});
PB.registerPipelineEarlySimplificationEPCallback(
[this](ModulePassManager &PM, OptimizationLevel Level) {
if (Level == OptimizationLevel::O0)
return;
PM.addPass(AMDGPUUnifyMetadataPass());
PM.addPass(AMDGPUPrintfRuntimeBindingPass());
if (InternalizeSymbols) {
PM.addPass(InternalizePass(mustPreserveGV));
}
PM.addPass(AMDGPUPropagateAttributesLatePass(*this));
if (InternalizeSymbols) {
PM.addPass(GlobalDCEPass());
}
if (EarlyInlineAll && !EnableFunctionCalls)
PM.addPass(AMDGPUAlwaysInlinePass());
});
PB.registerCGSCCOptimizerLateEPCallback(
[this](CGSCCPassManager &PM, OptimizationLevel Level) {
if (Level == OptimizationLevel::O0)
return;
FunctionPassManager FPM;
// Add infer address spaces pass to the opt pipeline after inlining
// but before SROA to increase SROA opportunities.
FPM.addPass(InferAddressSpacesPass());
// This should run after inlining to have any chance of doing
// anything, and before other cleanup optimizations.
FPM.addPass(AMDGPULowerKernelAttributesPass());
if (Level != OptimizationLevel::O0) {
// Promote alloca to vector before SROA and loop unroll. If we
// manage to eliminate allocas before unroll we may choose to unroll
// less.
FPM.addPass(AMDGPUPromoteAllocaToVectorPass(*this));
}
PM.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM)));
});
}
//===----------------------------------------------------------------------===//
// R600 Target Machine (R600 -> Cayman)
//===----------------------------------------------------------------------===//
R600TargetMachine::R600TargetMachine(const Target &T, const Triple &TT,
StringRef CPU, StringRef FS,
TargetOptions Options,
Optional<Reloc::Model> RM,
Optional<CodeModel::Model> CM,
CodeGenOpt::Level OL, bool JIT)
: AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {
setRequiresStructuredCFG(true);
// Override the default since calls aren't supported for r600.
if (EnableFunctionCalls &&
EnableAMDGPUFunctionCallsOpt.getNumOccurrences() == 0)
EnableFunctionCalls = false;
}
const R600Subtarget *R600TargetMachine::getSubtargetImpl(
const Function &F) const {
StringRef GPU = getGPUName(F);
StringRef FS = getFeatureString(F);
SmallString<128> SubtargetKey(GPU);
SubtargetKey.append(FS);
auto &I = SubtargetMap[SubtargetKey];
if (!I) {
// This needs to be done before we create a new subtarget since any
// creation will depend on the TM and the code generation flags on the
// function that reside in TargetOptions.
resetTargetOptions(F);
I = std::make_unique<R600Subtarget>(TargetTriple, GPU, FS, *this);
}
return I.get();
}
int64_t AMDGPUTargetMachine::getNullPointerValue(unsigned AddrSpace) {
return (AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
AddrSpace == AMDGPUAS::PRIVATE_ADDRESS ||
AddrSpace == AMDGPUAS::REGION_ADDRESS)
? -1
: 0;
}
bool AMDGPUTargetMachine::isNoopAddrSpaceCast(unsigned SrcAS,
unsigned DestAS) const {
return AMDGPU::isFlatGlobalAddrSpace(SrcAS) &&
AMDGPU::isFlatGlobalAddrSpace(DestAS);
}
unsigned AMDGPUTargetMachine::getAssumedAddrSpace(const Value *V) const {
const auto *LD = dyn_cast<LoadInst>(V);
if (!LD)
return AMDGPUAS::UNKNOWN_ADDRESS_SPACE;
// It must be a generic pointer loaded.
assert(V->getType()->isPointerTy() &&
V->getType()->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS);
const auto *Ptr = LD->getPointerOperand();
if (Ptr->getType()->getPointerAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS)
return AMDGPUAS::UNKNOWN_ADDRESS_SPACE;
// For a generic pointer loaded from the constant memory, it could be assumed
// as a global pointer since the constant memory is only populated on the
// host side. As implied by the offload programming model, only global
// pointers could be referenced on the host side.
return AMDGPUAS::GLOBAL_ADDRESS;
}
TargetTransformInfo
R600TargetMachine::getTargetTransformInfo(const Function &F) {
return TargetTransformInfo(R600TTIImpl(this, F));
}
//===----------------------------------------------------------------------===//
// GCN Target Machine (SI+)
//===----------------------------------------------------------------------===//
GCNTargetMachine::GCNTargetMachine(const Target &T, const Triple &TT,
StringRef CPU, StringRef FS,
TargetOptions Options,
Optional<Reloc::Model> RM,
Optional<CodeModel::Model> CM,
CodeGenOpt::Level OL, bool JIT)
: AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {}
const GCNSubtarget *GCNTargetMachine::getSubtargetImpl(const Function &F) const {
StringRef GPU = getGPUName(F);
StringRef FS = getFeatureString(F);
SmallString<128> SubtargetKey(GPU);
SubtargetKey.append(FS);
auto &I = SubtargetMap[SubtargetKey];
if (!I) {
// This needs to be done before we create a new subtarget since any
// creation will depend on the TM and the code generation flags on the
// function that reside in TargetOptions.
resetTargetOptions(F);
I = std::make_unique<GCNSubtarget>(TargetTriple, GPU, FS, *this);
}
I->setScalarizeGlobalBehavior(ScalarizeGlobal);
return I.get();
}
TargetTransformInfo
GCNTargetMachine::getTargetTransformInfo(const Function &F) {
return TargetTransformInfo(GCNTTIImpl(this, F));
}
//===----------------------------------------------------------------------===//
// AMDGPU Pass Setup
//===----------------------------------------------------------------------===//
namespace {
class AMDGPUPassConfig : public TargetPassConfig {
public:
AMDGPUPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM)
: TargetPassConfig(TM, PM) {
// Exceptions and StackMaps are not supported, so these passes will never do
// anything.
disablePass(&StackMapLivenessID);
disablePass(&FuncletLayoutID);
// Garbage collection is not supported.
disablePass(&GCLoweringID);
disablePass(&ShadowStackGCLoweringID);
}
AMDGPUTargetMachine &getAMDGPUTargetMachine() const {
return getTM<AMDGPUTargetMachine>();
}
ScheduleDAGInstrs *
createMachineScheduler(MachineSchedContext *C) const override {
ScheduleDAGMILive *DAG = createGenericSchedLive(C);
DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
return DAG;
}
void addEarlyCSEOrGVNPass();
void addStraightLineScalarOptimizationPasses();
void addIRPasses() override;
void addCodeGenPrepare() override;
bool addPreISel() override;
bool addInstSelector() override;
bool addGCPasses() override;
std::unique_ptr<CSEConfigBase> getCSEConfig() const override;
/// Check if a pass is enabled given \p Opt option. The option always
/// overrides defaults if explicitely used. Otherwise its default will
/// be used given that a pass shall work at an optimization \p Level
/// minimum.
bool isPassEnabled(const cl::opt<bool> &Opt,
CodeGenOpt::Level Level = CodeGenOpt::Default) const {
if (Opt.getNumOccurrences())
return Opt;
if (TM->getOptLevel() < Level)
return false;
return Opt;
}
};
std::unique_ptr<CSEConfigBase> AMDGPUPassConfig::getCSEConfig() const {
return getStandardCSEConfigForOpt(TM->getOptLevel());
}
class R600PassConfig final : public AMDGPUPassConfig {
public:
R600PassConfig(LLVMTargetMachine &TM, PassManagerBase &PM)
: AMDGPUPassConfig(TM, PM) {}
ScheduleDAGInstrs *createMachineScheduler(
MachineSchedContext *C) const override {
return createR600MachineScheduler(C);
}
bool addPreISel() override;
bool addInstSelector() override;
void addPreRegAlloc() override;
void addPreSched2() override;
void addPreEmitPass() override;
};
class GCNPassConfig final : public AMDGPUPassConfig {
public:
GCNPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM)
: AMDGPUPassConfig(TM, PM) {
// It is necessary to know the register usage of the entire call graph. We
// allow calls without EnableAMDGPUFunctionCalls if they are marked
// noinline, so this is always required.
setRequiresCodeGenSCCOrder(true);
}
GCNTargetMachine &getGCNTargetMachine() const {
return getTM<GCNTargetMachine>();
}
ScheduleDAGInstrs *
createMachineScheduler(MachineSchedContext *C) const override;
bool addPreISel() override;
void addMachineSSAOptimization() override;
bool addILPOpts() override;
bool addInstSelector() override;
bool addIRTranslator() override;
void addPreLegalizeMachineIR() override;
bool addLegalizeMachineIR() override;
void addPreRegBankSelect() override;
bool addRegBankSelect() override;
void addPreGlobalInstructionSelect() override;
bool addGlobalInstructionSelect() override;
void addFastRegAlloc() override;
void addOptimizedRegAlloc() override;
FunctionPass *createSGPRAllocPass(bool Optimized);
FunctionPass *createVGPRAllocPass(bool Optimized);
FunctionPass *createRegAllocPass(bool Optimized) override;
bool addRegAssignAndRewriteFast() override;
bool addRegAssignAndRewriteOptimized() override;
void addPreRegAlloc() override;
bool addPreRewrite() override;
void addPostRegAlloc() override;
void addPreSched2() override;
void addPreEmitPass() override;
};
} // end anonymous namespace
void AMDGPUPassConfig::addEarlyCSEOrGVNPass() {
if (getOptLevel() == CodeGenOpt::Aggressive)
addPass(createGVNPass());
else
addPass(createEarlyCSEPass());
}
void AMDGPUPassConfig::addStraightLineScalarOptimizationPasses() {
addPass(createLICMPass());
addPass(createSeparateConstOffsetFromGEPPass());
addPass(createSpeculativeExecutionPass());
// ReassociateGEPs exposes more opportunites for SLSR. See
// the example in reassociate-geps-and-slsr.ll.
addPass(createStraightLineStrengthReducePass());
// SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or
// EarlyCSE can reuse.
addEarlyCSEOrGVNPass();
// Run NaryReassociate after EarlyCSE/GVN to be more effective.
addPass(createNaryReassociatePass());
// NaryReassociate on GEPs creates redundant common expressions, so run
// EarlyCSE after it.
addPass(createEarlyCSEPass());
}
void AMDGPUPassConfig::addIRPasses() {
const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine();
// There is no reason to run these.
disablePass(&StackMapLivenessID);
disablePass(&FuncletLayoutID);
disablePass(&PatchableFunctionID);
addPass(createAMDGPUPrintfRuntimeBinding());
addPass(createAMDGPUCtorDtorLoweringPass());
// This must occur before inlining, as the inliner will not look through
// bitcast calls.
addPass(createAMDGPUFixFunctionBitcastsPass());
// A call to propagate attributes pass in the backend in case opt was not run.
addPass(createAMDGPUPropagateAttributesEarlyPass(&TM));
addPass(createAMDGPULowerIntrinsicsPass());
// Function calls are not supported, so make sure we inline everything.
addPass(createAMDGPUAlwaysInlinePass());
addPass(createAlwaysInlinerLegacyPass());
// We need to add the barrier noop pass, otherwise adding the function
// inlining pass will cause all of the PassConfigs passes to be run
// one function at a time, which means if we have a nodule with two
// functions, then we will generate code for the first function
// without ever running any passes on the second.
addPass(createBarrierNoopPass());
// Handle uses of OpenCL image2d_t, image3d_t and sampler_t arguments.
if (TM.getTargetTriple().getArch() == Triple::r600)
addPass(createR600OpenCLImageTypeLoweringPass());
// Replace OpenCL enqueued block function pointers with global variables.
addPass(createAMDGPUOpenCLEnqueuedBlockLoweringPass());
// Can increase LDS used by kernel so runs before PromoteAlloca
if (EnableLowerModuleLDS) {
// The pass "amdgpu-replace-lds-use-with-pointer" need to be run before the
// pass "amdgpu-lower-module-lds", and also it required to be run only if
// "amdgpu-lower-module-lds" pass is enabled.
if (EnableLDSReplaceWithPointer)
addPass(createAMDGPUReplaceLDSUseWithPointerPass());
addPass(createAMDGPULowerModuleLDSPass());
}
if (TM.getOptLevel() > CodeGenOpt::None)
addPass(createInferAddressSpacesPass());
addPass(createAtomicExpandPass());
if (TM.getOptLevel() > CodeGenOpt::None) {
addPass(createAMDGPUPromoteAlloca());
if (EnableSROA)
addPass(createSROAPass());
if (isPassEnabled(EnableScalarIRPasses))
addStraightLineScalarOptimizationPasses();
if (EnableAMDGPUAliasAnalysis) {
addPass(createAMDGPUAAWrapperPass());
addPass(createExternalAAWrapperPass([](Pass &P, Function &,
AAResults &AAR) {
if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>())
AAR.addAAResult(WrapperPass->getResult());
}));
}
if (TM.getTargetTriple().getArch() == Triple::amdgcn) {
// TODO: May want to move later or split into an early and late one.
addPass(createAMDGPUCodeGenPreparePass());
}
}
TargetPassConfig::addIRPasses();
// EarlyCSE is not always strong enough to clean up what LSR produces. For
// example, GVN can combine
//
// %0 = add %a, %b
// %1 = add %b, %a
//
// and
//
// %0 = shl nsw %a, 2
// %1 = shl %a, 2
//
// but EarlyCSE can do neither of them.
if (isPassEnabled(EnableScalarIRPasses))
addEarlyCSEOrGVNPass();
}
void AMDGPUPassConfig::addCodeGenPrepare() {
if (TM->getTargetTriple().getArch() == Triple::amdgcn)
addPass(createAMDGPUAnnotateKernelFeaturesPass());
if (TM->getTargetTriple().getArch() == Triple::amdgcn &&
EnableLowerKernelArguments)
addPass(createAMDGPULowerKernelArgumentsPass());
TargetPassConfig::addCodeGenPrepare();
if (isPassEnabled(EnableLoadStoreVectorizer))
addPass(createLoadStoreVectorizerPass());
// LowerSwitch pass may introduce unreachable blocks that can
// cause unexpected behavior for subsequent passes. Placing it
// here seems better that these blocks would get cleaned up by
// UnreachableBlockElim inserted next in the pass flow.
addPass(createLowerSwitchPass());
}
bool AMDGPUPassConfig::addPreISel() {
if (TM->getOptLevel() > CodeGenOpt::None)
addPass(createFlattenCFGPass());
return false;
}
bool AMDGPUPassConfig::addInstSelector() {
// Defer the verifier until FinalizeISel.
addPass(createAMDGPUISelDag(&getAMDGPUTargetMachine(), getOptLevel()), false);
return false;
}
bool AMDGPUPassConfig::addGCPasses() {
// Do nothing. GC is not supported.
return false;
}
//===----------------------------------------------------------------------===//
// R600 Pass Setup
//===----------------------------------------------------------------------===//
bool R600PassConfig::addPreISel() {
AMDGPUPassConfig::addPreISel();
if (EnableR600StructurizeCFG)
addPass(createStructurizeCFGPass());
return false;
}
bool R600PassConfig::addInstSelector() {
addPass(createR600ISelDag(&getAMDGPUTargetMachine(), getOptLevel()));
return false;
}
void R600PassConfig::addPreRegAlloc() {
addPass(createR600VectorRegMerger());
}
void R600PassConfig::addPreSched2() {
addPass(createR600EmitClauseMarkers(), false);
if (EnableR600IfConvert)
addPass(&IfConverterID, false);
addPass(createR600ClauseMergePass(), false);
}
void R600PassConfig::addPreEmitPass() {
addPass(createAMDGPUCFGStructurizerPass(), false);
addPass(createR600ExpandSpecialInstrsPass(), false);
addPass(&FinalizeMachineBundlesID, false);
addPass(createR600Packetizer(), false);
addPass(createR600ControlFlowFinalizer(), false);
}
TargetPassConfig *R600TargetMachine::createPassConfig(PassManagerBase &PM) {
return new R600PassConfig(*this, PM);
}
//===----------------------------------------------------------------------===//
// GCN Pass Setup
//===----------------------------------------------------------------------===//
ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler(
MachineSchedContext *C) const {
const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>();
if (ST.enableSIScheduler())
return createSIMachineScheduler(C);
return createGCNMaxOccupancyMachineScheduler(C);
}
bool GCNPassConfig::addPreISel() {
AMDGPUPassConfig::addPreISel();
if (TM->getOptLevel() > CodeGenOpt::None)
addPass(createAMDGPULateCodeGenPreparePass());
if (isPassEnabled(EnableAtomicOptimizations, CodeGenOpt::Less)) {
addPass(createAMDGPUAtomicOptimizerPass());
}
if (TM->getOptLevel() > CodeGenOpt::None)
addPass(createSinkingPass());
// Merge divergent exit nodes. StructurizeCFG won't recognize the multi-exit
// regions formed by them.
addPass(&AMDGPUUnifyDivergentExitNodesID);
if (!LateCFGStructurize) {
if (EnableStructurizerWorkarounds) {
addPass(createFixIrreduciblePass());
addPass(createUnifyLoopExitsPass());
}
addPass(createStructurizeCFGPass(false)); // true -> SkipUniformRegions
}
addPass(createAMDGPUAnnotateUniformValues());
if (!LateCFGStructurize) {
addPass(createSIAnnotateControlFlowPass());
}
addPass(createLCSSAPass());
if (TM->getOptLevel() > CodeGenOpt::Less)
addPass(&AMDGPUPerfHintAnalysisID);
return false;
}
void GCNPassConfig::addMachineSSAOptimization() {
TargetPassConfig::addMachineSSAOptimization();
// We want to fold operands after PeepholeOptimizer has run (or as part of
// it), because it will eliminate extra copies making it easier to fold the
// real source operand. We want to eliminate dead instructions after, so that
// we see fewer uses of the copies. We then need to clean up the dead
// instructions leftover after the operands are folded as well.
//
// XXX - Can we get away without running DeadMachineInstructionElim again?
addPass(&SIFoldOperandsID);
if (EnableDPPCombine)
addPass(&GCNDPPCombineID);
addPass(&SILoadStoreOptimizerID);
if (isPassEnabled(EnableSDWAPeephole)) {
addPass(&SIPeepholeSDWAID);
addPass(&EarlyMachineLICMID);
addPass(&MachineCSEID);
addPass(&SIFoldOperandsID);
}
addPass(&DeadMachineInstructionElimID);
addPass(createSIShrinkInstructionsPass());
}
bool GCNPassConfig::addILPOpts() {
if (EnableEarlyIfConversion)
addPass(&EarlyIfConverterID);
TargetPassConfig::addILPOpts();
return false;
}
bool GCNPassConfig::addInstSelector() {
AMDGPUPassConfig::addInstSelector();
addPass(&SIFixSGPRCopiesID);
addPass(createSILowerI1CopiesPass());
return false;
}
bool GCNPassConfig::addIRTranslator() {
addPass(new IRTranslator(getOptLevel()));
return false;
}
void GCNPassConfig::addPreLegalizeMachineIR() {
bool IsOptNone = getOptLevel() == CodeGenOpt::None;
addPass(createAMDGPUPreLegalizeCombiner(IsOptNone));
addPass(new Localizer());
}
bool GCNPassConfig::addLegalizeMachineIR() {
addPass(new Legalizer());
return false;
}
void GCNPassConfig::addPreRegBankSelect() {
bool IsOptNone = getOptLevel() == CodeGenOpt::None;
addPass(createAMDGPUPostLegalizeCombiner(IsOptNone));
}
bool GCNPassConfig::addRegBankSelect() {
addPass(new RegBankSelect());
return false;
}
void GCNPassConfig::addPreGlobalInstructionSelect() {
bool IsOptNone = getOptLevel() == CodeGenOpt::None;
addPass(createAMDGPURegBankCombiner(IsOptNone));
}
bool GCNPassConfig::addGlobalInstructionSelect() {
addPass(new InstructionSelect(getOptLevel()));
return false;
}
void GCNPassConfig::addPreRegAlloc() {
if (LateCFGStructurize) {
addPass(createAMDGPUMachineCFGStructurizerPass());
}
}
void GCNPassConfig::addFastRegAlloc() {
// FIXME: We have to disable the verifier here because of PHIElimination +
// TwoAddressInstructions disabling it.
// This must be run immediately after phi elimination and before
// TwoAddressInstructions, otherwise the processing of the tied operand of
// SI_ELSE will introduce a copy of the tied operand source after the else.
insertPass(&PHIEliminationID, &SILowerControlFlowID, false);
insertPass(&TwoAddressInstructionPassID, &SIWholeQuadModeID);
insertPass(&TwoAddressInstructionPassID, &SIPreAllocateWWMRegsID);
TargetPassConfig::addFastRegAlloc();
}
void GCNPassConfig::addOptimizedRegAlloc() {
// Allow the scheduler to run before SIWholeQuadMode inserts exec manipulation
// instructions that cause scheduling barriers.
insertPass(&MachineSchedulerID, &SIWholeQuadModeID);
insertPass(&MachineSchedulerID, &SIPreAllocateWWMRegsID);
if (OptExecMaskPreRA)
insertPass(&MachineSchedulerID, &SIOptimizeExecMaskingPreRAID);
if (isPassEnabled(EnablePreRAOptimizations))
insertPass(&RenameIndependentSubregsID, &GCNPreRAOptimizationsID);
// This is not an essential optimization and it has a noticeable impact on
// compilation time, so we only enable it from O2.
if (TM->getOptLevel() > CodeGenOpt::Less)
insertPass(&MachineSchedulerID, &SIFormMemoryClausesID);
// FIXME: when an instruction has a Killed operand, and the instruction is
// inside a bundle, seems only the BUNDLE instruction appears as the Kills of
// the register in LiveVariables, this would trigger a failure in verifier,
// we should fix it and enable the verifier.
if (OptVGPRLiveRange)
insertPass(&LiveVariablesID, &SIOptimizeVGPRLiveRangeID, false);
// This must be run immediately after phi elimination and before
// TwoAddressInstructions, otherwise the processing of the tied operand of
// SI_ELSE will introduce a copy of the tied operand source after the else.
insertPass(&PHIEliminationID, &SILowerControlFlowID, false);
if (EnableDCEInRA)
insertPass(&DetectDeadLanesID, &DeadMachineInstructionElimID);
TargetPassConfig::addOptimizedRegAlloc();
}
bool GCNPassConfig::addPreRewrite() {
if (EnableRegReassign)
addPass(&GCNNSAReassignID);
return true;
}
FunctionPass *GCNPassConfig::createSGPRAllocPass(bool Optimized) {
// Initialize the global default.
llvm::call_once(InitializeDefaultSGPRRegisterAllocatorFlag,
initializeDefaultSGPRRegisterAllocatorOnce);
RegisterRegAlloc::FunctionPassCtor Ctor = SGPRRegisterRegAlloc::getDefault();
if (Ctor != useDefaultRegisterAllocator)
return Ctor();
if (Optimized)
return createGreedyRegisterAllocator(onlyAllocateSGPRs);
return createFastRegisterAllocator(onlyAllocateSGPRs, false);
}
FunctionPass *GCNPassConfig::createVGPRAllocPass(bool Optimized) {
// Initialize the global default.
llvm::call_once(InitializeDefaultVGPRRegisterAllocatorFlag,
initializeDefaultVGPRRegisterAllocatorOnce);
RegisterRegAlloc::FunctionPassCtor Ctor = VGPRRegisterRegAlloc::getDefault();
if (Ctor != useDefaultRegisterAllocator)
return Ctor();
if (Optimized)
return createGreedyVGPRRegisterAllocator();
return createFastVGPRRegisterAllocator();
}
FunctionPass *GCNPassConfig::createRegAllocPass(bool Optimized) {
llvm_unreachable("should not be used");
}
static const char RegAllocOptNotSupportedMessage[] =
"-regalloc not supported with amdgcn. Use -sgpr-regalloc and -vgpr-regalloc";
bool GCNPassConfig::addRegAssignAndRewriteFast() {
if (!usingDefaultRegAlloc())
report_fatal_error(RegAllocOptNotSupportedMessage);
addPass(createSGPRAllocPass(false));
// Equivalent of PEI for SGPRs.
addPass(&SILowerSGPRSpillsID);
addPass(createVGPRAllocPass(false));
return true;
}
bool GCNPassConfig::addRegAssignAndRewriteOptimized() {
if (!usingDefaultRegAlloc())
report_fatal_error(RegAllocOptNotSupportedMessage);
addPass(createSGPRAllocPass(true));
// Commit allocated register changes. This is mostly necessary because too
// many things rely on the use lists of the physical registers, such as the
// verifier. This is only necessary with allocators which use LiveIntervals,
// since FastRegAlloc does the replacments itself.
addPass(createVirtRegRewriter(false));
// Equivalent of PEI for SGPRs.
addPass(&SILowerSGPRSpillsID);
addPass(createVGPRAllocPass(true));
addPreRewrite();
addPass(&VirtRegRewriterID);
return true;
}
void GCNPassConfig::addPostRegAlloc() {
addPass(&SIFixVGPRCopiesID);
if (getOptLevel() > CodeGenOpt::None)
addPass(&SIOptimizeExecMaskingID);
TargetPassConfig::addPostRegAlloc();
}
void GCNPassConfig::addPreSched2() {
addPass(&SIPostRABundlerID);
}
void GCNPassConfig::addPreEmitPass() {
addPass(createSIMemoryLegalizerPass());
addPass(createSIInsertWaitcntsPass());
if (TM->getOptLevel() > CodeGenOpt::None)
addPass(createSIShrinkInstructionsPass());
addPass(createSIModeRegisterPass());
if (getOptLevel() > CodeGenOpt::None)
addPass(&SIInsertHardClausesID);
addPass(&SILateBranchLoweringPassID);
if (getOptLevel() > CodeGenOpt::None)
addPass(&SIPreEmitPeepholeID);
// The hazard recognizer that runs as part of the post-ra scheduler does not
// guarantee to be able handle all hazards correctly. This is because if there
// are multiple scheduling regions in a basic block, the regions are scheduled
// bottom up, so when we begin to schedule a region we don't know what
// instructions were emitted directly before it.
//
// Here we add a stand-alone hazard recognizer pass which can handle all
// cases.
addPass(&PostRAHazardRecognizerID);
addPass(&BranchRelaxationPassID);
}
TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) {
return new GCNPassConfig(*this, PM);
}
yaml::MachineFunctionInfo *GCNTargetMachine::createDefaultFuncInfoYAML() const {
return new yaml::SIMachineFunctionInfo();
}
yaml::MachineFunctionInfo *
GCNTargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const {
const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
return new yaml::SIMachineFunctionInfo(
*MFI, *MF.getSubtarget().getRegisterInfo(), MF);
}
bool GCNTargetMachine::parseMachineFunctionInfo(
const yaml::MachineFunctionInfo &MFI_, PerFunctionMIParsingState &PFS,
SMDiagnostic &Error, SMRange &SourceRange) const {
const yaml::SIMachineFunctionInfo &YamlMFI =
reinterpret_cast<const yaml::SIMachineFunctionInfo &>(MFI_);
MachineFunction &MF = PFS.MF;
SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
if (MFI->initializeBaseYamlFields(YamlMFI, MF, PFS, Error, SourceRange))
return true;
if (MFI->Occupancy == 0) {
// Fixup the subtarget dependent default value.
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
MFI->Occupancy = ST.computeOccupancy(MF.getFunction(), MFI->getLDSSize());
}
auto parseRegister = [&](const yaml::StringValue &RegName, Register &RegVal) {
Register TempReg;
if (parseNamedRegisterReference(PFS, TempReg, RegName.Value, Error)) {
SourceRange = RegName.SourceRange;
return true;
}
RegVal = TempReg;
return false;
};
auto diagnoseRegisterClass = [&](const yaml::StringValue &RegName) {
// Create a diagnostic for a the register string literal.
const MemoryBuffer &Buffer =
*PFS.SM->getMemoryBuffer(PFS.SM->getMainFileID());
Error = SMDiagnostic(*PFS.SM, SMLoc(), Buffer.getBufferIdentifier(), 1,
RegName.Value.size(), SourceMgr::DK_Error,
"incorrect register class for field", RegName.Value,
None, None);
SourceRange = RegName.SourceRange;
return true;
};
if (parseRegister(YamlMFI.ScratchRSrcReg, MFI->ScratchRSrcReg) ||
parseRegister(YamlMFI.FrameOffsetReg, MFI->FrameOffsetReg) ||
parseRegister(YamlMFI.StackPtrOffsetReg, MFI->StackPtrOffsetReg))
return true;
if (MFI->ScratchRSrcReg != AMDGPU::PRIVATE_RSRC_REG &&
!AMDGPU::SGPR_128RegClass.contains(MFI->ScratchRSrcReg)) {
return diagnoseRegisterClass(YamlMFI.ScratchRSrcReg);
}
if (MFI->FrameOffsetReg != AMDGPU::FP_REG &&
!AMDGPU::SGPR_32RegClass.contains(MFI->FrameOffsetReg)) {
return diagnoseRegisterClass(YamlMFI.FrameOffsetReg);
}
if (MFI->StackPtrOffsetReg != AMDGPU::SP_REG &&
!AMDGPU::SGPR_32RegClass.contains(MFI->StackPtrOffsetReg)) {
return diagnoseRegisterClass(YamlMFI.StackPtrOffsetReg);
}
auto parseAndCheckArgument = [&](const Optional<yaml::SIArgument> &A,
const TargetRegisterClass &RC,
ArgDescriptor &Arg, unsigned UserSGPRs,
unsigned SystemSGPRs) {
// Skip parsing if it's not present.
if (!A)
return false;
if (A->IsRegister) {
Register Reg;
if (parseNamedRegisterReference(PFS, Reg, A->RegisterName.Value, Error)) {
SourceRange = A->RegisterName.SourceRange;
return true;
}
if (!RC.contains(Reg))
return diagnoseRegisterClass(A->RegisterName);
Arg = ArgDescriptor::createRegister(Reg);
} else
Arg = ArgDescriptor::createStack(A->StackOffset);
// Check and apply the optional mask.
if (A->Mask)
Arg = ArgDescriptor::createArg(Arg, A->Mask.getValue());
MFI->NumUserSGPRs += UserSGPRs;
MFI->NumSystemSGPRs += SystemSGPRs;
return false;
};
if (YamlMFI.ArgInfo &&
(parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentBuffer,
AMDGPU::SGPR_128RegClass,
MFI->ArgInfo.PrivateSegmentBuffer, 4, 0) ||
parseAndCheckArgument(YamlMFI.ArgInfo->DispatchPtr,
AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchPtr,
2, 0) ||
parseAndCheckArgument(YamlMFI.ArgInfo->QueuePtr, AMDGPU::SReg_64RegClass,
MFI->ArgInfo.QueuePtr, 2, 0) ||
parseAndCheckArgument(YamlMFI.ArgInfo->KernargSegmentPtr,
AMDGPU::SReg_64RegClass,
MFI->ArgInfo.KernargSegmentPtr, 2, 0) ||
parseAndCheckArgument(YamlMFI.ArgInfo->DispatchID,
AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchID,
2, 0) ||
parseAndCheckArgument(YamlMFI.ArgInfo->FlatScratchInit,
AMDGPU::SReg_64RegClass,
MFI->ArgInfo.FlatScratchInit, 2, 0) ||
parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentSize,
AMDGPU::SGPR_32RegClass,
MFI->ArgInfo.PrivateSegmentSize, 0, 0) ||
parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDX,
AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDX,
0, 1) ||
parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDY,
AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDY,
0, 1) ||
parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDZ,
AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDZ,
0, 1) ||
parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupInfo,
AMDGPU::SGPR_32RegClass,
MFI->ArgInfo.WorkGroupInfo, 0, 1) ||
parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentWaveByteOffset,
AMDGPU::SGPR_32RegClass,
MFI->ArgInfo.PrivateSegmentWaveByteOffset, 0, 1) ||
parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitArgPtr,
AMDGPU::SReg_64RegClass,
MFI->ArgInfo.ImplicitArgPtr, 0, 0) ||
parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitBufferPtr,
AMDGPU::SReg_64RegClass,
MFI->ArgInfo.ImplicitBufferPtr, 2, 0) ||
parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDX,
AMDGPU::VGPR_32RegClass,
MFI->ArgInfo.WorkItemIDX, 0, 0) ||
parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDY,
AMDGPU::VGPR_32RegClass,
MFI->ArgInfo.WorkItemIDY, 0, 0) ||
parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDZ,
AMDGPU::VGPR_32RegClass,
MFI->ArgInfo.WorkItemIDZ, 0, 0)))
return true;
MFI->Mode.IEEE = YamlMFI.Mode.IEEE;
MFI->Mode.DX10Clamp = YamlMFI.Mode.DX10Clamp;
MFI->Mode.FP32InputDenormals = YamlMFI.Mode.FP32InputDenormals;
MFI->Mode.FP32OutputDenormals = YamlMFI.Mode.FP32OutputDenormals;
MFI->Mode.FP64FP16InputDenormals = YamlMFI.Mode.FP64FP16InputDenormals;
MFI->Mode.FP64FP16OutputDenormals = YamlMFI.Mode.FP64FP16OutputDenormals;
return false;
}