
This patch aims to revert the changes introduced by D70781 D71192 D76364 D70781 was introduced to fix hardware hang where we do not insert exp- null-done for a kill inside infinit loop. At that time we have not added exp-null-done for kill early termination, but I believe as for now, we will always add the exp-null-done for early termination case in LaterBranchLowering. D71192 was introduced to handle the only_kill case, which is also been handled by the kill early termination work. D76364 was used to fix a regression by D71192, where we cleared the done bit of the export in the existing program and not let the normal return block branching to the new unified return block. With this change, we just trust frontends have setup exp-done correctly which is true for all existing frontends. The backend only inserts exp-null-done for the kill cases which is handled in SILateBranchLowering.cpp. Reviewed by: critson Differential Revision: https://reviews.llvm.org/D105610
321 lines
12 KiB
C++
321 lines
12 KiB
C++
//===- AMDGPUUnifyDivergentExitNodes.cpp ----------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This is a variant of the UnifyFunctionExitNodes pass. Rather than ensuring
|
|
// there is at most one ret and one unreachable instruction, it ensures there is
|
|
// at most one divergent exiting block.
|
|
//
|
|
// StructurizeCFG can't deal with multi-exit regions formed by branches to
|
|
// multiple return nodes. It is not desirable to structurize regions with
|
|
// uniform branches, so unifying those to the same return block as divergent
|
|
// branches inhibits use of scalar branching. It still can't deal with the case
|
|
// where one branch goes to return, and one unreachable. Replace unreachable in
|
|
// this case with a return.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "AMDGPU.h"
|
|
#include "SIDefines.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/Analysis/DomTreeUpdater.h"
|
|
#include "llvm/Analysis/LegacyDivergenceAnalysis.h"
|
|
#include "llvm/Analysis/PostDominators.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/CFG.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/InstrTypes.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/IntrinsicsAMDGPU.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Transforms/Utils.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "amdgpu-unify-divergent-exit-nodes"
|
|
|
|
namespace {
|
|
|
|
class AMDGPUUnifyDivergentExitNodes : public FunctionPass {
|
|
private:
|
|
const TargetTransformInfo *TTI = nullptr;
|
|
|
|
public:
|
|
static char ID; // Pass identification, replacement for typeid
|
|
|
|
AMDGPUUnifyDivergentExitNodes() : FunctionPass(ID) {
|
|
initializeAMDGPUUnifyDivergentExitNodesPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
// We can preserve non-critical-edgeness when we unify function exit nodes
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override;
|
|
BasicBlock *unifyReturnBlockSet(Function &F, DomTreeUpdater &DTU,
|
|
ArrayRef<BasicBlock *> ReturningBlocks,
|
|
StringRef Name);
|
|
bool runOnFunction(Function &F) override;
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
char AMDGPUUnifyDivergentExitNodes::ID = 0;
|
|
|
|
char &llvm::AMDGPUUnifyDivergentExitNodesID = AMDGPUUnifyDivergentExitNodes::ID;
|
|
|
|
INITIALIZE_PASS_BEGIN(AMDGPUUnifyDivergentExitNodes, DEBUG_TYPE,
|
|
"Unify divergent function exit nodes", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
|
|
INITIALIZE_PASS_END(AMDGPUUnifyDivergentExitNodes, DEBUG_TYPE,
|
|
"Unify divergent function exit nodes", false, false)
|
|
|
|
void AMDGPUUnifyDivergentExitNodes::getAnalysisUsage(AnalysisUsage &AU) const{
|
|
if (RequireAndPreserveDomTree)
|
|
AU.addRequired<DominatorTreeWrapperPass>();
|
|
|
|
AU.addRequired<PostDominatorTreeWrapperPass>();
|
|
|
|
AU.addRequired<LegacyDivergenceAnalysis>();
|
|
|
|
if (RequireAndPreserveDomTree) {
|
|
AU.addPreserved<DominatorTreeWrapperPass>();
|
|
// FIXME: preserve PostDominatorTreeWrapperPass
|
|
}
|
|
|
|
// No divergent values are changed, only blocks and branch edges.
|
|
AU.addPreserved<LegacyDivergenceAnalysis>();
|
|
|
|
// We preserve the non-critical-edgeness property
|
|
AU.addPreservedID(BreakCriticalEdgesID);
|
|
|
|
// This is a cluster of orthogonal Transforms
|
|
AU.addPreservedID(LowerSwitchID);
|
|
FunctionPass::getAnalysisUsage(AU);
|
|
|
|
AU.addRequired<TargetTransformInfoWrapperPass>();
|
|
}
|
|
|
|
/// \returns true if \p BB is reachable through only uniform branches.
|
|
/// XXX - Is there a more efficient way to find this?
|
|
static bool isUniformlyReached(const LegacyDivergenceAnalysis &DA,
|
|
BasicBlock &BB) {
|
|
SmallVector<BasicBlock *, 8> Stack(predecessors(&BB));
|
|
SmallPtrSet<BasicBlock *, 8> Visited;
|
|
|
|
while (!Stack.empty()) {
|
|
BasicBlock *Top = Stack.pop_back_val();
|
|
if (!DA.isUniform(Top->getTerminator()))
|
|
return false;
|
|
|
|
for (BasicBlock *Pred : predecessors(Top)) {
|
|
if (Visited.insert(Pred).second)
|
|
Stack.push_back(Pred);
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
BasicBlock *AMDGPUUnifyDivergentExitNodes::unifyReturnBlockSet(
|
|
Function &F, DomTreeUpdater &DTU, ArrayRef<BasicBlock *> ReturningBlocks,
|
|
StringRef Name) {
|
|
// Otherwise, we need to insert a new basic block into the function, add a PHI
|
|
// nodes (if the function returns values), and convert all of the return
|
|
// instructions into unconditional branches.
|
|
BasicBlock *NewRetBlock = BasicBlock::Create(F.getContext(), Name, &F);
|
|
IRBuilder<> B(NewRetBlock);
|
|
|
|
PHINode *PN = nullptr;
|
|
if (F.getReturnType()->isVoidTy()) {
|
|
B.CreateRetVoid();
|
|
} else {
|
|
// If the function doesn't return void... add a PHI node to the block...
|
|
PN = B.CreatePHI(F.getReturnType(), ReturningBlocks.size(),
|
|
"UnifiedRetVal");
|
|
B.CreateRet(PN);
|
|
}
|
|
|
|
// Loop over all of the blocks, replacing the return instruction with an
|
|
// unconditional branch.
|
|
std::vector<DominatorTree::UpdateType> Updates;
|
|
Updates.reserve(ReturningBlocks.size());
|
|
for (BasicBlock *BB : ReturningBlocks) {
|
|
// Add an incoming element to the PHI node for every return instruction that
|
|
// is merging into this new block...
|
|
if (PN)
|
|
PN->addIncoming(BB->getTerminator()->getOperand(0), BB);
|
|
|
|
// Remove and delete the return inst.
|
|
BB->getTerminator()->eraseFromParent();
|
|
BranchInst::Create(NewRetBlock, BB);
|
|
Updates.push_back({DominatorTree::Insert, BB, NewRetBlock});
|
|
}
|
|
|
|
if (RequireAndPreserveDomTree)
|
|
DTU.applyUpdates(Updates);
|
|
Updates.clear();
|
|
|
|
for (BasicBlock *BB : ReturningBlocks) {
|
|
// Cleanup possible branch to unconditional branch to the return.
|
|
simplifyCFG(BB, *TTI, RequireAndPreserveDomTree ? &DTU : nullptr,
|
|
SimplifyCFGOptions().bonusInstThreshold(2));
|
|
}
|
|
|
|
return NewRetBlock;
|
|
}
|
|
|
|
bool AMDGPUUnifyDivergentExitNodes::runOnFunction(Function &F) {
|
|
DominatorTree *DT = nullptr;
|
|
if (RequireAndPreserveDomTree)
|
|
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
|
|
|
auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
|
|
|
|
// If there's only one exit, we don't need to do anything.
|
|
if (PDT.root_size() <= 1)
|
|
return false;
|
|
|
|
LegacyDivergenceAnalysis &DA = getAnalysis<LegacyDivergenceAnalysis>();
|
|
TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
|
|
|
|
// Loop over all of the blocks in a function, tracking all of the blocks that
|
|
// return.
|
|
SmallVector<BasicBlock *, 4> ReturningBlocks;
|
|
SmallVector<BasicBlock *, 4> UnreachableBlocks;
|
|
|
|
// Dummy return block for infinite loop.
|
|
BasicBlock *DummyReturnBB = nullptr;
|
|
|
|
bool Changed = false;
|
|
std::vector<DominatorTree::UpdateType> Updates;
|
|
|
|
for (BasicBlock *BB : PDT.roots()) {
|
|
if (isa<ReturnInst>(BB->getTerminator())) {
|
|
if (!isUniformlyReached(DA, *BB))
|
|
ReturningBlocks.push_back(BB);
|
|
} else if (isa<UnreachableInst>(BB->getTerminator())) {
|
|
if (!isUniformlyReached(DA, *BB))
|
|
UnreachableBlocks.push_back(BB);
|
|
} else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
|
|
|
|
ConstantInt *BoolTrue = ConstantInt::getTrue(F.getContext());
|
|
if (DummyReturnBB == nullptr) {
|
|
DummyReturnBB = BasicBlock::Create(F.getContext(),
|
|
"DummyReturnBlock", &F);
|
|
Type *RetTy = F.getReturnType();
|
|
Value *RetVal = RetTy->isVoidTy() ? nullptr : UndefValue::get(RetTy);
|
|
ReturnInst::Create(F.getContext(), RetVal, DummyReturnBB);
|
|
ReturningBlocks.push_back(DummyReturnBB);
|
|
}
|
|
|
|
if (BI->isUnconditional()) {
|
|
BasicBlock *LoopHeaderBB = BI->getSuccessor(0);
|
|
BI->eraseFromParent(); // Delete the unconditional branch.
|
|
// Add a new conditional branch with a dummy edge to the return block.
|
|
BranchInst::Create(LoopHeaderBB, DummyReturnBB, BoolTrue, BB);
|
|
Updates.push_back({DominatorTree::Insert, BB, DummyReturnBB});
|
|
} else { // Conditional branch.
|
|
SmallVector<BasicBlock *, 2> Successors(succ_begin(BB), succ_end(BB));
|
|
|
|
// Create a new transition block to hold the conditional branch.
|
|
BasicBlock *TransitionBB = BB->splitBasicBlock(BI, "TransitionBlock");
|
|
|
|
Updates.reserve(Updates.size() + 2 * Successors.size() + 2);
|
|
|
|
// 'Successors' become successors of TransitionBB instead of BB,
|
|
// and TransitionBB becomes a single successor of BB.
|
|
Updates.push_back({DominatorTree::Insert, BB, TransitionBB});
|
|
for (BasicBlock *Successor : Successors) {
|
|
Updates.push_back({DominatorTree::Insert, TransitionBB, Successor});
|
|
Updates.push_back({DominatorTree::Delete, BB, Successor});
|
|
}
|
|
|
|
// Create a branch that will always branch to the transition block and
|
|
// references DummyReturnBB.
|
|
BB->getTerminator()->eraseFromParent();
|
|
BranchInst::Create(TransitionBB, DummyReturnBB, BoolTrue, BB);
|
|
Updates.push_back({DominatorTree::Insert, BB, DummyReturnBB});
|
|
}
|
|
Changed = true;
|
|
}
|
|
}
|
|
|
|
if (!UnreachableBlocks.empty()) {
|
|
BasicBlock *UnreachableBlock = nullptr;
|
|
|
|
if (UnreachableBlocks.size() == 1) {
|
|
UnreachableBlock = UnreachableBlocks.front();
|
|
} else {
|
|
UnreachableBlock = BasicBlock::Create(F.getContext(),
|
|
"UnifiedUnreachableBlock", &F);
|
|
new UnreachableInst(F.getContext(), UnreachableBlock);
|
|
|
|
Updates.reserve(Updates.size() + UnreachableBlocks.size());
|
|
for (BasicBlock *BB : UnreachableBlocks) {
|
|
// Remove and delete the unreachable inst.
|
|
BB->getTerminator()->eraseFromParent();
|
|
BranchInst::Create(UnreachableBlock, BB);
|
|
Updates.push_back({DominatorTree::Insert, BB, UnreachableBlock});
|
|
}
|
|
Changed = true;
|
|
}
|
|
|
|
if (!ReturningBlocks.empty()) {
|
|
// Don't create a new unreachable inst if we have a return. The
|
|
// structurizer/annotator can't handle the multiple exits
|
|
|
|
Type *RetTy = F.getReturnType();
|
|
Value *RetVal = RetTy->isVoidTy() ? nullptr : UndefValue::get(RetTy);
|
|
// Remove and delete the unreachable inst.
|
|
UnreachableBlock->getTerminator()->eraseFromParent();
|
|
|
|
Function *UnreachableIntrin =
|
|
Intrinsic::getDeclaration(F.getParent(), Intrinsic::amdgcn_unreachable);
|
|
|
|
// Insert a call to an intrinsic tracking that this is an unreachable
|
|
// point, in case we want to kill the active lanes or something later.
|
|
CallInst::Create(UnreachableIntrin, {}, "", UnreachableBlock);
|
|
|
|
// Don't create a scalar trap. We would only want to trap if this code was
|
|
// really reached, but a scalar trap would happen even if no lanes
|
|
// actually reached here.
|
|
ReturnInst::Create(F.getContext(), RetVal, UnreachableBlock);
|
|
ReturningBlocks.push_back(UnreachableBlock);
|
|
Changed = true;
|
|
}
|
|
}
|
|
|
|
// FIXME: add PDT here once simplifycfg is ready.
|
|
DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
|
|
if (RequireAndPreserveDomTree)
|
|
DTU.applyUpdates(Updates);
|
|
Updates.clear();
|
|
|
|
// Now handle return blocks.
|
|
if (ReturningBlocks.empty())
|
|
return Changed; // No blocks return
|
|
|
|
if (ReturningBlocks.size() == 1)
|
|
return Changed; // Already has a single return block
|
|
|
|
unifyReturnBlockSet(F, DTU, ReturningBlocks, "UnifiedReturnBlock");
|
|
return true;
|
|
}
|