llvm-project/llvm/lib/Target/AMDGPU/Utils/AMDGPULDSUtils.cpp
hsmahesha 596e61c332 [AMDGPU] Ignore call graph node which does not have function info.
While collecting reachable callees (from kernels), ignore call graph node which
does not have associated function or associated function is not a definition.

Reviewed By: rampitec

Differential Revision: https://reviews.llvm.org/D107329
2021-08-04 10:22:33 +05:30

361 lines
11 KiB
C++

//===- AMDGPULDSUtils.cpp -------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// AMDGPU LDS related helper utility functions.
//
//===----------------------------------------------------------------------===//
#include "AMDGPULDSUtils.h"
#include "Utils/AMDGPUBaseInfo.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/ReplaceConstant.h"
using namespace llvm;
namespace llvm {
namespace AMDGPU {
// An helper class for collecting all reachable callees for each kernel defined
// within the module.
class CollectReachableCallees {
Module &M;
CallGraph CG;
SmallPtrSet<CallGraphNode *, 8> AddressTakenFunctions;
// Collect all address taken functions within the module.
void collectAddressTakenFunctions() {
auto *ECNode = CG.getExternalCallingNode();
for (auto GI = ECNode->begin(), GE = ECNode->end(); GI != GE; ++GI) {
auto *CGN = GI->second;
auto *F = CGN->getFunction();
if (!F || F->isDeclaration() || AMDGPU::isKernelCC(F))
continue;
AddressTakenFunctions.insert(CGN);
}
}
// For given kernel, collect all its reachable non-kernel functions.
SmallPtrSet<Function *, 8> collectReachableCallees(Function *K) {
SmallPtrSet<Function *, 8> ReachableCallees;
// Call graph node which represents this kernel.
auto *KCGN = CG[K];
// Go through all call graph nodes reachable from the node representing this
// kernel, visit all their call sites, if the call site is direct, add
// corresponding callee to reachable callee set, if it is indirect, resolve
// the indirect call site to potential reachable callees, add them to
// reachable callee set, and repeat the process for the newly added
// potential callee nodes.
//
// FIXME: Need to handle bit-casted function pointers.
//
SmallVector<CallGraphNode *, 8> CGNStack(df_begin(KCGN), df_end(KCGN));
SmallPtrSet<CallGraphNode *, 8> VisitedCGNodes;
while (!CGNStack.empty()) {
auto *CGN = CGNStack.pop_back_val();
if (!VisitedCGNodes.insert(CGN).second)
continue;
// Ignore call graph node which does not have associated function or
// associated function is not a definition.
if (!CGN->getFunction() || CGN->getFunction()->isDeclaration())
continue;
for (auto GI = CGN->begin(), GE = CGN->end(); GI != GE; ++GI) {
auto *RCB = cast<CallBase>(GI->first.getValue());
auto *RCGN = GI->second;
if (auto *DCallee = RCGN->getFunction()) {
ReachableCallees.insert(DCallee);
} else if (RCB->isIndirectCall()) {
auto *RCBFTy = RCB->getFunctionType();
for (auto *ACGN : AddressTakenFunctions) {
auto *ACallee = ACGN->getFunction();
if (ACallee->getFunctionType() == RCBFTy) {
ReachableCallees.insert(ACallee);
CGNStack.append(df_begin(ACGN), df_end(ACGN));
}
}
}
}
}
return ReachableCallees;
}
public:
explicit CollectReachableCallees(Module &M) : M(M), CG(CallGraph(M)) {
// Collect address taken functions.
collectAddressTakenFunctions();
}
void collectReachableCallees(
DenseMap<Function *, SmallPtrSet<Function *, 8>> &KernelToCallees) {
// Collect reachable callee set for each kernel defined in the module.
for (Function &F : M.functions()) {
if (!AMDGPU::isKernelCC(&F))
continue;
Function *K = &F;
KernelToCallees[K] = collectReachableCallees(K);
}
}
};
void collectReachableCallees(
Module &M,
DenseMap<Function *, SmallPtrSet<Function *, 8>> &KernelToCallees) {
CollectReachableCallees CRC{M};
CRC.collectReachableCallees(KernelToCallees);
}
SmallPtrSet<Function *, 8> collectNonKernelAccessorsOfLDS(GlobalVariable *GV) {
SmallPtrSet<Function *, 8> LDSAccessors;
SmallVector<User *, 8> UserStack(GV->users());
SmallPtrSet<User *, 8> VisitedUsers;
while (!UserStack.empty()) {
auto *U = UserStack.pop_back_val();
// `U` is already visited? continue to next one.
if (!VisitedUsers.insert(U).second)
continue;
// `U` is a global variable which is initialized with LDS. Ignore LDS.
if (isa<GlobalValue>(U))
return SmallPtrSet<Function *, 8>();
// Recursively explore constant users.
if (isa<Constant>(U)) {
append_range(UserStack, U->users());
continue;
}
// `U` should be an instruction, if it belongs to a non-kernel function F,
// then collect F.
Function *F = cast<Instruction>(U)->getFunction();
if (!AMDGPU::isKernelCC(F))
LDSAccessors.insert(F);
}
return LDSAccessors;
}
DenseMap<Function *, SmallPtrSet<Instruction *, 8>>
getFunctionToInstsMap(User *U, bool CollectKernelInsts) {
DenseMap<Function *, SmallPtrSet<Instruction *, 8>> FunctionToInsts;
SmallVector<User *, 8> UserStack;
SmallPtrSet<User *, 8> VisitedUsers;
UserStack.push_back(U);
while (!UserStack.empty()) {
auto *UU = UserStack.pop_back_val();
if (!VisitedUsers.insert(UU).second)
continue;
if (isa<GlobalValue>(UU))
continue;
if (isa<Constant>(UU)) {
append_range(UserStack, UU->users());
continue;
}
auto *I = cast<Instruction>(UU);
Function *F = I->getFunction();
if (CollectKernelInsts) {
if (!AMDGPU::isKernelCC(F)) {
continue;
}
} else {
if (AMDGPU::isKernelCC(F)) {
continue;
}
}
FunctionToInsts.insert(std::make_pair(F, SmallPtrSet<Instruction *, 8>()));
FunctionToInsts[F].insert(I);
}
return FunctionToInsts;
}
bool isKernelCC(const Function *Func) {
return AMDGPU::isModuleEntryFunctionCC(Func->getCallingConv());
}
Align getAlign(DataLayout const &DL, const GlobalVariable *GV) {
return DL.getValueOrABITypeAlignment(GV->getPointerAlignment(DL),
GV->getValueType());
}
static void collectFunctionUses(User *U, const Function *F,
SetVector<Instruction *> &InstUsers) {
SmallVector<User *> Stack{U};
while (!Stack.empty()) {
U = Stack.pop_back_val();
if (auto *I = dyn_cast<Instruction>(U)) {
if (I->getFunction() == F)
InstUsers.insert(I);
continue;
}
if (!isa<ConstantExpr>(U))
continue;
append_range(Stack, U->users());
}
}
void replaceConstantUsesInFunction(ConstantExpr *C, const Function *F) {
SetVector<Instruction *> InstUsers;
collectFunctionUses(C, F, InstUsers);
for (Instruction *I : InstUsers) {
convertConstantExprsToInstructions(I, C);
}
}
bool hasUserInstruction(const GlobalValue *GV) {
SmallPtrSet<const User *, 8> Visited;
SmallVector<const User *, 16> Stack(GV->users());
while (!Stack.empty()) {
const User *U = Stack.pop_back_val();
if (!Visited.insert(U).second)
continue;
if (isa<Instruction>(U))
return true;
append_range(Stack, U->users());
}
return false;
}
bool shouldLowerLDSToStruct(const GlobalVariable &GV, const Function *F) {
// We are not interested in kernel LDS lowering for module LDS itself.
if (F && GV.getName() == "llvm.amdgcn.module.lds")
return false;
bool Ret = false;
SmallPtrSet<const User *, 8> Visited;
SmallVector<const User *, 16> Stack(GV.users());
SmallPtrSet<const GlobalValue *, 8> GlobalUsers;
assert(!F || isKernelCC(F));
while (!Stack.empty()) {
const User *V = Stack.pop_back_val();
Visited.insert(V);
if (auto *G = dyn_cast<GlobalValue>(V)) {
StringRef GName = G->getName();
if (F && GName != "llvm.used" && GName != "llvm.compiler.used") {
// For kernel LDS lowering, if G is not a compiler.used list, then we
// cannot lower the lds GV since we cannot replace the use of GV within
// G.
return false;
}
GlobalUsers.insert(G);
continue;
}
if (auto *I = dyn_cast<Instruction>(V)) {
const Function *UF = I->getFunction();
if (UF == F) {
// Used from this kernel, we want to put it into the structure.
Ret = true;
} else if (!F) {
// For module LDS lowering, lowering is required if the user instruction
// is from non-kernel function.
Ret |= !isKernelCC(UF);
}
continue;
}
// User V should be a constant, recursively visit users of V.
assert(isa<Constant>(V) && "Expected a constant.");
append_range(Stack, V->users());
}
if (!F && !Ret) {
// For module LDS lowering, we have not yet decided if we should lower GV or
// not. Explore all global users of GV, and check if atleast one of these
// global users appear as an use within an instruction (possibly nested use
// via constant expression), if so, then conservately lower LDS.
for (auto *G : GlobalUsers)
Ret |= hasUserInstruction(G);
}
return Ret;
}
std::vector<GlobalVariable *> findVariablesToLower(Module &M,
const Function *F) {
std::vector<llvm::GlobalVariable *> LocalVars;
for (auto &GV : M.globals()) {
if (GV.getType()->getPointerAddressSpace() != AMDGPUAS::LOCAL_ADDRESS) {
continue;
}
if (!GV.hasInitializer()) {
// addrspace(3) without initializer implies cuda/hip extern __shared__
// the semantics for such a variable appears to be that all extern
// __shared__ variables alias one another, in which case this transform
// is not required
continue;
}
if (!isa<UndefValue>(GV.getInitializer())) {
// Initializers are unimplemented for local address space.
// Leave such variables in place for consistent error reporting.
continue;
}
if (GV.isConstant()) {
// A constant undef variable can't be written to, and any load is
// undef, so it should be eliminated by the optimizer. It could be
// dropped by the back end if not. This pass skips over it.
continue;
}
if (!shouldLowerLDSToStruct(GV, F)) {
continue;
}
LocalVars.push_back(&GV);
}
return LocalVars;
}
SmallPtrSet<GlobalValue *, 32> getUsedList(Module &M) {
SmallPtrSet<GlobalValue *, 32> UsedList;
SmallVector<GlobalValue *, 32> TmpVec;
collectUsedGlobalVariables(M, TmpVec, true);
UsedList.insert(TmpVec.begin(), TmpVec.end());
TmpVec.clear();
collectUsedGlobalVariables(M, TmpVec, false);
UsedList.insert(TmpVec.begin(), TmpVec.end());
return UsedList;
}
} // end namespace AMDGPU
} // end namespace llvm