llvm-project/mlir/lib/Dialect/Async/Transforms/AsyncToAsyncRuntime.cpp
Mehdi Amini 973ddb7d6e Define a NoTerminator traits that allows operations with a single block region to not provide a terminator
In particular for Graph Regions, the terminator needs is just a
historical artifact of the generalization of MLIR from CFG region.
Operations like Module don't need a terminator, and before Module
migrated to be an operation with region there wasn't any needed.

To validate the feature, the ModuleOp is migrated to use this trait and
the ModuleTerminator operation is deleted.

This patch is likely to break clients, if you're in this case:

- you may iterate on a ModuleOp with `getBody()->without_terminator()`,
  the solution is simple: just remove the ->without_terminator!
- you created a builder with `Builder::atBlockTerminator(module_body)`,
  just use `Builder::atBlockEnd(module_body)` instead.
- you were handling ModuleTerminator: it isn't needed anymore.
- for generic code, a `Block::mayNotHaveTerminator()` may be used.

Differential Revision: https://reviews.llvm.org/D98468
2021-03-25 03:59:03 +00:00

513 lines
20 KiB
C++

//===- AsyncToAsyncRuntime.cpp - Lower from Async to Async Runtime --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements lowering from high level async operations to async.coro
// and async.runtime operations.
//
//===----------------------------------------------------------------------===//
#include "PassDetail.h"
#include "mlir/Dialect/Async/IR/Async.h"
#include "mlir/Dialect/Async/Passes.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/IR/BlockAndValueMapping.h"
#include "mlir/IR/ImplicitLocOpBuilder.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/Transforms/RegionUtils.h"
#include "llvm/ADT/SetVector.h"
using namespace mlir;
using namespace mlir::async;
#define DEBUG_TYPE "async-to-async-runtime"
// Prefix for functions outlined from `async.execute` op regions.
static constexpr const char kAsyncFnPrefix[] = "async_execute_fn";
namespace {
class AsyncToAsyncRuntimePass
: public AsyncToAsyncRuntimeBase<AsyncToAsyncRuntimePass> {
public:
AsyncToAsyncRuntimePass() = default;
void runOnOperation() override;
};
} // namespace
//===----------------------------------------------------------------------===//
// async.execute op outlining to the coroutine functions.
//===----------------------------------------------------------------------===//
/// Function targeted for coroutine transformation has two additional blocks at
/// the end: coroutine cleanup and coroutine suspension.
///
/// async.await op lowering additionaly creates a resume block for each
/// operation to enable non-blocking waiting via coroutine suspension.
namespace {
struct CoroMachinery {
// Async execute region returns a completion token, and an async value for
// each yielded value.
//
// %token, %result = async.execute -> !async.value<T> {
// %0 = constant ... : T
// async.yield %0 : T
// }
Value asyncToken; // token representing completion of the async region
llvm::SmallVector<Value, 4> returnValues; // returned async values
Value coroHandle; // coroutine handle (!async.coro.handle value)
Block *cleanup; // coroutine cleanup block
Block *suspend; // coroutine suspension block
};
} // namespace
/// Builds an coroutine template compatible with LLVM coroutines switched-resume
/// lowering using `async.runtime.*` and `async.coro.*` operations.
///
/// See LLVM coroutines documentation: https://llvm.org/docs/Coroutines.html
///
/// - `entry` block sets up the coroutine.
/// - `cleanup` block cleans up the coroutine state.
/// - `suspend block after the @llvm.coro.end() defines what value will be
/// returned to the initial caller of a coroutine. Everything before the
/// @llvm.coro.end() will be executed at every suspension point.
///
/// Coroutine structure (only the important bits):
///
/// func @async_execute_fn(<function-arguments>)
/// -> (!async.token, !async.value<T>)
/// {
/// ^entry(<function-arguments>):
/// %token = <async token> : !async.token // create async runtime token
/// %value = <async value> : !async.value<T> // create async value
/// %id = async.coro.id // create a coroutine id
/// %hdl = async.coro.begin %id // create a coroutine handle
/// br ^cleanup
///
/// ^cleanup:
/// async.coro.free %hdl // delete the coroutine state
/// br ^suspend
///
/// ^suspend:
/// async.coro.end %hdl // marks the end of a coroutine
/// return %token, %value : !async.token, !async.value<T>
/// }
///
/// The actual code for the async.execute operation body region will be inserted
/// before the entry block terminator.
///
///
static CoroMachinery setupCoroMachinery(FuncOp func) {
assert(func.getBody().empty() && "Function must have empty body");
MLIRContext *ctx = func.getContext();
Block *entryBlock = func.addEntryBlock();
auto builder = ImplicitLocOpBuilder::atBlockBegin(func->getLoc(), entryBlock);
// ------------------------------------------------------------------------ //
// Allocate async token/values that we will return from a ramp function.
// ------------------------------------------------------------------------ //
auto retToken = builder.create<RuntimeCreateOp>(TokenType::get(ctx)).result();
llvm::SmallVector<Value, 4> retValues;
for (auto resType : func.getCallableResults().drop_front())
retValues.emplace_back(builder.create<RuntimeCreateOp>(resType).result());
// ------------------------------------------------------------------------ //
// Initialize coroutine: get coroutine id and coroutine handle.
// ------------------------------------------------------------------------ //
auto coroIdOp = builder.create<CoroIdOp>(CoroIdType::get(ctx));
auto coroHdlOp =
builder.create<CoroBeginOp>(CoroHandleType::get(ctx), coroIdOp.id());
Block *cleanupBlock = func.addBlock();
Block *suspendBlock = func.addBlock();
// ------------------------------------------------------------------------ //
// Coroutine cleanup block: deallocate coroutine frame, free the memory.
// ------------------------------------------------------------------------ //
builder.setInsertionPointToStart(cleanupBlock);
builder.create<CoroFreeOp>(coroIdOp.id(), coroHdlOp.handle());
// Branch into the suspend block.
builder.create<BranchOp>(suspendBlock);
// ------------------------------------------------------------------------ //
// Coroutine suspend block: mark the end of a coroutine and return allocated
// async token.
// ------------------------------------------------------------------------ //
builder.setInsertionPointToStart(suspendBlock);
// Mark the end of a coroutine: async.coro.end
builder.create<CoroEndOp>(coroHdlOp.handle());
// Return created `async.token` and `async.values` from the suspend block.
// This will be the return value of a coroutine ramp function.
SmallVector<Value, 4> ret{retToken};
ret.insert(ret.end(), retValues.begin(), retValues.end());
builder.create<ReturnOp>(ret);
// Branch from the entry block to the cleanup block to create a valid CFG.
builder.setInsertionPointToEnd(entryBlock);
builder.create<BranchOp>(cleanupBlock);
// `async.await` op lowering will create resume blocks for async
// continuations, and will conditionally branch to cleanup or suspend blocks.
CoroMachinery machinery;
machinery.asyncToken = retToken;
machinery.returnValues = retValues;
machinery.coroHandle = coroHdlOp.handle();
machinery.cleanup = cleanupBlock;
machinery.suspend = suspendBlock;
return machinery;
}
/// Outline the body region attached to the `async.execute` op into a standalone
/// function.
///
/// Note that this is not reversible transformation.
static std::pair<FuncOp, CoroMachinery>
outlineExecuteOp(SymbolTable &symbolTable, ExecuteOp execute) {
ModuleOp module = execute->getParentOfType<ModuleOp>();
MLIRContext *ctx = module.getContext();
Location loc = execute.getLoc();
// Collect all outlined function inputs.
llvm::SetVector<mlir::Value> functionInputs(execute.dependencies().begin(),
execute.dependencies().end());
functionInputs.insert(execute.operands().begin(), execute.operands().end());
getUsedValuesDefinedAbove(execute.body(), functionInputs);
// Collect types for the outlined function inputs and outputs.
auto typesRange = llvm::map_range(
functionInputs, [](Value value) { return value.getType(); });
SmallVector<Type, 4> inputTypes(typesRange.begin(), typesRange.end());
auto outputTypes = execute.getResultTypes();
auto funcType = FunctionType::get(ctx, inputTypes, outputTypes);
auto funcAttrs = ArrayRef<NamedAttribute>();
// TODO: Derive outlined function name from the parent FuncOp (support
// multiple nested async.execute operations).
FuncOp func = FuncOp::create(loc, kAsyncFnPrefix, funcType, funcAttrs);
symbolTable.insert(func);
SymbolTable::setSymbolVisibility(func, SymbolTable::Visibility::Private);
// Prepare a function for coroutine lowering by adding entry/cleanup/suspend
// blocks, adding async.coro operations and setting up control flow.
CoroMachinery coro = setupCoroMachinery(func);
// Suspend async function at the end of an entry block, and resume it using
// Async resume operation (execution will be resumed in a thread managed by
// the async runtime).
Block *entryBlock = &func.getBlocks().front();
auto builder = ImplicitLocOpBuilder::atBlockTerminator(loc, entryBlock);
// Save the coroutine state: async.coro.save
auto coroSaveOp =
builder.create<CoroSaveOp>(CoroStateType::get(ctx), coro.coroHandle);
// Pass coroutine to the runtime to be resumed on a runtime managed thread.
builder.create<RuntimeResumeOp>(coro.coroHandle);
// Split the entry block before the terminator (branch to suspend block).
auto *terminatorOp = entryBlock->getTerminator();
Block *suspended = terminatorOp->getBlock();
Block *resume = suspended->splitBlock(terminatorOp);
// Add async.coro.suspend as a suspended block terminator.
builder.setInsertionPointToEnd(suspended);
builder.create<CoroSuspendOp>(coroSaveOp.state(), coro.suspend, resume,
coro.cleanup);
size_t numDependencies = execute.dependencies().size();
size_t numOperands = execute.operands().size();
// Await on all dependencies before starting to execute the body region.
builder.setInsertionPointToStart(resume);
for (size_t i = 0; i < numDependencies; ++i)
builder.create<AwaitOp>(func.getArgument(i));
// Await on all async value operands and unwrap the payload.
SmallVector<Value, 4> unwrappedOperands(numOperands);
for (size_t i = 0; i < numOperands; ++i) {
Value operand = func.getArgument(numDependencies + i);
unwrappedOperands[i] = builder.create<AwaitOp>(loc, operand).result();
}
// Map from function inputs defined above the execute op to the function
// arguments.
BlockAndValueMapping valueMapping;
valueMapping.map(functionInputs, func.getArguments());
valueMapping.map(execute.body().getArguments(), unwrappedOperands);
// Clone all operations from the execute operation body into the outlined
// function body.
for (Operation &op : execute.body().getOps())
builder.clone(op, valueMapping);
// Replace the original `async.execute` with a call to outlined function.
ImplicitLocOpBuilder callBuilder(loc, execute);
auto callOutlinedFunc = callBuilder.create<CallOp>(
func.getName(), execute.getResultTypes(), functionInputs.getArrayRef());
execute.replaceAllUsesWith(callOutlinedFunc.getResults());
execute.erase();
return {func, coro};
}
//===----------------------------------------------------------------------===//
// Convert async.create_group operation to async.runtime.create
//===----------------------------------------------------------------------===//
namespace {
class CreateGroupOpLowering : public OpConversionPattern<CreateGroupOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(CreateGroupOp op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
rewriter.replaceOpWithNewOp<RuntimeCreateOp>(
op, GroupType::get(op->getContext()));
return success();
}
};
} // namespace
//===----------------------------------------------------------------------===//
// Convert async.add_to_group operation to async.runtime.add_to_group.
//===----------------------------------------------------------------------===//
namespace {
class AddToGroupOpLowering : public OpConversionPattern<AddToGroupOp> {
public:
using OpConversionPattern::OpConversionPattern;
LogicalResult
matchAndRewrite(AddToGroupOp op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
rewriter.replaceOpWithNewOp<RuntimeAddToGroupOp>(
op, rewriter.getIndexType(), operands);
return success();
}
};
} // namespace
//===----------------------------------------------------------------------===//
// Convert async.await and async.await_all operations to the async.runtime.await
// or async.runtime.await_and_resume operations.
//===----------------------------------------------------------------------===//
namespace {
template <typename AwaitType, typename AwaitableType>
class AwaitOpLoweringBase : public OpConversionPattern<AwaitType> {
using AwaitAdaptor = typename AwaitType::Adaptor;
public:
AwaitOpLoweringBase(
MLIRContext *ctx,
const llvm::DenseMap<FuncOp, CoroMachinery> &outlinedFunctions)
: OpConversionPattern<AwaitType>(ctx),
outlinedFunctions(outlinedFunctions) {}
LogicalResult
matchAndRewrite(AwaitType op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
// We can only await on one the `AwaitableType` (for `await` it can be
// a `token` or a `value`, for `await_all` it must be a `group`).
if (!op.operand().getType().template isa<AwaitableType>())
return rewriter.notifyMatchFailure(op, "unsupported awaitable type");
// Check if await operation is inside the outlined coroutine function.
auto func = op->template getParentOfType<FuncOp>();
auto outlined = outlinedFunctions.find(func);
const bool isInCoroutine = outlined != outlinedFunctions.end();
Location loc = op->getLoc();
Value operand = AwaitAdaptor(operands).operand();
// Inside regular functions we use the blocking wait operation to wait for
// the async object (token, value or group) to become available.
if (!isInCoroutine)
rewriter.create<RuntimeAwaitOp>(loc, operand);
// Inside the coroutine we convert await operation into coroutine suspension
// point, and resume execution asynchronously.
if (isInCoroutine) {
const CoroMachinery &coro = outlined->getSecond();
Block *suspended = op->getBlock();
ImplicitLocOpBuilder builder(loc, op, rewriter.getListener());
MLIRContext *ctx = op->getContext();
// Save the coroutine state and resume on a runtime managed thread when
// the operand becomes available.
auto coroSaveOp =
builder.create<CoroSaveOp>(CoroStateType::get(ctx), coro.coroHandle);
builder.create<RuntimeAwaitAndResumeOp>(operand, coro.coroHandle);
// Split the entry block before the await operation.
Block *resume = rewriter.splitBlock(suspended, Block::iterator(op));
// Add async.coro.suspend as a suspended block terminator.
builder.setInsertionPointToEnd(suspended);
builder.create<CoroSuspendOp>(coroSaveOp.state(), coro.suspend, resume,
coro.cleanup);
// Make sure that replacement value will be constructed in resume block.
rewriter.setInsertionPointToStart(resume);
}
// Erase or replace the await operation with the new value.
if (Value replaceWith = getReplacementValue(op, operand, rewriter))
rewriter.replaceOp(op, replaceWith);
else
rewriter.eraseOp(op);
return success();
}
virtual Value getReplacementValue(AwaitType op, Value operand,
ConversionPatternRewriter &rewriter) const {
return Value();
}
private:
const llvm::DenseMap<FuncOp, CoroMachinery> &outlinedFunctions;
};
/// Lowering for `async.await` with a token operand.
class AwaitTokenOpLowering : public AwaitOpLoweringBase<AwaitOp, TokenType> {
using Base = AwaitOpLoweringBase<AwaitOp, TokenType>;
public:
using Base::Base;
};
/// Lowering for `async.await` with a value operand.
class AwaitValueOpLowering : public AwaitOpLoweringBase<AwaitOp, ValueType> {
using Base = AwaitOpLoweringBase<AwaitOp, ValueType>;
public:
using Base::Base;
Value
getReplacementValue(AwaitOp op, Value operand,
ConversionPatternRewriter &rewriter) const override {
// Load from the async value storage.
auto valueType = operand.getType().cast<ValueType>().getValueType();
return rewriter.create<RuntimeLoadOp>(op->getLoc(), valueType, operand);
}
};
/// Lowering for `async.await_all` operation.
class AwaitAllOpLowering : public AwaitOpLoweringBase<AwaitAllOp, GroupType> {
using Base = AwaitOpLoweringBase<AwaitAllOp, GroupType>;
public:
using Base::Base;
};
} // namespace
//===----------------------------------------------------------------------===//
// Convert async.yield operation to async.runtime operations.
//===----------------------------------------------------------------------===//
class YieldOpLowering : public OpConversionPattern<async::YieldOp> {
public:
YieldOpLowering(
MLIRContext *ctx,
const llvm::DenseMap<FuncOp, CoroMachinery> &outlinedFunctions)
: OpConversionPattern<async::YieldOp>(ctx),
outlinedFunctions(outlinedFunctions) {}
LogicalResult
matchAndRewrite(async::YieldOp op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
// Check if yield operation is inside the outlined coroutine function.
auto func = op->template getParentOfType<FuncOp>();
auto outlined = outlinedFunctions.find(func);
if (outlined == outlinedFunctions.end())
return rewriter.notifyMatchFailure(
op, "operation is not inside the outlined async.execute function");
Location loc = op->getLoc();
const CoroMachinery &coro = outlined->getSecond();
// Store yielded values into the async values storage and switch async
// values state to available.
for (auto tuple : llvm::zip(operands, coro.returnValues)) {
Value yieldValue = std::get<0>(tuple);
Value asyncValue = std::get<1>(tuple);
rewriter.create<RuntimeStoreOp>(loc, yieldValue, asyncValue);
rewriter.create<RuntimeSetAvailableOp>(loc, asyncValue);
}
// Switch the coroutine completion token to available state.
rewriter.replaceOpWithNewOp<RuntimeSetAvailableOp>(op, coro.asyncToken);
return success();
}
private:
const llvm::DenseMap<FuncOp, CoroMachinery> &outlinedFunctions;
};
//===----------------------------------------------------------------------===//
void AsyncToAsyncRuntimePass::runOnOperation() {
ModuleOp module = getOperation();
SymbolTable symbolTable(module);
// Outline all `async.execute` body regions into async functions (coroutines).
llvm::DenseMap<FuncOp, CoroMachinery> outlinedFunctions;
module.walk([&](ExecuteOp execute) {
outlinedFunctions.insert(outlineExecuteOp(symbolTable, execute));
});
LLVM_DEBUG({
llvm::dbgs() << "Outlined " << outlinedFunctions.size()
<< " functions built from async.execute operations\n";
});
// Lower async operations to async.runtime operations.
MLIRContext *ctx = module->getContext();
RewritePatternSet asyncPatterns(ctx);
// Async lowering does not use type converter because it must preserve all
// types for async.runtime operations.
asyncPatterns.add<CreateGroupOpLowering, AddToGroupOpLowering>(ctx);
asyncPatterns.add<AwaitTokenOpLowering, AwaitValueOpLowering,
AwaitAllOpLowering, YieldOpLowering>(ctx,
outlinedFunctions);
// All high level async operations must be lowered to the runtime operations.
ConversionTarget runtimeTarget(*ctx);
runtimeTarget.addLegalDialect<AsyncDialect>();
runtimeTarget.addIllegalOp<CreateGroupOp, AddToGroupOp>();
runtimeTarget.addIllegalOp<ExecuteOp, AwaitOp, AwaitAllOp, async::YieldOp>();
if (failed(applyPartialConversion(module, runtimeTarget,
std::move(asyncPatterns)))) {
signalPassFailure();
return;
}
}
std::unique_ptr<OperationPass<ModuleOp>> mlir::createAsyncToAsyncRuntimePass() {
return std::make_unique<AsyncToAsyncRuntimePass>();
}