Igor Kudrin 68616584c3 [llvm-objcopy][ELF] Avoid reordering section headers
As for now, llvm-objcopy sorts section headers according to the offsets
of the sections in the input file. That can corrupt section references
in the dynamic symbol table because it is a loadable section and as such
is not updated by the tool. Even though the section references are not
required for loading the binary correctly, they are still handy for a
user who analyzes the file.

While the patch removes global reordering of section headers, it layouts
the sections in the same way as before, i.e. according to their original
offsets. All that helps the output file to resemble the input better.

Note that the patch removes sorting SHT_GROUP sections to the start of
the list, which was introduced in D62620 in order to ensure that they
come before the group members, along with the corresponding test. The
original issue was caused by the sorting of section headers, so dropping
the sorting also resolves the issue.

Differential Revision: https://reviews.llvm.org/D107653
2021-08-12 17:12:09 +07:00

1097 lines
35 KiB
C++

//===- Object.h -------------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_TOOLS_OBJCOPY_OBJECT_H
#define LLVM_TOOLS_OBJCOPY_OBJECT_H
#include "CommonConfig.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/MC/StringTableBuilder.h"
#include "llvm/Object/ELFObjectFile.h"
#include "llvm/Support/Errc.h"
#include "llvm/Support/FileOutputBuffer.h"
#include "llvm/Support/MemoryBuffer.h"
#include <cstddef>
#include <cstdint>
#include <functional>
#include <memory>
#include <set>
#include <vector>
namespace llvm {
enum class DebugCompressionType;
namespace objcopy {
namespace elf {
class SectionBase;
class Section;
class OwnedDataSection;
class StringTableSection;
class SymbolTableSection;
class RelocationSection;
class DynamicRelocationSection;
class GnuDebugLinkSection;
class GroupSection;
class SectionIndexSection;
class CompressedSection;
class DecompressedSection;
class Segment;
class Object;
struct Symbol;
class SectionTableRef {
ArrayRef<std::unique_ptr<SectionBase>> Sections;
public:
using iterator = pointee_iterator<const std::unique_ptr<SectionBase> *>;
explicit SectionTableRef(ArrayRef<std::unique_ptr<SectionBase>> Secs)
: Sections(Secs) {}
SectionTableRef(const SectionTableRef &) = default;
iterator begin() const { return iterator(Sections.data()); }
iterator end() const { return iterator(Sections.data() + Sections.size()); }
size_t size() const { return Sections.size(); }
Expected<SectionBase *> getSection(uint32_t Index, Twine ErrMsg);
template <class T>
Expected<T *> getSectionOfType(uint32_t Index, Twine IndexErrMsg,
Twine TypeErrMsg);
};
enum ElfType { ELFT_ELF32LE, ELFT_ELF64LE, ELFT_ELF32BE, ELFT_ELF64BE };
class SectionVisitor {
public:
virtual ~SectionVisitor() = default;
virtual Error visit(const Section &Sec) = 0;
virtual Error visit(const OwnedDataSection &Sec) = 0;
virtual Error visit(const StringTableSection &Sec) = 0;
virtual Error visit(const SymbolTableSection &Sec) = 0;
virtual Error visit(const RelocationSection &Sec) = 0;
virtual Error visit(const DynamicRelocationSection &Sec) = 0;
virtual Error visit(const GnuDebugLinkSection &Sec) = 0;
virtual Error visit(const GroupSection &Sec) = 0;
virtual Error visit(const SectionIndexSection &Sec) = 0;
virtual Error visit(const CompressedSection &Sec) = 0;
virtual Error visit(const DecompressedSection &Sec) = 0;
};
class MutableSectionVisitor {
public:
virtual ~MutableSectionVisitor() = default;
virtual Error visit(Section &Sec) = 0;
virtual Error visit(OwnedDataSection &Sec) = 0;
virtual Error visit(StringTableSection &Sec) = 0;
virtual Error visit(SymbolTableSection &Sec) = 0;
virtual Error visit(RelocationSection &Sec) = 0;
virtual Error visit(DynamicRelocationSection &Sec) = 0;
virtual Error visit(GnuDebugLinkSection &Sec) = 0;
virtual Error visit(GroupSection &Sec) = 0;
virtual Error visit(SectionIndexSection &Sec) = 0;
virtual Error visit(CompressedSection &Sec) = 0;
virtual Error visit(DecompressedSection &Sec) = 0;
};
class SectionWriter : public SectionVisitor {
protected:
WritableMemoryBuffer &Out;
public:
virtual ~SectionWriter() = default;
Error visit(const Section &Sec) override;
Error visit(const OwnedDataSection &Sec) override;
Error visit(const StringTableSection &Sec) override;
Error visit(const DynamicRelocationSection &Sec) override;
virtual Error visit(const SymbolTableSection &Sec) override = 0;
virtual Error visit(const RelocationSection &Sec) override = 0;
virtual Error visit(const GnuDebugLinkSection &Sec) override = 0;
virtual Error visit(const GroupSection &Sec) override = 0;
virtual Error visit(const SectionIndexSection &Sec) override = 0;
virtual Error visit(const CompressedSection &Sec) override = 0;
virtual Error visit(const DecompressedSection &Sec) override = 0;
explicit SectionWriter(WritableMemoryBuffer &Buf) : Out(Buf) {}
};
template <class ELFT> class ELFSectionWriter : public SectionWriter {
private:
using Elf_Word = typename ELFT::Word;
using Elf_Rel = typename ELFT::Rel;
using Elf_Rela = typename ELFT::Rela;
using Elf_Sym = typename ELFT::Sym;
public:
virtual ~ELFSectionWriter() {}
Error visit(const SymbolTableSection &Sec) override;
Error visit(const RelocationSection &Sec) override;
Error visit(const GnuDebugLinkSection &Sec) override;
Error visit(const GroupSection &Sec) override;
Error visit(const SectionIndexSection &Sec) override;
Error visit(const CompressedSection &Sec) override;
Error visit(const DecompressedSection &Sec) override;
explicit ELFSectionWriter(WritableMemoryBuffer &Buf) : SectionWriter(Buf) {}
};
template <class ELFT> class ELFSectionSizer : public MutableSectionVisitor {
private:
using Elf_Rel = typename ELFT::Rel;
using Elf_Rela = typename ELFT::Rela;
using Elf_Sym = typename ELFT::Sym;
using Elf_Word = typename ELFT::Word;
using Elf_Xword = typename ELFT::Xword;
public:
Error visit(Section &Sec) override;
Error visit(OwnedDataSection &Sec) override;
Error visit(StringTableSection &Sec) override;
Error visit(DynamicRelocationSection &Sec) override;
Error visit(SymbolTableSection &Sec) override;
Error visit(RelocationSection &Sec) override;
Error visit(GnuDebugLinkSection &Sec) override;
Error visit(GroupSection &Sec) override;
Error visit(SectionIndexSection &Sec) override;
Error visit(CompressedSection &Sec) override;
Error visit(DecompressedSection &Sec) override;
};
#define MAKE_SEC_WRITER_FRIEND \
friend class SectionWriter; \
friend class IHexSectionWriterBase; \
friend class IHexSectionWriter; \
template <class ELFT> friend class ELFSectionWriter; \
template <class ELFT> friend class ELFSectionSizer;
class BinarySectionWriter : public SectionWriter {
public:
virtual ~BinarySectionWriter() {}
Error visit(const SymbolTableSection &Sec) override;
Error visit(const RelocationSection &Sec) override;
Error visit(const GnuDebugLinkSection &Sec) override;
Error visit(const GroupSection &Sec) override;
Error visit(const SectionIndexSection &Sec) override;
Error visit(const CompressedSection &Sec) override;
Error visit(const DecompressedSection &Sec) override;
explicit BinarySectionWriter(WritableMemoryBuffer &Buf)
: SectionWriter(Buf) {}
};
using IHexLineData = SmallVector<char, 64>;
struct IHexRecord {
// Memory address of the record.
uint16_t Addr;
// Record type (see below).
uint16_t Type;
// Record data in hexadecimal form.
StringRef HexData;
// Helper method to get file length of the record
// including newline character
static size_t getLength(size_t DataSize) {
// :LLAAAATT[DD...DD]CC'
return DataSize * 2 + 11;
}
// Gets length of line in a file (getLength + CRLF).
static size_t getLineLength(size_t DataSize) {
return getLength(DataSize) + 2;
}
// Given type, address and data returns line which can
// be written to output file.
static IHexLineData getLine(uint8_t Type, uint16_t Addr,
ArrayRef<uint8_t> Data);
// Parses the line and returns record if possible.
// Line should be trimmed from whitespace characters.
static Expected<IHexRecord> parse(StringRef Line);
// Calculates checksum of stringified record representation
// S must NOT contain leading ':' and trailing whitespace
// characters
static uint8_t getChecksum(StringRef S);
enum Type {
// Contains data and a 16-bit starting address for the data.
// The byte count specifies number of data bytes in the record.
Data = 0,
// Must occur exactly once per file in the last line of the file.
// The data field is empty (thus byte count is 00) and the address
// field is typically 0000.
EndOfFile = 1,
// The data field contains a 16-bit segment base address (thus byte
// count is always 02) compatible with 80x86 real mode addressing.
// The address field (typically 0000) is ignored. The segment address
// from the most recent 02 record is multiplied by 16 and added to each
// subsequent data record address to form the physical starting address
// for the data. This allows addressing up to one megabyte of address
// space.
SegmentAddr = 2,
// or 80x86 processors, specifies the initial content of the CS:IP
// registers. The address field is 0000, the byte count is always 04,
// the first two data bytes are the CS value, the latter two are the
// IP value.
StartAddr80x86 = 3,
// Allows for 32 bit addressing (up to 4GiB). The record's address field
// is ignored (typically 0000) and its byte count is always 02. The two
// data bytes (big endian) specify the upper 16 bits of the 32 bit
// absolute address for all subsequent type 00 records
ExtendedAddr = 4,
// The address field is 0000 (not used) and the byte count is always 04.
// The four data bytes represent a 32-bit address value. In the case of
// 80386 and higher CPUs, this address is loaded into the EIP register.
StartAddr = 5,
// We have no other valid types
InvalidType = 6
};
};
// Base class for IHexSectionWriter. This class implements writing algorithm,
// but doesn't actually write records. It is used for output buffer size
// calculation in IHexWriter::finalize.
class IHexSectionWriterBase : public BinarySectionWriter {
// 20-bit segment address
uint32_t SegmentAddr = 0;
// Extended linear address
uint32_t BaseAddr = 0;
// Write segment address corresponding to 'Addr'
uint64_t writeSegmentAddr(uint64_t Addr);
// Write extended linear (base) address corresponding to 'Addr'
uint64_t writeBaseAddr(uint64_t Addr);
protected:
// Offset in the output buffer
uint64_t Offset = 0;
void writeSection(const SectionBase *Sec, ArrayRef<uint8_t> Data);
virtual void writeData(uint8_t Type, uint16_t Addr, ArrayRef<uint8_t> Data);
public:
explicit IHexSectionWriterBase(WritableMemoryBuffer &Buf)
: BinarySectionWriter(Buf) {}
uint64_t getBufferOffset() const { return Offset; }
Error visit(const Section &Sec) final;
Error visit(const OwnedDataSection &Sec) final;
Error visit(const StringTableSection &Sec) override;
Error visit(const DynamicRelocationSection &Sec) final;
using BinarySectionWriter::visit;
};
// Real IHEX section writer
class IHexSectionWriter : public IHexSectionWriterBase {
public:
IHexSectionWriter(WritableMemoryBuffer &Buf) : IHexSectionWriterBase(Buf) {}
void writeData(uint8_t Type, uint16_t Addr, ArrayRef<uint8_t> Data) override;
Error visit(const StringTableSection &Sec) override;
};
class Writer {
protected:
Object &Obj;
std::unique_ptr<WritableMemoryBuffer> Buf;
raw_ostream &Out;
public:
virtual ~Writer();
virtual Error finalize() = 0;
virtual Error write() = 0;
Writer(Object &O, raw_ostream &Out) : Obj(O), Out(Out) {}
};
template <class ELFT> class ELFWriter : public Writer {
private:
using Elf_Addr = typename ELFT::Addr;
using Elf_Shdr = typename ELFT::Shdr;
using Elf_Phdr = typename ELFT::Phdr;
using Elf_Ehdr = typename ELFT::Ehdr;
void initEhdrSegment();
void writeEhdr();
void writePhdr(const Segment &Seg);
void writeShdr(const SectionBase &Sec);
void writePhdrs();
void writeShdrs();
Error writeSectionData();
void writeSegmentData();
void assignOffsets();
std::unique_ptr<ELFSectionWriter<ELFT>> SecWriter;
size_t totalSize() const;
public:
virtual ~ELFWriter() {}
bool WriteSectionHeaders;
// For --only-keep-debug, select an alternative section/segment layout
// algorithm.
bool OnlyKeepDebug;
Error finalize() override;
Error write() override;
ELFWriter(Object &Obj, raw_ostream &Out, bool WSH, bool OnlyKeepDebug);
};
class BinaryWriter : public Writer {
private:
std::unique_ptr<BinarySectionWriter> SecWriter;
uint64_t TotalSize = 0;
public:
~BinaryWriter() {}
Error finalize() override;
Error write() override;
BinaryWriter(Object &Obj, raw_ostream &Out) : Writer(Obj, Out) {}
};
class IHexWriter : public Writer {
struct SectionCompare {
bool operator()(const SectionBase *Lhs, const SectionBase *Rhs) const;
};
std::set<const SectionBase *, SectionCompare> Sections;
size_t TotalSize = 0;
Error checkSection(const SectionBase &Sec);
uint64_t writeEntryPointRecord(uint8_t *Buf);
uint64_t writeEndOfFileRecord(uint8_t *Buf);
public:
~IHexWriter() {}
Error finalize() override;
Error write() override;
IHexWriter(Object &Obj, raw_ostream &Out) : Writer(Obj, Out) {}
};
class SectionBase {
public:
std::string Name;
Segment *ParentSegment = nullptr;
uint64_t HeaderOffset = 0;
uint32_t Index = 0;
uint32_t OriginalIndex = 0;
uint64_t OriginalFlags = 0;
uint64_t OriginalType = ELF::SHT_NULL;
uint64_t OriginalOffset = std::numeric_limits<uint64_t>::max();
uint64_t Addr = 0;
uint64_t Align = 1;
uint32_t EntrySize = 0;
uint64_t Flags = 0;
uint64_t Info = 0;
uint64_t Link = ELF::SHN_UNDEF;
uint64_t NameIndex = 0;
uint64_t Offset = 0;
uint64_t Size = 0;
uint64_t Type = ELF::SHT_NULL;
ArrayRef<uint8_t> OriginalData;
bool HasSymbol = false;
SectionBase() = default;
SectionBase(const SectionBase &) = default;
virtual ~SectionBase() = default;
virtual Error initialize(SectionTableRef SecTable);
virtual void finalize();
// Remove references to these sections. The list of sections must be sorted.
virtual Error
removeSectionReferences(bool AllowBrokenLinks,
function_ref<bool(const SectionBase *)> ToRemove);
virtual Error removeSymbols(function_ref<bool(const Symbol &)> ToRemove);
virtual Error accept(SectionVisitor &Visitor) const = 0;
virtual Error accept(MutableSectionVisitor &Visitor) = 0;
virtual void markSymbols();
virtual void
replaceSectionReferences(const DenseMap<SectionBase *, SectionBase *> &);
// Notify the section that it is subject to removal.
virtual void onRemove();
};
class Segment {
private:
struct SectionCompare {
bool operator()(const SectionBase *Lhs, const SectionBase *Rhs) const {
// Some sections might have the same address if one of them is empty. To
// fix this we can use the lexicographic ordering on ->Addr and the
// original index.
if (Lhs->OriginalOffset == Rhs->OriginalOffset)
return Lhs->OriginalIndex < Rhs->OriginalIndex;
return Lhs->OriginalOffset < Rhs->OriginalOffset;
}
};
public:
uint32_t Type = 0;
uint32_t Flags = 0;
uint64_t Offset = 0;
uint64_t VAddr = 0;
uint64_t PAddr = 0;
uint64_t FileSize = 0;
uint64_t MemSize = 0;
uint64_t Align = 0;
uint32_t Index = 0;
uint64_t OriginalOffset = 0;
Segment *ParentSegment = nullptr;
ArrayRef<uint8_t> Contents;
std::set<const SectionBase *, SectionCompare> Sections;
explicit Segment(ArrayRef<uint8_t> Data) : Contents(Data) {}
Segment() = default;
const SectionBase *firstSection() const {
if (!Sections.empty())
return *Sections.begin();
return nullptr;
}
void removeSection(const SectionBase *Sec) { Sections.erase(Sec); }
void addSection(const SectionBase *Sec) { Sections.insert(Sec); }
ArrayRef<uint8_t> getContents() const { return Contents; }
};
class Section : public SectionBase {
MAKE_SEC_WRITER_FRIEND
ArrayRef<uint8_t> Contents;
SectionBase *LinkSection = nullptr;
public:
explicit Section(ArrayRef<uint8_t> Data) : Contents(Data) {}
Error accept(SectionVisitor &Visitor) const override;
Error accept(MutableSectionVisitor &Visitor) override;
Error removeSectionReferences(
bool AllowBrokenLinks,
function_ref<bool(const SectionBase *)> ToRemove) override;
Error initialize(SectionTableRef SecTable) override;
void finalize() override;
};
class OwnedDataSection : public SectionBase {
MAKE_SEC_WRITER_FRIEND
std::vector<uint8_t> Data;
public:
OwnedDataSection(StringRef SecName, ArrayRef<uint8_t> Data)
: Data(std::begin(Data), std::end(Data)) {
Name = SecName.str();
Type = OriginalType = ELF::SHT_PROGBITS;
Size = Data.size();
OriginalOffset = std::numeric_limits<uint64_t>::max();
}
OwnedDataSection(const Twine &SecName, uint64_t SecAddr, uint64_t SecFlags,
uint64_t SecOff) {
Name = SecName.str();
Type = OriginalType = ELF::SHT_PROGBITS;
Addr = SecAddr;
Flags = OriginalFlags = SecFlags;
OriginalOffset = SecOff;
}
void appendHexData(StringRef HexData);
Error accept(SectionVisitor &Sec) const override;
Error accept(MutableSectionVisitor &Visitor) override;
};
class CompressedSection : public SectionBase {
MAKE_SEC_WRITER_FRIEND
DebugCompressionType CompressionType;
uint64_t DecompressedSize;
uint64_t DecompressedAlign;
SmallVector<char, 128> CompressedData;
public:
static Expected<CompressedSection>
create(const SectionBase &Sec, DebugCompressionType CompressionType);
static Expected<CompressedSection> create(ArrayRef<uint8_t> CompressedData,
uint64_t DecompressedSize,
uint64_t DecompressedAlign);
uint64_t getDecompressedSize() const { return DecompressedSize; }
uint64_t getDecompressedAlign() const { return DecompressedAlign; }
Error accept(SectionVisitor &Visitor) const override;
Error accept(MutableSectionVisitor &Visitor) override;
static bool classof(const SectionBase *S) {
return (S->OriginalFlags & ELF::SHF_COMPRESSED) ||
(StringRef(S->Name).startswith(".zdebug"));
}
private:
CompressedSection(const SectionBase &Sec,
DebugCompressionType CompressionType, Error &Err);
CompressedSection(ArrayRef<uint8_t> CompressedData, uint64_t DecompressedSize,
uint64_t DecompressedAlign);
};
class DecompressedSection : public SectionBase {
MAKE_SEC_WRITER_FRIEND
public:
explicit DecompressedSection(const CompressedSection &Sec)
: SectionBase(Sec) {
Size = Sec.getDecompressedSize();
Align = Sec.getDecompressedAlign();
Flags = OriginalFlags = (Flags & ~ELF::SHF_COMPRESSED);
if (StringRef(Name).startswith(".zdebug"))
Name = "." + Name.substr(2);
}
Error accept(SectionVisitor &Visitor) const override;
Error accept(MutableSectionVisitor &Visitor) override;
};
// There are two types of string tables that can exist, dynamic and not dynamic.
// In the dynamic case the string table is allocated. Changing a dynamic string
// table would mean altering virtual addresses and thus the memory image. So
// dynamic string tables should not have an interface to modify them or
// reconstruct them. This type lets us reconstruct a string table. To avoid
// this class being used for dynamic string tables (which has happened) the
// classof method checks that the particular instance is not allocated. This
// then agrees with the makeSection method used to construct most sections.
class StringTableSection : public SectionBase {
MAKE_SEC_WRITER_FRIEND
StringTableBuilder StrTabBuilder;
public:
StringTableSection() : StrTabBuilder(StringTableBuilder::ELF) {
Type = OriginalType = ELF::SHT_STRTAB;
}
void addString(StringRef Name);
uint32_t findIndex(StringRef Name) const;
void prepareForLayout();
Error accept(SectionVisitor &Visitor) const override;
Error accept(MutableSectionVisitor &Visitor) override;
static bool classof(const SectionBase *S) {
if (S->OriginalFlags & ELF::SHF_ALLOC)
return false;
return S->OriginalType == ELF::SHT_STRTAB;
}
};
// Symbols have a st_shndx field that normally stores an index but occasionally
// stores a different special value. This enum keeps track of what the st_shndx
// field means. Most of the values are just copies of the special SHN_* values.
// SYMBOL_SIMPLE_INDEX means that the st_shndx is just an index of a section.
enum SymbolShndxType {
SYMBOL_SIMPLE_INDEX = 0,
SYMBOL_ABS = ELF::SHN_ABS,
SYMBOL_COMMON = ELF::SHN_COMMON,
SYMBOL_LOPROC = ELF::SHN_LOPROC,
SYMBOL_AMDGPU_LDS = ELF::SHN_AMDGPU_LDS,
SYMBOL_HEXAGON_SCOMMON = ELF::SHN_HEXAGON_SCOMMON,
SYMBOL_HEXAGON_SCOMMON_2 = ELF::SHN_HEXAGON_SCOMMON_2,
SYMBOL_HEXAGON_SCOMMON_4 = ELF::SHN_HEXAGON_SCOMMON_4,
SYMBOL_HEXAGON_SCOMMON_8 = ELF::SHN_HEXAGON_SCOMMON_8,
SYMBOL_HIPROC = ELF::SHN_HIPROC,
SYMBOL_LOOS = ELF::SHN_LOOS,
SYMBOL_HIOS = ELF::SHN_HIOS,
SYMBOL_XINDEX = ELF::SHN_XINDEX,
};
struct Symbol {
uint8_t Binding;
SectionBase *DefinedIn = nullptr;
SymbolShndxType ShndxType;
uint32_t Index;
std::string Name;
uint32_t NameIndex;
uint64_t Size;
uint8_t Type;
uint64_t Value;
uint8_t Visibility;
bool Referenced = false;
uint16_t getShndx() const;
bool isCommon() const;
};
class SectionIndexSection : public SectionBase {
MAKE_SEC_WRITER_FRIEND
private:
std::vector<uint32_t> Indexes;
SymbolTableSection *Symbols = nullptr;
public:
virtual ~SectionIndexSection() {}
void addIndex(uint32_t Index) {
assert(Size > 0);
Indexes.push_back(Index);
}
void reserve(size_t NumSymbols) {
Indexes.reserve(NumSymbols);
Size = NumSymbols * 4;
}
void setSymTab(SymbolTableSection *SymTab) { Symbols = SymTab; }
Error initialize(SectionTableRef SecTable) override;
void finalize() override;
Error accept(SectionVisitor &Visitor) const override;
Error accept(MutableSectionVisitor &Visitor) override;
SectionIndexSection() {
Name = ".symtab_shndx";
Align = 4;
EntrySize = 4;
Type = OriginalType = ELF::SHT_SYMTAB_SHNDX;
}
};
class SymbolTableSection : public SectionBase {
MAKE_SEC_WRITER_FRIEND
void setStrTab(StringTableSection *StrTab) { SymbolNames = StrTab; }
void assignIndices();
protected:
std::vector<std::unique_ptr<Symbol>> Symbols;
StringTableSection *SymbolNames = nullptr;
SectionIndexSection *SectionIndexTable = nullptr;
using SymPtr = std::unique_ptr<Symbol>;
public:
SymbolTableSection() { Type = OriginalType = ELF::SHT_SYMTAB; }
void addSymbol(Twine Name, uint8_t Bind, uint8_t Type, SectionBase *DefinedIn,
uint64_t Value, uint8_t Visibility, uint16_t Shndx,
uint64_t SymbolSize);
void prepareForLayout();
// An 'empty' symbol table still contains a null symbol.
bool empty() const { return Symbols.size() == 1; }
void setShndxTable(SectionIndexSection *ShndxTable) {
SectionIndexTable = ShndxTable;
}
const SectionIndexSection *getShndxTable() const { return SectionIndexTable; }
void fillShndxTable();
const SectionBase *getStrTab() const { return SymbolNames; }
Expected<const Symbol *> getSymbolByIndex(uint32_t Index) const;
Expected<Symbol *> getSymbolByIndex(uint32_t Index);
void updateSymbols(function_ref<void(Symbol &)> Callable);
Error removeSectionReferences(
bool AllowBrokenLinks,
function_ref<bool(const SectionBase *)> ToRemove) override;
Error initialize(SectionTableRef SecTable) override;
void finalize() override;
Error accept(SectionVisitor &Visitor) const override;
Error accept(MutableSectionVisitor &Visitor) override;
Error removeSymbols(function_ref<bool(const Symbol &)> ToRemove) override;
void replaceSectionReferences(
const DenseMap<SectionBase *, SectionBase *> &FromTo) override;
static bool classof(const SectionBase *S) {
return S->OriginalType == ELF::SHT_SYMTAB;
}
};
struct Relocation {
Symbol *RelocSymbol = nullptr;
uint64_t Offset;
uint64_t Addend;
uint32_t Type;
};
// All relocation sections denote relocations to apply to another section.
// However, some relocation sections use a dynamic symbol table and others use
// a regular symbol table. Because the types of the two symbol tables differ in
// our system (because they should behave differently) we can't uniformly
// represent all relocations with the same base class if we expose an interface
// that mentions the symbol table type. So we split the two base types into two
// different classes, one which handles the section the relocation is applied to
// and another which handles the symbol table type. The symbol table type is
// taken as a type parameter to the class (see RelocSectionWithSymtabBase).
class RelocationSectionBase : public SectionBase {
protected:
SectionBase *SecToApplyRel = nullptr;
public:
const SectionBase *getSection() const { return SecToApplyRel; }
void setSection(SectionBase *Sec) { SecToApplyRel = Sec; }
static bool classof(const SectionBase *S) {
return S->OriginalType == ELF::SHT_REL || S->OriginalType == ELF::SHT_RELA;
}
};
// Takes the symbol table type to use as a parameter so that we can deduplicate
// that code between the two symbol table types.
template <class SymTabType>
class RelocSectionWithSymtabBase : public RelocationSectionBase {
void setSymTab(SymTabType *SymTab) { Symbols = SymTab; }
protected:
RelocSectionWithSymtabBase() = default;
SymTabType *Symbols = nullptr;
public:
Error initialize(SectionTableRef SecTable) override;
void finalize() override;
};
class RelocationSection
: public RelocSectionWithSymtabBase<SymbolTableSection> {
MAKE_SEC_WRITER_FRIEND
std::vector<Relocation> Relocations;
public:
void addRelocation(Relocation Rel) { Relocations.push_back(Rel); }
Error accept(SectionVisitor &Visitor) const override;
Error accept(MutableSectionVisitor &Visitor) override;
Error removeSectionReferences(
bool AllowBrokenLinks,
function_ref<bool(const SectionBase *)> ToRemove) override;
Error removeSymbols(function_ref<bool(const Symbol &)> ToRemove) override;
void markSymbols() override;
void replaceSectionReferences(
const DenseMap<SectionBase *, SectionBase *> &FromTo) override;
static bool classof(const SectionBase *S) {
if (S->OriginalFlags & ELF::SHF_ALLOC)
return false;
return S->OriginalType == ELF::SHT_REL || S->OriginalType == ELF::SHT_RELA;
}
};
// TODO: The way stripping and groups interact is complicated
// and still needs to be worked on.
class GroupSection : public SectionBase {
MAKE_SEC_WRITER_FRIEND
const SymbolTableSection *SymTab = nullptr;
Symbol *Sym = nullptr;
ELF::Elf32_Word FlagWord;
SmallVector<SectionBase *, 3> GroupMembers;
public:
// TODO: Contents is present in several classes of the hierarchy.
// This needs to be refactored to avoid duplication.
ArrayRef<uint8_t> Contents;
explicit GroupSection(ArrayRef<uint8_t> Data) : Contents(Data) {}
void setSymTab(const SymbolTableSection *SymTabSec) { SymTab = SymTabSec; }
void setSymbol(Symbol *S) { Sym = S; }
void setFlagWord(ELF::Elf32_Word W) { FlagWord = W; }
void addMember(SectionBase *Sec) { GroupMembers.push_back(Sec); }
Error accept(SectionVisitor &) const override;
Error accept(MutableSectionVisitor &Visitor) override;
void finalize() override;
Error removeSectionReferences(
bool AllowBrokenLinks,
function_ref<bool(const SectionBase *)> ToRemove) override;
Error removeSymbols(function_ref<bool(const Symbol &)> ToRemove) override;
void markSymbols() override;
void replaceSectionReferences(
const DenseMap<SectionBase *, SectionBase *> &FromTo) override;
void onRemove() override;
static bool classof(const SectionBase *S) {
return S->OriginalType == ELF::SHT_GROUP;
}
};
class DynamicSymbolTableSection : public Section {
public:
explicit DynamicSymbolTableSection(ArrayRef<uint8_t> Data) : Section(Data) {}
static bool classof(const SectionBase *S) {
return S->OriginalType == ELF::SHT_DYNSYM;
}
};
class DynamicSection : public Section {
public:
explicit DynamicSection(ArrayRef<uint8_t> Data) : Section(Data) {}
static bool classof(const SectionBase *S) {
return S->OriginalType == ELF::SHT_DYNAMIC;
}
};
class DynamicRelocationSection
: public RelocSectionWithSymtabBase<DynamicSymbolTableSection> {
MAKE_SEC_WRITER_FRIEND
private:
ArrayRef<uint8_t> Contents;
public:
explicit DynamicRelocationSection(ArrayRef<uint8_t> Data) : Contents(Data) {}
Error accept(SectionVisitor &) const override;
Error accept(MutableSectionVisitor &Visitor) override;
Error removeSectionReferences(
bool AllowBrokenLinks,
function_ref<bool(const SectionBase *)> ToRemove) override;
static bool classof(const SectionBase *S) {
if (!(S->OriginalFlags & ELF::SHF_ALLOC))
return false;
return S->OriginalType == ELF::SHT_REL || S->OriginalType == ELF::SHT_RELA;
}
};
class GnuDebugLinkSection : public SectionBase {
MAKE_SEC_WRITER_FRIEND
private:
StringRef FileName;
uint32_t CRC32;
void init(StringRef File);
public:
// If we add this section from an external source we can use this ctor.
explicit GnuDebugLinkSection(StringRef File, uint32_t PrecomputedCRC);
Error accept(SectionVisitor &Visitor) const override;
Error accept(MutableSectionVisitor &Visitor) override;
};
class Reader {
public:
virtual ~Reader();
virtual Expected<std::unique_ptr<Object>> create(bool EnsureSymtab) const = 0;
};
using object::Binary;
using object::ELFFile;
using object::ELFObjectFile;
using object::OwningBinary;
class BasicELFBuilder {
protected:
std::unique_ptr<Object> Obj;
void initFileHeader();
void initHeaderSegment();
StringTableSection *addStrTab();
SymbolTableSection *addSymTab(StringTableSection *StrTab);
Error initSections();
public:
BasicELFBuilder() : Obj(std::make_unique<Object>()) {}
};
class BinaryELFBuilder : public BasicELFBuilder {
MemoryBuffer *MemBuf;
uint8_t NewSymbolVisibility;
void addData(SymbolTableSection *SymTab);
public:
BinaryELFBuilder(MemoryBuffer *MB, uint8_t NewSymbolVisibility)
: BasicELFBuilder(), MemBuf(MB),
NewSymbolVisibility(NewSymbolVisibility) {}
Expected<std::unique_ptr<Object>> build();
};
class IHexELFBuilder : public BasicELFBuilder {
const std::vector<IHexRecord> &Records;
void addDataSections();
public:
IHexELFBuilder(const std::vector<IHexRecord> &Records)
: BasicELFBuilder(), Records(Records) {}
Expected<std::unique_ptr<Object>> build();
};
template <class ELFT> class ELFBuilder {
private:
using Elf_Addr = typename ELFT::Addr;
using Elf_Shdr = typename ELFT::Shdr;
using Elf_Word = typename ELFT::Word;
const ELFFile<ELFT> &ElfFile;
Object &Obj;
size_t EhdrOffset = 0;
Optional<StringRef> ExtractPartition;
void setParentSegment(Segment &Child);
Error readProgramHeaders(const ELFFile<ELFT> &HeadersFile);
Error initGroupSection(GroupSection *GroupSec);
Error initSymbolTable(SymbolTableSection *SymTab);
Error readSectionHeaders();
Error readSections(bool EnsureSymtab);
Error findEhdrOffset();
Expected<SectionBase &> makeSection(const Elf_Shdr &Shdr);
public:
ELFBuilder(const ELFObjectFile<ELFT> &ElfObj, Object &Obj,
Optional<StringRef> ExtractPartition)
: ElfFile(ElfObj.getELFFile()), Obj(Obj),
ExtractPartition(ExtractPartition) {}
Error build(bool EnsureSymtab);
};
class BinaryReader : public Reader {
MemoryBuffer *MemBuf;
uint8_t NewSymbolVisibility;
public:
BinaryReader(MemoryBuffer *MB, const uint8_t NewSymbolVisibility)
: MemBuf(MB), NewSymbolVisibility(NewSymbolVisibility) {}
Expected<std::unique_ptr<Object>> create(bool EnsureSymtab) const override;
};
class IHexReader : public Reader {
MemoryBuffer *MemBuf;
Expected<std::vector<IHexRecord>> parse() const;
Error parseError(size_t LineNo, Error E) const {
return LineNo == -1U
? createFileError(MemBuf->getBufferIdentifier(), std::move(E))
: createFileError(MemBuf->getBufferIdentifier(), LineNo,
std::move(E));
}
template <typename... Ts>
Error parseError(size_t LineNo, char const *Fmt, const Ts &... Vals) const {
Error E = createStringError(errc::invalid_argument, Fmt, Vals...);
return parseError(LineNo, std::move(E));
}
public:
IHexReader(MemoryBuffer *MB) : MemBuf(MB) {}
Expected<std::unique_ptr<Object>> create(bool EnsureSymtab) const override;
};
class ELFReader : public Reader {
Binary *Bin;
Optional<StringRef> ExtractPartition;
public:
Expected<std::unique_ptr<Object>> create(bool EnsureSymtab) const override;
explicit ELFReader(Binary *B, Optional<StringRef> ExtractPartition)
: Bin(B), ExtractPartition(ExtractPartition) {}
};
class Object {
private:
using SecPtr = std::unique_ptr<SectionBase>;
using SegPtr = std::unique_ptr<Segment>;
std::vector<SecPtr> Sections;
std::vector<SegPtr> Segments;
std::vector<SecPtr> RemovedSections;
static bool sectionIsAlloc(const SectionBase &Sec) {
return Sec.Flags & ELF::SHF_ALLOC;
};
public:
template <class T>
using ConstRange = iterator_range<pointee_iterator<
typename std::vector<std::unique_ptr<T>>::const_iterator>>;
// It is often the case that the ELF header and the program header table are
// not present in any segment. This could be a problem during file layout,
// because other segments may get assigned an offset where either of the
// two should reside, which will effectively corrupt the resulting binary.
// Other than that we use these segments to track program header offsets
// when they may not follow the ELF header.
Segment ElfHdrSegment;
Segment ProgramHdrSegment;
uint8_t OSABI;
uint8_t ABIVersion;
uint64_t Entry;
uint64_t SHOff;
uint32_t Type;
uint32_t Machine;
uint32_t Version;
uint32_t Flags;
bool HadShdrs = true;
bool MustBeRelocatable = false;
StringTableSection *SectionNames = nullptr;
SymbolTableSection *SymbolTable = nullptr;
SectionIndexSection *SectionIndexTable = nullptr;
SectionTableRef sections() const { return SectionTableRef(Sections); }
iterator_range<
filter_iterator<pointee_iterator<std::vector<SecPtr>::const_iterator>,
decltype(&sectionIsAlloc)>>
allocSections() const {
return make_filter_range(make_pointee_range(Sections), sectionIsAlloc);
}
SectionBase *findSection(StringRef Name) {
auto SecIt =
find_if(Sections, [&](const SecPtr &Sec) { return Sec->Name == Name; });
return SecIt == Sections.end() ? nullptr : SecIt->get();
}
SectionTableRef removedSections() { return SectionTableRef(RemovedSections); }
ConstRange<Segment> segments() const { return make_pointee_range(Segments); }
Error removeSections(bool AllowBrokenLinks,
std::function<bool(const SectionBase &)> ToRemove);
Error replaceSections(const DenseMap<SectionBase *, SectionBase *> &FromTo);
Error removeSymbols(function_ref<bool(const Symbol &)> ToRemove);
template <class T, class... Ts> T &addSection(Ts &&... Args) {
auto Sec = std::make_unique<T>(std::forward<Ts>(Args)...);
auto Ptr = Sec.get();
MustBeRelocatable |= isa<RelocationSection>(*Ptr);
Sections.emplace_back(std::move(Sec));
Ptr->Index = Sections.size();
return *Ptr;
}
Error addNewSymbolTable();
Segment &addSegment(ArrayRef<uint8_t> Data) {
Segments.emplace_back(std::make_unique<Segment>(Data));
return *Segments.back();
}
bool isRelocatable() const {
return (Type != ELF::ET_DYN && Type != ELF::ET_EXEC) || MustBeRelocatable;
}
};
} // end namespace elf
} // end namespace objcopy
} // end namespace llvm
#endif // LLVM_TOOLS_OBJCOPY_OBJECT_H