llvm-project/mlir/lib/Conversion/GPUCommon/GPUToLLVMConversion.cpp
Mehdi Amini 973ddb7d6e Define a NoTerminator traits that allows operations with a single block region to not provide a terminator
In particular for Graph Regions, the terminator needs is just a
historical artifact of the generalization of MLIR from CFG region.
Operations like Module don't need a terminator, and before Module
migrated to be an operation with region there wasn't any needed.

To validate the feature, the ModuleOp is migrated to use this trait and
the ModuleTerminator operation is deleted.

This patch is likely to break clients, if you're in this case:

- you may iterate on a ModuleOp with `getBody()->without_terminator()`,
  the solution is simple: just remove the ->without_terminator!
- you created a builder with `Builder::atBlockTerminator(module_body)`,
  just use `Builder::atBlockEnd(module_body)` instead.
- you were handling ModuleTerminator: it isn't needed anymore.
- for generic code, a `Block::mayNotHaveTerminator()` may be used.

Differential Revision: https://reviews.llvm.org/D98468
2021-03-25 03:59:03 +00:00

801 lines
33 KiB
C++

//===- ConvertLaunchFuncToGpuRuntimeCalls.cpp - MLIR GPU lowering passes --===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a pass to convert gpu.launch_func op into a sequence of
// GPU runtime calls. As most of GPU runtimes does not have a stable published
// ABI, this pass uses a slim runtime layer that builds on top of the public
// API from GPU runtime headers.
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/GPUCommon/GPUCommonPass.h"
#include "../PassDetail.h"
#include "mlir/Conversion/AsyncToLLVM/AsyncToLLVM.h"
#include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVM.h"
#include "mlir/Conversion/VectorToLLVM/ConvertVectorToLLVM.h"
#include "mlir/Dialect/Async/IR/Async.h"
#include "mlir/Dialect/GPU/GPUDialect.h"
#include "mlir/Dialect/GPU/Passes.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/BuiltinTypes.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/FormatVariadic.h"
using namespace mlir;
static constexpr const char *kGpuBinaryStorageSuffix = "_gpubin_cst";
namespace {
class GpuToLLVMConversionPass
: public GpuToLLVMConversionPassBase<GpuToLLVMConversionPass> {
public:
GpuToLLVMConversionPass() = default;
GpuToLLVMConversionPass(const GpuToLLVMConversionPass &other)
: GpuToLLVMConversionPassBase(other) {}
// Run the dialect converter on the module.
void runOnOperation() override;
private:
Option<std::string> gpuBinaryAnnotation{
*this, "gpu-binary-annotation",
llvm::cl::desc("Annotation attribute string for GPU binary"),
llvm::cl::init(gpu::getDefaultGpuBinaryAnnotation())};
};
struct FunctionCallBuilder {
FunctionCallBuilder(StringRef functionName, Type returnType,
ArrayRef<Type> argumentTypes)
: functionName(functionName),
functionType(LLVM::LLVMFunctionType::get(returnType, argumentTypes)) {}
LLVM::CallOp create(Location loc, OpBuilder &builder,
ArrayRef<Value> arguments) const;
StringRef functionName;
LLVM::LLVMFunctionType functionType;
};
template <typename OpTy>
class ConvertOpToGpuRuntimeCallPattern : public ConvertOpToLLVMPattern<OpTy> {
public:
explicit ConvertOpToGpuRuntimeCallPattern(LLVMTypeConverter &typeConverter)
: ConvertOpToLLVMPattern<OpTy>(typeConverter) {}
protected:
MLIRContext *context = &this->getTypeConverter()->getContext();
Type llvmVoidType = LLVM::LLVMVoidType::get(context);
Type llvmPointerType =
LLVM::LLVMPointerType::get(IntegerType::get(context, 8));
Type llvmPointerPointerType = LLVM::LLVMPointerType::get(llvmPointerType);
Type llvmInt8Type = IntegerType::get(context, 8);
Type llvmInt32Type = IntegerType::get(context, 32);
Type llvmInt64Type = IntegerType::get(context, 64);
Type llvmIntPtrType = IntegerType::get(
context, this->getTypeConverter()->getPointerBitwidth(0));
FunctionCallBuilder moduleLoadCallBuilder = {
"mgpuModuleLoad",
llvmPointerType /* void *module */,
{llvmPointerType /* void *cubin */}};
FunctionCallBuilder moduleUnloadCallBuilder = {
"mgpuModuleUnload", llvmVoidType, {llvmPointerType /* void *module */}};
FunctionCallBuilder moduleGetFunctionCallBuilder = {
"mgpuModuleGetFunction",
llvmPointerType /* void *function */,
{
llvmPointerType, /* void *module */
llvmPointerType /* char *name */
}};
FunctionCallBuilder launchKernelCallBuilder = {
"mgpuLaunchKernel",
llvmVoidType,
{
llvmPointerType, /* void* f */
llvmIntPtrType, /* intptr_t gridXDim */
llvmIntPtrType, /* intptr_t gridyDim */
llvmIntPtrType, /* intptr_t gridZDim */
llvmIntPtrType, /* intptr_t blockXDim */
llvmIntPtrType, /* intptr_t blockYDim */
llvmIntPtrType, /* intptr_t blockZDim */
llvmInt32Type, /* unsigned int sharedMemBytes */
llvmPointerType, /* void *hstream */
llvmPointerPointerType, /* void **kernelParams */
llvmPointerPointerType /* void **extra */
}};
FunctionCallBuilder streamCreateCallBuilder = {
"mgpuStreamCreate", llvmPointerType /* void *stream */, {}};
FunctionCallBuilder streamDestroyCallBuilder = {
"mgpuStreamDestroy", llvmVoidType, {llvmPointerType /* void *stream */}};
FunctionCallBuilder streamSynchronizeCallBuilder = {
"mgpuStreamSynchronize",
llvmVoidType,
{llvmPointerType /* void *stream */}};
FunctionCallBuilder streamWaitEventCallBuilder = {
"mgpuStreamWaitEvent",
llvmVoidType,
{llvmPointerType /* void *stream */, llvmPointerType /* void *event */}};
FunctionCallBuilder eventCreateCallBuilder = {
"mgpuEventCreate", llvmPointerType /* void *event */, {}};
FunctionCallBuilder eventDestroyCallBuilder = {
"mgpuEventDestroy", llvmVoidType, {llvmPointerType /* void *event */}};
FunctionCallBuilder eventSynchronizeCallBuilder = {
"mgpuEventSynchronize",
llvmVoidType,
{llvmPointerType /* void *event */}};
FunctionCallBuilder eventRecordCallBuilder = {
"mgpuEventRecord",
llvmVoidType,
{llvmPointerType /* void *event */, llvmPointerType /* void *stream */}};
FunctionCallBuilder hostRegisterCallBuilder = {
"mgpuMemHostRegisterMemRef",
llvmVoidType,
{llvmIntPtrType /* intptr_t rank */,
llvmPointerType /* void *memrefDesc */,
llvmIntPtrType /* intptr_t elementSizeBytes */}};
FunctionCallBuilder allocCallBuilder = {
"mgpuMemAlloc",
llvmPointerType /* void * */,
{llvmIntPtrType /* intptr_t sizeBytes */,
llvmPointerType /* void *stream */}};
FunctionCallBuilder deallocCallBuilder = {
"mgpuMemFree",
llvmVoidType,
{llvmPointerType /* void *ptr */, llvmPointerType /* void *stream */}};
FunctionCallBuilder memcpyCallBuilder = {
"mgpuMemcpy",
llvmVoidType,
{llvmPointerType /* void *dst */, llvmPointerType /* void *src */,
llvmIntPtrType /* intptr_t sizeBytes */,
llvmPointerType /* void *stream */}};
};
/// A rewrite pattern to convert gpu.host_register operations into a GPU runtime
/// call. Currently it supports CUDA and ROCm (HIP).
class ConvertHostRegisterOpToGpuRuntimeCallPattern
: public ConvertOpToGpuRuntimeCallPattern<gpu::HostRegisterOp> {
public:
ConvertHostRegisterOpToGpuRuntimeCallPattern(LLVMTypeConverter &typeConverter)
: ConvertOpToGpuRuntimeCallPattern<gpu::HostRegisterOp>(typeConverter) {}
private:
LogicalResult
matchAndRewrite(gpu::HostRegisterOp hostRegisterOp, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override;
};
/// A rewrite pattern to convert gpu.alloc operations into a GPU runtime
/// call. Currently it supports CUDA and ROCm (HIP).
class ConvertAllocOpToGpuRuntimeCallPattern
: public ConvertOpToGpuRuntimeCallPattern<gpu::AllocOp> {
public:
ConvertAllocOpToGpuRuntimeCallPattern(LLVMTypeConverter &typeConverter)
: ConvertOpToGpuRuntimeCallPattern<gpu::AllocOp>(typeConverter) {}
private:
LogicalResult
matchAndRewrite(gpu::AllocOp allocOp, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override;
};
/// A rewrite pattern to convert gpu.dealloc operations into a GPU runtime
/// call. Currently it supports CUDA and ROCm (HIP).
class ConvertDeallocOpToGpuRuntimeCallPattern
: public ConvertOpToGpuRuntimeCallPattern<gpu::DeallocOp> {
public:
ConvertDeallocOpToGpuRuntimeCallPattern(LLVMTypeConverter &typeConverter)
: ConvertOpToGpuRuntimeCallPattern<gpu::DeallocOp>(typeConverter) {}
private:
LogicalResult
matchAndRewrite(gpu::DeallocOp deallocOp, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override;
};
class ConvertAsyncYieldToGpuRuntimeCallPattern
: public ConvertOpToGpuRuntimeCallPattern<async::YieldOp> {
public:
ConvertAsyncYieldToGpuRuntimeCallPattern(LLVMTypeConverter &typeConverter)
: ConvertOpToGpuRuntimeCallPattern<async::YieldOp>(typeConverter) {}
private:
LogicalResult
matchAndRewrite(async::YieldOp yieldOp, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override;
};
/// A rewrite pattern to convert gpu.wait operations into a GPU runtime
/// call. Currently it supports CUDA and ROCm (HIP).
class ConvertWaitOpToGpuRuntimeCallPattern
: public ConvertOpToGpuRuntimeCallPattern<gpu::WaitOp> {
public:
ConvertWaitOpToGpuRuntimeCallPattern(LLVMTypeConverter &typeConverter)
: ConvertOpToGpuRuntimeCallPattern<gpu::WaitOp>(typeConverter) {}
private:
LogicalResult
matchAndRewrite(gpu::WaitOp waitOp, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override;
};
/// A rewrite pattern to convert gpu.wait async operations into a GPU runtime
/// call. Currently it supports CUDA and ROCm (HIP).
class ConvertWaitAsyncOpToGpuRuntimeCallPattern
: public ConvertOpToGpuRuntimeCallPattern<gpu::WaitOp> {
public:
ConvertWaitAsyncOpToGpuRuntimeCallPattern(LLVMTypeConverter &typeConverter)
: ConvertOpToGpuRuntimeCallPattern<gpu::WaitOp>(typeConverter) {}
private:
LogicalResult
matchAndRewrite(gpu::WaitOp waitOp, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override;
};
/// A rewrite patter to convert gpu.launch_func operations into a sequence of
/// GPU runtime calls. Currently it supports CUDA and ROCm (HIP).
///
/// In essence, a gpu.launch_func operations gets compiled into the following
/// sequence of runtime calls:
///
/// * moduleLoad -- loads the module given the cubin / hsaco data
/// * moduleGetFunction -- gets a handle to the actual kernel function
/// * getStreamHelper -- initializes a new compute stream on GPU
/// * launchKernel -- launches the kernel on a stream
/// * streamSynchronize -- waits for operations on the stream to finish
///
/// Intermediate data structures are allocated on the stack.
class ConvertLaunchFuncOpToGpuRuntimeCallPattern
: public ConvertOpToGpuRuntimeCallPattern<gpu::LaunchFuncOp> {
public:
ConvertLaunchFuncOpToGpuRuntimeCallPattern(LLVMTypeConverter &typeConverter,
StringRef gpuBinaryAnnotation)
: ConvertOpToGpuRuntimeCallPattern<gpu::LaunchFuncOp>(typeConverter),
gpuBinaryAnnotation(gpuBinaryAnnotation) {}
private:
Value generateParamsArray(gpu::LaunchFuncOp launchOp,
ArrayRef<Value> operands, OpBuilder &builder) const;
Value generateKernelNameConstant(StringRef moduleName, StringRef name,
Location loc, OpBuilder &builder) const;
LogicalResult
matchAndRewrite(gpu::LaunchFuncOp launchOp, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override;
llvm::SmallString<32> gpuBinaryAnnotation;
};
class EraseGpuModuleOpPattern : public OpRewritePattern<gpu::GPUModuleOp> {
using OpRewritePattern<gpu::GPUModuleOp>::OpRewritePattern;
LogicalResult matchAndRewrite(gpu::GPUModuleOp op,
PatternRewriter &rewriter) const override {
// GPU kernel modules are no longer necessary since we have a global
// constant with the CUBIN, or HSACO data.
rewriter.eraseOp(op);
return success();
}
};
/// A rewrite pattern to convert gpu.memcpy operations into a GPU runtime
/// call. Currently it supports CUDA and ROCm (HIP).
class ConvertMemcpyOpToGpuRuntimeCallPattern
: public ConvertOpToGpuRuntimeCallPattern<gpu::MemcpyOp> {
public:
ConvertMemcpyOpToGpuRuntimeCallPattern(LLVMTypeConverter &typeConverter)
: ConvertOpToGpuRuntimeCallPattern<gpu::MemcpyOp>(typeConverter) {}
private:
LogicalResult
matchAndRewrite(gpu::MemcpyOp memcpyOp, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override;
};
} // namespace
void GpuToLLVMConversionPass::runOnOperation() {
LLVMTypeConverter converter(&getContext());
RewritePatternSet patterns(&getContext());
LLVMConversionTarget target(getContext());
populateVectorToLLVMConversionPatterns(converter, patterns);
populateStdToLLVMConversionPatterns(converter, patterns);
populateAsyncStructuralTypeConversionsAndLegality(converter, patterns,
target);
converter.addConversion(
[context = &converter.getContext()](gpu::AsyncTokenType type) -> Type {
return LLVM::LLVMPointerType::get(IntegerType::get(context, 8));
});
patterns.add<ConvertAllocOpToGpuRuntimeCallPattern,
ConvertDeallocOpToGpuRuntimeCallPattern,
ConvertHostRegisterOpToGpuRuntimeCallPattern,
ConvertMemcpyOpToGpuRuntimeCallPattern,
ConvertWaitAsyncOpToGpuRuntimeCallPattern,
ConvertWaitOpToGpuRuntimeCallPattern,
ConvertAsyncYieldToGpuRuntimeCallPattern>(converter);
patterns.add<ConvertLaunchFuncOpToGpuRuntimeCallPattern>(converter,
gpuBinaryAnnotation);
patterns.add<EraseGpuModuleOpPattern>(&converter.getContext());
if (failed(
applyPartialConversion(getOperation(), target, std::move(patterns))))
signalPassFailure();
}
LLVM::CallOp FunctionCallBuilder::create(Location loc, OpBuilder &builder,
ArrayRef<Value> arguments) const {
auto module = builder.getBlock()->getParent()->getParentOfType<ModuleOp>();
auto function = [&] {
if (auto function = module.lookupSymbol<LLVM::LLVMFuncOp>(functionName))
return function;
return OpBuilder::atBlockEnd(module.getBody())
.create<LLVM::LLVMFuncOp>(loc, functionName, functionType);
}();
return builder.create<LLVM::CallOp>(
loc, const_cast<LLVM::LLVMFunctionType &>(functionType).getReturnType(),
builder.getSymbolRefAttr(function), arguments);
}
// Returns whether all operands are of LLVM type.
static LogicalResult areAllLLVMTypes(Operation *op, ValueRange operands,
ConversionPatternRewriter &rewriter) {
if (!llvm::all_of(operands, [](Value value) {
return LLVM::isCompatibleType(value.getType());
}))
return rewriter.notifyMatchFailure(
op, "Cannot convert if operands aren't of LLVM type.");
return success();
}
static LogicalResult
isAsyncWithOneDependency(ConversionPatternRewriter &rewriter,
gpu::AsyncOpInterface op) {
if (op.getAsyncDependencies().size() != 1)
return rewriter.notifyMatchFailure(
op, "Can only convert with exactly one async dependency.");
if (!op.getAsyncToken())
return rewriter.notifyMatchFailure(op, "Can convert only async version.");
return success();
}
LogicalResult ConvertHostRegisterOpToGpuRuntimeCallPattern::matchAndRewrite(
gpu::HostRegisterOp hostRegisterOp, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const {
auto *op = hostRegisterOp.getOperation();
if (failed(areAllLLVMTypes(op, operands, rewriter)))
return failure();
Location loc = op->getLoc();
auto memRefType = hostRegisterOp.value().getType();
auto elementType = memRefType.cast<UnrankedMemRefType>().getElementType();
auto elementSize = getSizeInBytes(loc, elementType, rewriter);
auto arguments = getTypeConverter()->promoteOperands(loc, op->getOperands(),
operands, rewriter);
arguments.push_back(elementSize);
hostRegisterCallBuilder.create(loc, rewriter, arguments);
rewriter.eraseOp(op);
return success();
}
LogicalResult ConvertAllocOpToGpuRuntimeCallPattern::matchAndRewrite(
gpu::AllocOp allocOp, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const {
MemRefType memRefType = allocOp.getType();
if (failed(areAllLLVMTypes(allocOp, operands, rewriter)) ||
!isConvertibleAndHasIdentityMaps(memRefType) ||
failed(isAsyncWithOneDependency(rewriter, allocOp)))
return failure();
auto loc = allocOp.getLoc();
auto adaptor = gpu::AllocOpAdaptor(operands, allocOp->getAttrDictionary());
// Get shape of the memref as values: static sizes are constant
// values and dynamic sizes are passed to 'alloc' as operands.
SmallVector<Value, 4> shape;
SmallVector<Value, 4> strides;
Value sizeBytes;
getMemRefDescriptorSizes(loc, memRefType, adaptor.dynamicSizes(), rewriter,
shape, strides, sizeBytes);
// Allocate the underlying buffer and store a pointer to it in the MemRef
// descriptor.
Type elementPtrType = this->getElementPtrType(memRefType);
auto stream = adaptor.asyncDependencies().front();
Value allocatedPtr =
allocCallBuilder.create(loc, rewriter, {sizeBytes, stream}).getResult(0);
allocatedPtr =
rewriter.create<LLVM::BitcastOp>(loc, elementPtrType, allocatedPtr);
// No alignment.
Value alignedPtr = allocatedPtr;
// Create the MemRef descriptor.
auto memRefDescriptor = this->createMemRefDescriptor(
loc, memRefType, allocatedPtr, alignedPtr, shape, strides, rewriter);
rewriter.replaceOp(allocOp, {memRefDescriptor, stream});
return success();
}
LogicalResult ConvertDeallocOpToGpuRuntimeCallPattern::matchAndRewrite(
gpu::DeallocOp deallocOp, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const {
if (failed(areAllLLVMTypes(deallocOp, operands, rewriter)) ||
failed(isAsyncWithOneDependency(rewriter, deallocOp)))
return failure();
Location loc = deallocOp.getLoc();
auto adaptor =
gpu::DeallocOpAdaptor(operands, deallocOp->getAttrDictionary());
Value pointer =
MemRefDescriptor(adaptor.memref()).allocatedPtr(rewriter, loc);
auto casted = rewriter.create<LLVM::BitcastOp>(loc, llvmPointerType, pointer);
Value stream = adaptor.asyncDependencies().front();
deallocCallBuilder.create(loc, rewriter, {casted, stream});
rewriter.replaceOp(deallocOp, {stream});
return success();
}
static bool isGpuAsyncTokenType(Value value) {
return value.getType().isa<gpu::AsyncTokenType>();
}
// Converts !gpu.async.token operands of `async.yield` to runtime calls. The
// !gpu.async.token are lowered to stream within the async.execute region, but
// are passed as events between them. For each !gpu.async.token operand, we
// create an event and record it on the stream.
LogicalResult ConvertAsyncYieldToGpuRuntimeCallPattern::matchAndRewrite(
async::YieldOp yieldOp, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const {
if (llvm::none_of(yieldOp.operands(), isGpuAsyncTokenType))
return rewriter.notifyMatchFailure(yieldOp, "no gpu async token operand");
Location loc = yieldOp.getLoc();
SmallVector<Value, 4> newOperands(operands.begin(), operands.end());
llvm::SmallDenseSet<Value> streams;
for (auto &operand : yieldOp->getOpOperands()) {
if (!isGpuAsyncTokenType(operand.get()))
continue;
auto idx = operand.getOperandNumber();
auto stream = operands[idx];
auto event = eventCreateCallBuilder.create(loc, rewriter, {}).getResult(0);
eventRecordCallBuilder.create(loc, rewriter, {event, stream});
newOperands[idx] = event;
streams.insert(stream);
}
for (auto stream : streams)
streamDestroyCallBuilder.create(loc, rewriter, {stream});
rewriter.updateRootInPlace(yieldOp,
[&] { yieldOp->setOperands(newOperands); });
return success();
}
// Returns whether `value` is the result of an LLVM::CallOp to `functionName`.
static bool isDefinedByCallTo(Value value, StringRef functionName) {
assert(value.getType().isa<LLVM::LLVMPointerType>());
if (auto defOp = value.getDefiningOp<LLVM::CallOp>())
return defOp.callee()->equals(functionName);
return false;
}
// Converts `gpu.wait` to runtime calls. The converted op synchronizes the host
// with the stream/event operands. The operands are destroyed. That is, it
// assumes that it is not used afterwards or elsewhere. Otherwise we will get a
// runtime error. Eventually, we should guarantee this property.
LogicalResult ConvertWaitOpToGpuRuntimeCallPattern::matchAndRewrite(
gpu::WaitOp waitOp, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const {
if (waitOp.asyncToken())
return rewriter.notifyMatchFailure(waitOp, "Cannot convert async op.");
Location loc = waitOp.getLoc();
for (auto operand : operands) {
if (isDefinedByCallTo(operand, streamCreateCallBuilder.functionName)) {
// The converted operand's definition created a stream.
streamSynchronizeCallBuilder.create(loc, rewriter, {operand});
streamDestroyCallBuilder.create(loc, rewriter, {operand});
} else {
// Otherwise the converted operand is an event. This assumes that we use
// events in control flow code as well.
eventSynchronizeCallBuilder.create(loc, rewriter, {operand});
eventDestroyCallBuilder.create(loc, rewriter, {operand});
}
}
rewriter.eraseOp(waitOp);
return success();
}
// Converts `gpu.wait async` to runtime calls. The converted op creates a new
// stream that is synchronized with stream/event operands. The operands are
// destroyed. That is, it assumes that it is not used afterwards or elsewhere.
// Otherwise we will get a runtime error. Eventually, we should guarantee this
// property.
LogicalResult ConvertWaitAsyncOpToGpuRuntimeCallPattern::matchAndRewrite(
gpu::WaitOp waitOp, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const {
if (!waitOp.asyncToken())
return rewriter.notifyMatchFailure(waitOp, "Can only convert async op.");
Location loc = waitOp.getLoc();
auto insertionPoint = rewriter.saveInsertionPoint();
SmallVector<Value, 1> events;
for (auto pair : llvm::zip(waitOp.asyncDependencies(), operands)) {
auto operand = std::get<1>(pair);
if (isDefinedByCallTo(operand, streamCreateCallBuilder.functionName)) {
// The converted operand's definition created a stream. Insert an event
// into the stream just after the last use of the original token operand.
auto *defOp = std::get<0>(pair).getDefiningOp();
rewriter.setInsertionPointAfter(defOp);
auto event =
eventCreateCallBuilder.create(loc, rewriter, {}).getResult(0);
eventRecordCallBuilder.create(loc, rewriter, {event, operand});
events.push_back(event);
} else {
// Otherwise the converted operand is an event. This assumes that we use
// events in control flow code as well.
events.push_back(operand);
}
}
rewriter.restoreInsertionPoint(insertionPoint);
auto stream = streamCreateCallBuilder.create(loc, rewriter, {}).getResult(0);
for (auto event : events)
streamWaitEventCallBuilder.create(loc, rewriter, {stream, event});
for (auto event : events)
eventDestroyCallBuilder.create(loc, rewriter, {event});
rewriter.replaceOp(waitOp, {stream});
return success();
}
// Creates a struct containing all kernel parameters on the stack and returns
// an array of type-erased pointers to the fields of the struct. The array can
// then be passed to the CUDA / ROCm (HIP) kernel launch calls.
// The generated code is essentially as follows:
//
// %struct = alloca(sizeof(struct { Parameters... }))
// %array = alloca(NumParameters * sizeof(void *))
// for (i : [0, NumParameters))
// %fieldPtr = llvm.getelementptr %struct[0, i]
// llvm.store parameters[i], %fieldPtr
// %elementPtr = llvm.getelementptr %array[i]
// llvm.store %fieldPtr, %elementPtr
// return %array
Value ConvertLaunchFuncOpToGpuRuntimeCallPattern::generateParamsArray(
gpu::LaunchFuncOp launchOp, ArrayRef<Value> operands,
OpBuilder &builder) const {
auto loc = launchOp.getLoc();
auto numKernelOperands = launchOp.getNumKernelOperands();
auto arguments = getTypeConverter()->promoteOperands(
loc, launchOp.getOperands().take_back(numKernelOperands),
operands.take_back(numKernelOperands), builder);
auto numArguments = arguments.size();
SmallVector<Type, 4> argumentTypes;
argumentTypes.reserve(numArguments);
for (auto argument : arguments)
argumentTypes.push_back(argument.getType());
auto structType = LLVM::LLVMStructType::getNewIdentified(context, StringRef(),
argumentTypes);
auto one = builder.create<LLVM::ConstantOp>(loc, llvmInt32Type,
builder.getI32IntegerAttr(1));
auto structPtr = builder.create<LLVM::AllocaOp>(
loc, LLVM::LLVMPointerType::get(structType), one, /*alignment=*/0);
auto arraySize = builder.create<LLVM::ConstantOp>(
loc, llvmInt32Type, builder.getI32IntegerAttr(numArguments));
auto arrayPtr = builder.create<LLVM::AllocaOp>(loc, llvmPointerPointerType,
arraySize, /*alignment=*/0);
auto zero = builder.create<LLVM::ConstantOp>(loc, llvmInt32Type,
builder.getI32IntegerAttr(0));
for (auto en : llvm::enumerate(arguments)) {
auto index = builder.create<LLVM::ConstantOp>(
loc, llvmInt32Type, builder.getI32IntegerAttr(en.index()));
auto fieldPtr = builder.create<LLVM::GEPOp>(
loc, LLVM::LLVMPointerType::get(argumentTypes[en.index()]), structPtr,
ArrayRef<Value>{zero, index.getResult()});
builder.create<LLVM::StoreOp>(loc, en.value(), fieldPtr);
auto elementPtr = builder.create<LLVM::GEPOp>(loc, llvmPointerPointerType,
arrayPtr, index.getResult());
auto casted =
builder.create<LLVM::BitcastOp>(loc, llvmPointerType, fieldPtr);
builder.create<LLVM::StoreOp>(loc, casted, elementPtr);
}
return arrayPtr;
}
// Generates an LLVM IR dialect global that contains the name of the given
// kernel function as a C string, and returns a pointer to its beginning.
// The code is essentially:
//
// llvm.global constant @kernel_name("function_name\00")
// func(...) {
// %0 = llvm.addressof @kernel_name
// %1 = llvm.constant (0 : index)
// %2 = llvm.getelementptr %0[%1, %1] : !llvm<"i8*">
// }
Value ConvertLaunchFuncOpToGpuRuntimeCallPattern::generateKernelNameConstant(
StringRef moduleName, StringRef name, Location loc,
OpBuilder &builder) const {
// Make sure the trailing zero is included in the constant.
std::vector<char> kernelName(name.begin(), name.end());
kernelName.push_back('\0');
std::string globalName =
std::string(llvm::formatv("{0}_{1}_kernel_name", moduleName, name));
return LLVM::createGlobalString(
loc, builder, globalName, StringRef(kernelName.data(), kernelName.size()),
LLVM::Linkage::Internal);
}
// Emits LLVM IR to launch a kernel function. Expects the module that contains
// the compiled kernel function as a cubin in the 'nvvm.cubin' attribute, or a
// hsaco in the 'rocdl.hsaco' attribute of the kernel function in the IR.
//
// %0 = call %binarygetter
// %1 = call %moduleLoad(%0)
// %2 = <see generateKernelNameConstant>
// %3 = call %moduleGetFunction(%1, %2)
// %4 = call %streamCreate()
// %5 = <see generateParamsArray>
// call %launchKernel(%3, <launchOp operands 0..5>, 0, %4, %5, nullptr)
// call %streamSynchronize(%4)
// call %streamDestroy(%4)
// call %moduleUnload(%1)
//
// If the op is async, the stream corresponds to the (single) async dependency
// as well as the async token the op produces.
LogicalResult ConvertLaunchFuncOpToGpuRuntimeCallPattern::matchAndRewrite(
gpu::LaunchFuncOp launchOp, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const {
if (failed(areAllLLVMTypes(launchOp, operands, rewriter)))
return failure();
if (launchOp.asyncDependencies().size() > 1)
return rewriter.notifyMatchFailure(
launchOp, "Cannot convert with more than one async dependency.");
// Fail when the synchronous version of the op has async dependencies. The
// lowering destroys the stream, and we do not want to check that there is no
// use of the stream after this op.
if (!launchOp.asyncToken() && !launchOp.asyncDependencies().empty())
return rewriter.notifyMatchFailure(
launchOp, "Cannot convert non-async op with async dependencies.");
Location loc = launchOp.getLoc();
// Create an LLVM global with CUBIN extracted from the kernel annotation and
// obtain a pointer to the first byte in it.
auto kernelModule = SymbolTable::lookupNearestSymbolFrom<gpu::GPUModuleOp>(
launchOp, launchOp.getKernelModuleName());
assert(kernelModule && "expected a kernel module");
auto binaryAttr =
kernelModule->getAttrOfType<StringAttr>(gpuBinaryAnnotation);
if (!binaryAttr) {
kernelModule.emitOpError()
<< "missing " << gpuBinaryAnnotation << " attribute";
return failure();
}
SmallString<128> nameBuffer(kernelModule.getName());
nameBuffer.append(kGpuBinaryStorageSuffix);
Value data =
LLVM::createGlobalString(loc, rewriter, nameBuffer.str(),
binaryAttr.getValue(), LLVM::Linkage::Internal);
auto module = moduleLoadCallBuilder.create(loc, rewriter, data);
// Get the function from the module. The name corresponds to the name of
// the kernel function.
auto kernelName = generateKernelNameConstant(
launchOp.getKernelModuleName(), launchOp.getKernelName(), loc, rewriter);
auto function = moduleGetFunctionCallBuilder.create(
loc, rewriter, {module.getResult(0), kernelName});
auto zero = rewriter.create<LLVM::ConstantOp>(loc, llvmInt32Type,
rewriter.getI32IntegerAttr(0));
auto adaptor =
gpu::LaunchFuncOpAdaptor(operands, launchOp->getAttrDictionary());
Value stream =
adaptor.asyncDependencies().empty()
? streamCreateCallBuilder.create(loc, rewriter, {}).getResult(0)
: adaptor.asyncDependencies().front();
// Create array of pointers to kernel arguments.
auto kernelParams = generateParamsArray(launchOp, operands, rewriter);
auto nullpointer = rewriter.create<LLVM::NullOp>(loc, llvmPointerPointerType);
launchKernelCallBuilder.create(loc, rewriter,
{function.getResult(0), launchOp.gridSizeX(),
launchOp.gridSizeY(), launchOp.gridSizeZ(),
launchOp.blockSizeX(), launchOp.blockSizeY(),
launchOp.blockSizeZ(),
/*sharedMemBytes=*/zero, stream, kernelParams,
/*extra=*/nullpointer});
if (launchOp.asyncToken()) {
// Async launch: make dependent ops use the same stream.
rewriter.replaceOp(launchOp, {stream});
} else {
// Synchronize with host and destroy stream. This must be the stream created
// above (with no other uses) because we check that the synchronous version
// does not have any async dependencies.
streamSynchronizeCallBuilder.create(loc, rewriter, stream);
streamDestroyCallBuilder.create(loc, rewriter, stream);
rewriter.eraseOp(launchOp);
}
moduleUnloadCallBuilder.create(loc, rewriter, module.getResult(0));
return success();
}
LogicalResult ConvertMemcpyOpToGpuRuntimeCallPattern::matchAndRewrite(
gpu::MemcpyOp memcpyOp, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const {
auto memRefType = memcpyOp.src().getType().cast<MemRefType>();
if (failed(areAllLLVMTypes(memcpyOp, operands, rewriter)) ||
!isConvertibleAndHasIdentityMaps(memRefType) ||
failed(isAsyncWithOneDependency(rewriter, memcpyOp)))
return failure();
auto loc = memcpyOp.getLoc();
auto adaptor = gpu::MemcpyOpAdaptor(operands, memcpyOp->getAttrDictionary());
MemRefDescriptor srcDesc(adaptor.src());
Value numElements =
memRefType.hasStaticShape()
? createIndexConstant(rewriter, loc, memRefType.getNumElements())
// For identity layouts (verified above), the number of elements is
// stride[0] * size[0].
: rewriter.create<LLVM::MulOp>(loc, srcDesc.stride(rewriter, loc, 0),
srcDesc.size(rewriter, loc, 0));
Type elementPtrType = getElementPtrType(memRefType);
Value nullPtr = rewriter.create<LLVM::NullOp>(loc, elementPtrType);
Value gepPtr = rewriter.create<LLVM::GEPOp>(
loc, elementPtrType, ArrayRef<Value>{nullPtr, numElements});
auto sizeBytes =
rewriter.create<LLVM::PtrToIntOp>(loc, getIndexType(), gepPtr);
auto src = rewriter.create<LLVM::BitcastOp>(
loc, llvmPointerType, srcDesc.alignedPtr(rewriter, loc));
auto dst = rewriter.create<LLVM::BitcastOp>(
loc, llvmPointerType,
MemRefDescriptor(adaptor.dst()).alignedPtr(rewriter, loc));
auto stream = adaptor.asyncDependencies().front();
memcpyCallBuilder.create(loc, rewriter, {dst, src, sizeBytes, stream});
rewriter.replaceOp(memcpyOp, {stream});
return success();
}
std::unique_ptr<mlir::OperationPass<mlir::ModuleOp>>
mlir::createGpuToLLVMConversionPass() {
return std::make_unique<GpuToLLVMConversionPass>();
}