llvm-project/openmp/runtime/test/affinity/libomp_test_topology.h
Peyton, Jonathan L 9982f33e2c [OpenMP] Refactor/Rework topology discovery code
This patch does the following:

1) Introduce kmp_topology_t as the runtime-friendly structure (the
corresponding global variable is __kmp_topology) to determine the
exact machine topology which can vary widely among current and future
architectures. The current design is not easy to expand beyond the assumed
three layer topology: sockets, cores, and threads so a rework capable of
using the existing KMP_AFFINITY mechanisms is required.

This new topology structure has:
* The depth and types of the topology
* Ratio count for each consecutive level (e.g., number of cores per
   socket, number of threads per core)
* Absolute count for each level (e.g., 2 sockets, 16 cores, 32 threads)
* Equivalent topology layer map (e.g., Numa domain is equivalent to
   socket, L1/L2 cache equivalent to core)
* Whether it is uniform or not

The hardware threads are represented with the kmp_hw_thread_t
structure. This structure contains the ids (e.g., socket 0, core 1,
thread 0) and other information grabbed from the previous Address
structure. The kmp_topology_t structure contains an array of these.

2) Generalize the KMP_HW_SUBSET envirable for the new
kmp_topology_t structure. The algorithm doesn't assume any order with
tiles,numa domains,sockets,cores,threads. Instead it just parses the
envirable, makes sure it is consistent with the detected topology
(including taking into account equivalent layers) and then trims away
the unneeded subset of hardware threads. To enable this, a new
kmp_hw_subset_t structure is introduced which contains a vector of
items (hardware type, number user wants, offset). Any keyword within
__kmp_hw_get_keyword() can be used as a name and can be shortened as
well. e.g.,
KMP_HW_SUBSET=1s,2numa,4tile,2c,3t can be used on the KNL SNC-4 machine.

3) Simplify topology detection functions so they only do the singular
task of detecting the machine's topology. Printing, and all
canonicalizing functionality is now done afterwards. So many lines of
duplicated code are eliminated.

4) Add new ll_caches and numa_domains to OMP_PLACES, and
consequently, KMP_AFFINITY's granularity setting. All the names within
__kmp_hw_get_keyword() are available for use in OMP_PLACES or
KMP_AFFINITY's granularity setting.

5) Simplify and future-proof code where explicit lists of allowed
affinity settings keywords inside if() conditions.

6) Add x86 CPUID leaf 4 cache detection to existing x2apic id method
so equivalent caches could be detected (in particular for the ll_caches
place).

Differential Revision: https://reviews.llvm.org/D100997
2021-05-03 18:00:24 -05:00

232 lines
6.2 KiB
C

#ifndef LIBOMP_TEST_TOPOLOGY_H
#define LIBOMP_TEST_TOPOLOGY_H
#include "libomp_test_affinity.h"
#include <stdio.h>
#include <stdlib.h>
#include <dirent.h>
#include <errno.h>
#include <ctype.h>
#include <omp.h>
typedef enum topology_obj_type_t {
TOPOLOGY_OBJ_THREAD,
TOPOLOGY_OBJ_CORE,
TOPOLOGY_OBJ_SOCKET,
TOPOLOGY_OBJ_MAX
} topology_obj_type_t;
typedef struct place_list_t {
int num_places;
affinity_mask_t **masks;
} place_list_t;
// Return the first character in file 'f' that is not a whitespace character
// including newlines and carriage returns
static int get_first_nonspace_from_file(FILE *f) {
int c;
do {
c = fgetc(f);
} while (c != EOF && (isspace(c) || c == '\n' || c == '\r'));
return c;
}
// Read an integer from file 'f' into 'number'
// Return 1 on successful read of integer,
// 0 on unsuccessful read of integer,
// EOF on end of file.
static int get_integer_from_file(FILE *f, int *number) {
int n;
n = fscanf(f, "%d", number);
if (feof(f))
return EOF;
if (n != 1)
return 0;
return 1;
}
// Read a siblings list file from Linux /sys/devices/system/cpu/cpu?/topology/*
static affinity_mask_t *topology_get_mask_from_file(const char *filename) {
int status = EXIT_SUCCESS;
FILE *f = fopen(filename, "r");
if (!f) {
perror(filename);
exit(EXIT_FAILURE);
}
affinity_mask_t *mask = affinity_mask_alloc();
while (1) {
int c, i, n, lower, upper;
// Read the first integer
n = get_integer_from_file(f, &lower);
if (n == EOF) {
break;
} else if (n == 0) {
fprintf(stderr, "syntax error: expected integer\n");
status = EXIT_FAILURE;
break;
}
// Now either a , or -
c = get_first_nonspace_from_file(f);
if (c == EOF || c == ',') {
affinity_mask_set(mask, lower);
if (c == EOF)
break;
} else if (c == '-') {
n = get_integer_from_file(f, &upper);
if (n == EOF || n == 0) {
fprintf(stderr, "syntax error: expected integer\n");
status = EXIT_FAILURE;
break;
}
for (i = lower; i <= upper; ++i)
affinity_mask_set(mask, i);
c = get_first_nonspace_from_file(f);
if (c == EOF) {
break;
} else if (c == ',') {
continue;
} else {
fprintf(stderr, "syntax error: unexpected character: '%c (%d)'\n", c,
c);
status = EXIT_FAILURE;
break;
}
} else {
fprintf(stderr, "syntax error: unexpected character: '%c (%d)'\n", c, c);
status = EXIT_FAILURE;
break;
}
}
fclose(f);
if (status == EXIT_FAILURE) {
affinity_mask_free(mask);
mask = NULL;
}
return mask;
}
static int topology_get_num_cpus() {
char buf[1024];
// Count the number of cpus
int cpu = 0;
while (1) {
snprintf(buf, sizeof(buf), "/sys/devices/system/cpu/cpu%d", cpu);
DIR *dir = opendir(buf);
if (dir) {
closedir(dir);
cpu++;
} else {
break;
}
}
if (cpu == 0)
cpu = 1;
return cpu;
}
// Return whether the current thread has access to all logical processors
static int topology_using_full_mask() {
int cpu;
int has_all = 1;
int num_cpus = topology_get_num_cpus();
affinity_mask_t *mask = affinity_mask_alloc();
get_thread_affinity(mask);
for (cpu = 0; cpu < num_cpus; ++cpu) {
if (!affinity_mask_isset(mask, cpu)) {
has_all = 0;
break;
}
}
affinity_mask_free(mask);
return has_all;
}
// Return array of masks representing OMP_PLACES keyword (e.g., sockets, cores,
// threads)
static place_list_t *topology_alloc_type_places(topology_obj_type_t type) {
char buf[1024];
int i, cpu, num_places, num_unique;
int num_cpus = topology_get_num_cpus();
place_list_t *places = (place_list_t *)malloc(sizeof(place_list_t));
affinity_mask_t **masks =
(affinity_mask_t **)malloc(sizeof(affinity_mask_t *) * num_cpus);
num_unique = 0;
for (cpu = 0; cpu < num_cpus; ++cpu) {
affinity_mask_t *mask;
if (type == TOPOLOGY_OBJ_CORE) {
snprintf(buf, sizeof(buf),
"/sys/devices/system/cpu/cpu%d/topology/thread_siblings_list",
cpu);
mask = topology_get_mask_from_file(buf);
} else if (type == TOPOLOGY_OBJ_SOCKET) {
snprintf(buf, sizeof(buf),
"/sys/devices/system/cpu/cpu%d/topology/core_siblings_list",
cpu);
mask = topology_get_mask_from_file(buf);
} else if (type == TOPOLOGY_OBJ_THREAD) {
mask = affinity_mask_alloc();
affinity_mask_set(mask, cpu);
} else {
fprintf(stderr, "Unknown topology type (%d)\n", (int)type);
exit(EXIT_FAILURE);
}
// Check for unique topology objects above the thread level
if (type != TOPOLOGY_OBJ_THREAD) {
for (i = 0; i < num_unique; ++i) {
if (affinity_mask_equal(masks[i], mask)) {
affinity_mask_free(mask);
mask = NULL;
break;
}
}
}
if (mask)
masks[num_unique++] = mask;
}
places->num_places = num_unique;
places->masks = masks;
return places;
}
static place_list_t *topology_alloc_openmp_places() {
int place, i;
int num_places = omp_get_num_places();
place_list_t *places = (place_list_t *)malloc(sizeof(place_list_t));
affinity_mask_t **masks =
(affinity_mask_t **)malloc(sizeof(affinity_mask_t *) * num_places);
for (place = 0; place < num_places; ++place) {
int num_procs = omp_get_place_num_procs(place);
int *ids = (int *)malloc(sizeof(int) * num_procs);
omp_get_place_proc_ids(place, ids);
affinity_mask_t *mask = affinity_mask_alloc();
for (i = 0; i < num_procs; ++i)
affinity_mask_set(mask, ids[i]);
masks[place] = mask;
}
places->num_places = num_places;
places->masks = masks;
return places;
}
// Free the array of masks from one of: topology_alloc_type_masks()
// or topology_alloc_openmp_masks()
static void topology_free_places(place_list_t *places) {
int i;
for (i = 0; i < places->num_places; ++i)
affinity_mask_free(places->masks[i]);
free(places->masks);
free(places);
}
static void topology_print_places(const place_list_t *p) {
int i;
char buf[1024];
for (i = 0; i < p->num_places; ++i) {
affinity_mask_snprintf(buf, sizeof(buf), p->masks[i]);
printf("Place %d: %s\n", i, buf);
}
}
#endif