
This change enables llvm-profgen to use accurate context-sensitive post-optimization function byte size as a cost proxy to drive global preinline decisions. To do this, BinarySizeContextTracker is introduced to track function byte size under different inline context during disassembling. In preinliner, we can not query context byte size under switch `context-cost-for-preinliner`. The tracker uses a reverse trie to keep size of functions under different context (callee as parent, caller as child), and it can give best/longest possible matching context size for given input context. The new size cost is off by default. There're a few TODOs that needs to addressed: 1) avoid dangling string from `Offset2LocStackMap`, which will be addressed in split context work; 2) using inlinee's entry probe to make sure we have correct zero size for inlinee that's completely optimized away after inlining. Some tuning is also needed. Differential Revision: https://reviews.llvm.org/D108180
353 lines
13 KiB
C++
353 lines
13 KiB
C++
//===-- ProfiledBinary.h - Binary decoder -----------------------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_TOOLS_LLVM_PROFGEN_PROFILEDBINARY_H
|
|
#define LLVM_TOOLS_LLVM_PROFGEN_PROFILEDBINARY_H
|
|
|
|
#include "CallContext.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/DebugInfo/Symbolize/Symbolize.h"
|
|
#include "llvm/MC/MCAsmInfo.h"
|
|
#include "llvm/MC/MCContext.h"
|
|
#include "llvm/MC/MCDisassembler/MCDisassembler.h"
|
|
#include "llvm/MC/MCInst.h"
|
|
#include "llvm/MC/MCInstPrinter.h"
|
|
#include "llvm/MC/MCInstrAnalysis.h"
|
|
#include "llvm/MC/MCInstrInfo.h"
|
|
#include "llvm/MC/MCObjectFileInfo.h"
|
|
#include "llvm/MC/MCPseudoProbe.h"
|
|
#include "llvm/MC/MCRegisterInfo.h"
|
|
#include "llvm/MC/MCSubtargetInfo.h"
|
|
#include "llvm/MC/MCTargetOptions.h"
|
|
#include "llvm/Object/ELFObjectFile.h"
|
|
#include "llvm/ProfileData/SampleProf.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Path.h"
|
|
#include "llvm/Transforms/IPO/SampleContextTracker.h"
|
|
#include <list>
|
|
#include <set>
|
|
#include <sstream>
|
|
#include <string>
|
|
#include <unordered_map>
|
|
#include <unordered_set>
|
|
#include <vector>
|
|
|
|
extern cl::opt<bool> EnableCSPreInliner;
|
|
extern cl::opt<bool> UseContextCostForPreInliner;
|
|
|
|
using namespace llvm;
|
|
using namespace sampleprof;
|
|
using namespace llvm::object;
|
|
|
|
namespace llvm {
|
|
namespace sampleprof {
|
|
|
|
class ProfiledBinary;
|
|
|
|
struct InstructionPointer {
|
|
ProfiledBinary *Binary;
|
|
union {
|
|
// Offset of the executable segment of the binary.
|
|
uint64_t Offset = 0;
|
|
// Also used as address in unwinder
|
|
uint64_t Address;
|
|
};
|
|
// Index to the sorted code address array of the binary.
|
|
uint64_t Index = 0;
|
|
InstructionPointer(ProfiledBinary *Binary, uint64_t Address,
|
|
bool RoundToNext = false);
|
|
void advance();
|
|
void backward();
|
|
void update(uint64_t Addr);
|
|
};
|
|
|
|
// PrologEpilog offset tracker, used to filter out broken stack samples
|
|
// Currently we use a heuristic size (two) to infer prolog and epilog
|
|
// based on the start address and return address. In the future,
|
|
// we will switch to Dwarf CFI based tracker
|
|
struct PrologEpilogTracker {
|
|
// A set of prolog and epilog offsets. Used by virtual unwinding.
|
|
std::unordered_set<uint64_t> PrologEpilogSet;
|
|
ProfiledBinary *Binary;
|
|
PrologEpilogTracker(ProfiledBinary *Bin) : Binary(Bin){};
|
|
|
|
// Take the two addresses from the start of function as prolog
|
|
void inferPrologOffsets(
|
|
std::unordered_map<uint64_t, std::string> &FuncStartAddrMap) {
|
|
for (auto I : FuncStartAddrMap) {
|
|
PrologEpilogSet.insert(I.first);
|
|
InstructionPointer IP(Binary, I.first);
|
|
IP.advance();
|
|
PrologEpilogSet.insert(IP.Offset);
|
|
}
|
|
}
|
|
|
|
// Take the last two addresses before the return address as epilog
|
|
void inferEpilogOffsets(std::unordered_set<uint64_t> &RetAddrs) {
|
|
for (auto Addr : RetAddrs) {
|
|
PrologEpilogSet.insert(Addr);
|
|
InstructionPointer IP(Binary, Addr);
|
|
IP.backward();
|
|
PrologEpilogSet.insert(IP.Offset);
|
|
}
|
|
}
|
|
};
|
|
|
|
// Track function byte size under different context (outlined version as well as
|
|
// various inlined versions). It also provides query support to get function
|
|
// size with the best matching context, which is used to help pre-inliner use
|
|
// accurate post-optimization size to make decisions.
|
|
// TODO: If an inlinee is completely optimized away, ideally we should have zero
|
|
// for its context size, currently we would misss such context since it doesn't
|
|
// have instructions. To fix this, we need to mark all inlinee with entry probe
|
|
// but without instructions as having zero size.
|
|
class BinarySizeContextTracker {
|
|
public:
|
|
// Add instruction with given size to a context
|
|
void addInstructionForContext(const FrameLocationStack &Context,
|
|
uint32_t InstrSize);
|
|
|
|
// Get function size with a specific context. When there's no exact match
|
|
// for the given context, try to retrieve the size of that function from
|
|
// closest matching context.
|
|
uint32_t getFuncSizeForContext(const SampleContext &Context);
|
|
|
|
void dump() { RootContext.dumpTree(); }
|
|
|
|
private:
|
|
// Root node for context trie tree, node that this is a reverse context trie
|
|
// with callee as parent and caller as child. This way we can traverse from
|
|
// root to find the best/longest matching context if an exact match does not
|
|
// exist. It gives us the best possible estimate for function's post-inline,
|
|
// post-optimization byte size.
|
|
ContextTrieNode RootContext;
|
|
};
|
|
|
|
class ProfiledBinary {
|
|
// Absolute path of the binary.
|
|
std::string Path;
|
|
// The target triple.
|
|
Triple TheTriple;
|
|
// The runtime base address that the first executable segment is loaded at.
|
|
uint64_t BaseAddress = 0;
|
|
// The preferred load address of each executable segment.
|
|
std::vector<uint64_t> PreferredTextSegmentAddresses;
|
|
// The file offset of each executable segment.
|
|
std::vector<uint64_t> TextSegmentOffsets;
|
|
|
|
// Mutiple MC component info
|
|
std::unique_ptr<const MCRegisterInfo> MRI;
|
|
std::unique_ptr<const MCAsmInfo> AsmInfo;
|
|
std::unique_ptr<const MCSubtargetInfo> STI;
|
|
std::unique_ptr<const MCInstrInfo> MII;
|
|
std::unique_ptr<MCDisassembler> DisAsm;
|
|
std::unique_ptr<const MCInstrAnalysis> MIA;
|
|
std::unique_ptr<MCInstPrinter> IPrinter;
|
|
// A list of text sections sorted by start RVA and size. Used to check
|
|
// if a given RVA is a valid code address.
|
|
std::set<std::pair<uint64_t, uint64_t>> TextSections;
|
|
// Function offset to name mapping.
|
|
std::unordered_map<uint64_t, std::string> FuncStartAddrMap;
|
|
// Offset to context location map. Used to expand the context.
|
|
std::unordered_map<uint64_t, FrameLocationStack> Offset2LocStackMap;
|
|
// An array of offsets of all instructions sorted in increasing order. The
|
|
// sorting is needed to fast advance to the next forward/backward instruction.
|
|
std::vector<uint64_t> CodeAddrs;
|
|
// A set of call instruction offsets. Used by virtual unwinding.
|
|
std::unordered_set<uint64_t> CallAddrs;
|
|
// A set of return instruction offsets. Used by virtual unwinding.
|
|
std::unordered_set<uint64_t> RetAddrs;
|
|
|
|
// Estimate and track function prolog and epilog ranges.
|
|
PrologEpilogTracker ProEpilogTracker;
|
|
|
|
// Track function sizes under different context
|
|
BinarySizeContextTracker FuncSizeTracker;
|
|
|
|
// The symbolizer used to get inline context for an instruction.
|
|
std::unique_ptr<symbolize::LLVMSymbolizer> Symbolizer;
|
|
|
|
// Pseudo probe decoder
|
|
MCPseudoProbeDecoder ProbeDecoder;
|
|
|
|
bool UsePseudoProbes = false;
|
|
|
|
// Whether we need to symbolize all instructions to get function context size.
|
|
bool TrackFuncContextSize = false;
|
|
|
|
// Indicate if the base loading address is parsed from the mmap event or uses
|
|
// the preferred address
|
|
bool IsLoadedByMMap = false;
|
|
// Use to avoid redundant warning.
|
|
bool MissingMMapWarned = false;
|
|
|
|
void setPreferredTextSegmentAddresses(const ELFObjectFileBase *O);
|
|
|
|
template <class ELFT>
|
|
void setPreferredTextSegmentAddresses(const ELFFile<ELFT> &Obj, StringRef FileName);
|
|
|
|
void decodePseudoProbe(const ELFObjectFileBase *Obj);
|
|
|
|
// Set up disassembler and related components.
|
|
void setUpDisassembler(const ELFObjectFileBase *Obj);
|
|
void setupSymbolizer();
|
|
|
|
/// Dissassemble the text section and build various address maps.
|
|
void disassemble(const ELFObjectFileBase *O);
|
|
|
|
/// Helper function to dissassemble the symbol and extract info for unwinding
|
|
bool dissassembleSymbol(std::size_t SI, ArrayRef<uint8_t> Bytes,
|
|
SectionSymbolsTy &Symbols, const SectionRef &Section);
|
|
/// Symbolize a given instruction pointer and return a full call context.
|
|
FrameLocationStack symbolize(const InstructionPointer &IP,
|
|
bool UseCanonicalFnName = false,
|
|
bool UseProbeDiscriminator = false);
|
|
|
|
/// Decode the interesting parts of the binary and build internal data
|
|
/// structures. On high level, the parts of interest are:
|
|
/// 1. Text sections, including the main code section and the PLT
|
|
/// entries that will be used to handle cross-module call transitions.
|
|
/// 2. The .debug_line section, used by Dwarf-based profile generation.
|
|
/// 3. Pseudo probe related sections, used by probe-based profile
|
|
/// generation.
|
|
void load();
|
|
const FrameLocationStack &getFrameLocationStack(uint64_t Offset) const {
|
|
auto I = Offset2LocStackMap.find(Offset);
|
|
assert(I != Offset2LocStackMap.end() &&
|
|
"Can't find location for offset in the binary");
|
|
return I->second;
|
|
}
|
|
|
|
public:
|
|
ProfiledBinary(const StringRef Path)
|
|
: Path(Path), ProEpilogTracker(this),
|
|
TrackFuncContextSize(EnableCSPreInliner &&
|
|
UseContextCostForPreInliner) {
|
|
setupSymbolizer();
|
|
load();
|
|
}
|
|
uint64_t virtualAddrToOffset(uint64_t VirtualAddress) const {
|
|
return VirtualAddress - BaseAddress;
|
|
}
|
|
uint64_t offsetToVirtualAddr(uint64_t Offset) const {
|
|
return Offset + BaseAddress;
|
|
}
|
|
StringRef getPath() const { return Path; }
|
|
StringRef getName() const { return llvm::sys::path::filename(Path); }
|
|
uint64_t getBaseAddress() const { return BaseAddress; }
|
|
void setBaseAddress(uint64_t Address) { BaseAddress = Address; }
|
|
|
|
// Return the preferred load address for the first executable segment.
|
|
uint64_t getPreferredBaseAddress() const { return PreferredTextSegmentAddresses[0]; }
|
|
// Return the file offset for the first executable segment.
|
|
uint64_t getTextSegmentOffset() const { return TextSegmentOffsets[0]; }
|
|
const std::vector<uint64_t> &getPreferredTextSegmentAddresses() const {
|
|
return PreferredTextSegmentAddresses;
|
|
}
|
|
const std::vector<uint64_t> &getTextSegmentOffsets() const {
|
|
return TextSegmentOffsets;
|
|
}
|
|
|
|
bool addressIsCode(uint64_t Address) const {
|
|
uint64_t Offset = virtualAddrToOffset(Address);
|
|
return Offset2LocStackMap.find(Offset) != Offset2LocStackMap.end();
|
|
}
|
|
bool addressIsCall(uint64_t Address) const {
|
|
uint64_t Offset = virtualAddrToOffset(Address);
|
|
return CallAddrs.count(Offset);
|
|
}
|
|
bool addressIsReturn(uint64_t Address) const {
|
|
uint64_t Offset = virtualAddrToOffset(Address);
|
|
return RetAddrs.count(Offset);
|
|
}
|
|
bool addressInPrologEpilog(uint64_t Address) const {
|
|
uint64_t Offset = virtualAddrToOffset(Address);
|
|
return ProEpilogTracker.PrologEpilogSet.count(Offset);
|
|
}
|
|
|
|
uint64_t getAddressforIndex(uint64_t Index) const {
|
|
return offsetToVirtualAddr(CodeAddrs[Index]);
|
|
}
|
|
|
|
bool usePseudoProbes() const { return UsePseudoProbes; }
|
|
// Get the index in CodeAddrs for the address
|
|
// As we might get an address which is not the code
|
|
// here it would round to the next valid code address by
|
|
// using lower bound operation
|
|
uint32_t getIndexForAddr(uint64_t Address) const {
|
|
uint64_t Offset = virtualAddrToOffset(Address);
|
|
auto Low = llvm::lower_bound(CodeAddrs, Offset);
|
|
return Low - CodeAddrs.begin();
|
|
}
|
|
|
|
uint64_t getCallAddrFromFrameAddr(uint64_t FrameAddr) const {
|
|
return getAddressforIndex(getIndexForAddr(FrameAddr) - 1);
|
|
}
|
|
|
|
StringRef getFuncFromStartOffset(uint64_t Offset) {
|
|
return FuncStartAddrMap[Offset];
|
|
}
|
|
|
|
uint32_t getFuncSizeForContext(SampleContext &Context) {
|
|
return FuncSizeTracker.getFuncSizeForContext(Context);
|
|
}
|
|
|
|
Optional<FrameLocation> getInlineLeafFrameLoc(uint64_t Offset) {
|
|
const auto &Stack = getFrameLocationStack(Offset);
|
|
if (Stack.empty())
|
|
return {};
|
|
return Stack.back();
|
|
}
|
|
|
|
// Compare two addresses' inline context
|
|
bool inlineContextEqual(uint64_t Add1, uint64_t Add2) const;
|
|
|
|
// Get the context string of the current stack with inline context filled in.
|
|
// It will search the disassembling info stored in Offset2LocStackMap. This is
|
|
// used as the key of function sample map
|
|
std::string getExpandedContextStr(const SmallVectorImpl<uint64_t> &Stack,
|
|
bool &WasLeafInlined) const;
|
|
|
|
const MCDecodedPseudoProbe *getCallProbeForAddr(uint64_t Address) const {
|
|
return ProbeDecoder.getCallProbeForAddr(Address);
|
|
}
|
|
|
|
void
|
|
getInlineContextForProbe(const MCDecodedPseudoProbe *Probe,
|
|
SmallVectorImpl<std::string> &InlineContextStack,
|
|
bool IncludeLeaf = false) const {
|
|
return ProbeDecoder.getInlineContextForProbe(Probe, InlineContextStack,
|
|
IncludeLeaf);
|
|
}
|
|
const AddressProbesMap &getAddress2ProbesMap() const {
|
|
return ProbeDecoder.getAddress2ProbesMap();
|
|
}
|
|
const MCPseudoProbeFuncDesc *getFuncDescForGUID(uint64_t GUID) {
|
|
return ProbeDecoder.getFuncDescForGUID(GUID);
|
|
}
|
|
|
|
const MCPseudoProbeFuncDesc *
|
|
getInlinerDescForProbe(const MCDecodedPseudoProbe *Probe) {
|
|
return ProbeDecoder.getInlinerDescForProbe(Probe);
|
|
}
|
|
|
|
bool getIsLoadedByMMap() { return IsLoadedByMMap; }
|
|
|
|
void setIsLoadedByMMap(bool Value) { IsLoadedByMMap = Value; }
|
|
|
|
bool getMissingMMapWarned() { return MissingMMapWarned; }
|
|
|
|
void setMissingMMapWarned(bool Value) { MissingMMapWarned = Value; }
|
|
};
|
|
|
|
} // end namespace sampleprof
|
|
} // end namespace llvm
|
|
|
|
#endif
|