
In particular for Graph Regions, the terminator needs is just a historical artifact of the generalization of MLIR from CFG region. Operations like Module don't need a terminator, and before Module migrated to be an operation with region there wasn't any needed. To validate the feature, the ModuleOp is migrated to use this trait and the ModuleTerminator operation is deleted. This patch is likely to break clients, if you're in this case: - you may iterate on a ModuleOp with `getBody()->without_terminator()`, the solution is simple: just remove the ->without_terminator! - you created a builder with `Builder::atBlockTerminator(module_body)`, just use `Builder::atBlockEnd(module_body)` instead. - you were handling ModuleTerminator: it isn't needed anymore. - for generic code, a `Block::mayNotHaveTerminator()` may be used. Differential Revision: https://reviews.llvm.org/D98468
717 lines
27 KiB
C++
717 lines
27 KiB
C++
//===- RegionUtils.cpp - Region-related transformation utilities ----------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Transforms/RegionUtils.h"
|
|
#include "mlir/IR/Block.h"
|
|
#include "mlir/IR/Operation.h"
|
|
#include "mlir/IR/PatternMatch.h"
|
|
#include "mlir/IR/RegionGraphTraits.h"
|
|
#include "mlir/IR/Value.h"
|
|
#include "mlir/Interfaces/ControlFlowInterfaces.h"
|
|
#include "mlir/Interfaces/SideEffectInterfaces.h"
|
|
|
|
#include "llvm/ADT/DepthFirstIterator.h"
|
|
#include "llvm/ADT/PostOrderIterator.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
|
|
using namespace mlir;
|
|
|
|
void mlir::replaceAllUsesInRegionWith(Value orig, Value replacement,
|
|
Region ®ion) {
|
|
for (auto &use : llvm::make_early_inc_range(orig.getUses())) {
|
|
if (region.isAncestor(use.getOwner()->getParentRegion()))
|
|
use.set(replacement);
|
|
}
|
|
}
|
|
|
|
void mlir::visitUsedValuesDefinedAbove(
|
|
Region ®ion, Region &limit, function_ref<void(OpOperand *)> callback) {
|
|
assert(limit.isAncestor(®ion) &&
|
|
"expected isolation limit to be an ancestor of the given region");
|
|
|
|
// Collect proper ancestors of `limit` upfront to avoid traversing the region
|
|
// tree for every value.
|
|
SmallPtrSet<Region *, 4> properAncestors;
|
|
for (auto *reg = limit.getParentRegion(); reg != nullptr;
|
|
reg = reg->getParentRegion()) {
|
|
properAncestors.insert(reg);
|
|
}
|
|
|
|
region.walk([callback, &properAncestors](Operation *op) {
|
|
for (OpOperand &operand : op->getOpOperands())
|
|
// Callback on values defined in a proper ancestor of region.
|
|
if (properAncestors.count(operand.get().getParentRegion()))
|
|
callback(&operand);
|
|
});
|
|
}
|
|
|
|
void mlir::visitUsedValuesDefinedAbove(
|
|
MutableArrayRef<Region> regions, function_ref<void(OpOperand *)> callback) {
|
|
for (Region ®ion : regions)
|
|
visitUsedValuesDefinedAbove(region, region, callback);
|
|
}
|
|
|
|
void mlir::getUsedValuesDefinedAbove(Region ®ion, Region &limit,
|
|
llvm::SetVector<Value> &values) {
|
|
visitUsedValuesDefinedAbove(region, limit, [&](OpOperand *operand) {
|
|
values.insert(operand->get());
|
|
});
|
|
}
|
|
|
|
void mlir::getUsedValuesDefinedAbove(MutableArrayRef<Region> regions,
|
|
llvm::SetVector<Value> &values) {
|
|
for (Region ®ion : regions)
|
|
getUsedValuesDefinedAbove(region, region, values);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Unreachable Block Elimination
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Erase the unreachable blocks within the provided regions. Returns success
|
|
/// if any blocks were erased, failure otherwise.
|
|
// TODO: We could likely merge this with the DCE algorithm below.
|
|
static LogicalResult eraseUnreachableBlocks(RewriterBase &rewriter,
|
|
MutableArrayRef<Region> regions) {
|
|
// Set of blocks found to be reachable within a given region.
|
|
llvm::df_iterator_default_set<Block *, 16> reachable;
|
|
// If any blocks were found to be dead.
|
|
bool erasedDeadBlocks = false;
|
|
|
|
SmallVector<Region *, 1> worklist;
|
|
worklist.reserve(regions.size());
|
|
for (Region ®ion : regions)
|
|
worklist.push_back(®ion);
|
|
while (!worklist.empty()) {
|
|
Region *region = worklist.pop_back_val();
|
|
if (region->empty())
|
|
continue;
|
|
|
|
// If this is a single block region, just collect the nested regions.
|
|
if (std::next(region->begin()) == region->end()) {
|
|
for (Operation &op : region->front())
|
|
for (Region ®ion : op.getRegions())
|
|
worklist.push_back(®ion);
|
|
continue;
|
|
}
|
|
|
|
// Mark all reachable blocks.
|
|
reachable.clear();
|
|
for (Block *block : depth_first_ext(®ion->front(), reachable))
|
|
(void)block /* Mark all reachable blocks */;
|
|
|
|
// Collect all of the dead blocks and push the live regions onto the
|
|
// worklist.
|
|
for (Block &block : llvm::make_early_inc_range(*region)) {
|
|
if (!reachable.count(&block)) {
|
|
block.dropAllDefinedValueUses();
|
|
rewriter.eraseBlock(&block);
|
|
erasedDeadBlocks = true;
|
|
continue;
|
|
}
|
|
|
|
// Walk any regions within this block.
|
|
for (Operation &op : block)
|
|
for (Region ®ion : op.getRegions())
|
|
worklist.push_back(®ion);
|
|
}
|
|
}
|
|
|
|
return success(erasedDeadBlocks);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Dead Code Elimination
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
/// Data structure used to track which values have already been proved live.
|
|
///
|
|
/// Because Operation's can have multiple results, this data structure tracks
|
|
/// liveness for both Value's and Operation's to avoid having to look through
|
|
/// all Operation results when analyzing a use.
|
|
///
|
|
/// This data structure essentially tracks the dataflow lattice.
|
|
/// The set of values/ops proved live increases monotonically to a fixed-point.
|
|
class LiveMap {
|
|
public:
|
|
/// Value methods.
|
|
bool wasProvenLive(Value value) {
|
|
// TODO: For results that are removable, e.g. for region based control flow,
|
|
// we could allow for these values to be tracked independently.
|
|
if (OpResult result = value.dyn_cast<OpResult>())
|
|
return wasProvenLive(result.getOwner());
|
|
return wasProvenLive(value.cast<BlockArgument>());
|
|
}
|
|
bool wasProvenLive(BlockArgument arg) { return liveValues.count(arg); }
|
|
void setProvedLive(Value value) {
|
|
// TODO: For results that are removable, e.g. for region based control flow,
|
|
// we could allow for these values to be tracked independently.
|
|
if (OpResult result = value.dyn_cast<OpResult>())
|
|
return setProvedLive(result.getOwner());
|
|
setProvedLive(value.cast<BlockArgument>());
|
|
}
|
|
void setProvedLive(BlockArgument arg) {
|
|
changed |= liveValues.insert(arg).second;
|
|
}
|
|
|
|
/// Operation methods.
|
|
bool wasProvenLive(Operation *op) { return liveOps.count(op); }
|
|
void setProvedLive(Operation *op) { changed |= liveOps.insert(op).second; }
|
|
|
|
/// Methods for tracking if we have reached a fixed-point.
|
|
void resetChanged() { changed = false; }
|
|
bool hasChanged() { return changed; }
|
|
|
|
private:
|
|
bool changed = false;
|
|
DenseSet<Value> liveValues;
|
|
DenseSet<Operation *> liveOps;
|
|
};
|
|
} // namespace
|
|
|
|
static bool isUseSpeciallyKnownDead(OpOperand &use, LiveMap &liveMap) {
|
|
Operation *owner = use.getOwner();
|
|
unsigned operandIndex = use.getOperandNumber();
|
|
// This pass generally treats all uses of an op as live if the op itself is
|
|
// considered live. However, for successor operands to terminators we need a
|
|
// finer-grained notion where we deduce liveness for operands individually.
|
|
// The reason for this is easiest to think about in terms of a classical phi
|
|
// node based SSA IR, where each successor operand is really an operand to a
|
|
// *separate* phi node, rather than all operands to the branch itself as with
|
|
// the block argument representation that MLIR uses.
|
|
//
|
|
// And similarly, because each successor operand is really an operand to a phi
|
|
// node, rather than to the terminator op itself, a terminator op can't e.g.
|
|
// "print" the value of a successor operand.
|
|
if (owner->hasTrait<OpTrait::IsTerminator>()) {
|
|
if (BranchOpInterface branchInterface = dyn_cast<BranchOpInterface>(owner))
|
|
if (auto arg = branchInterface.getSuccessorBlockArgument(operandIndex))
|
|
return !liveMap.wasProvenLive(*arg);
|
|
return false;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static void processValue(Value value, LiveMap &liveMap) {
|
|
bool provedLive = llvm::any_of(value.getUses(), [&](OpOperand &use) {
|
|
if (isUseSpeciallyKnownDead(use, liveMap))
|
|
return false;
|
|
return liveMap.wasProvenLive(use.getOwner());
|
|
});
|
|
if (provedLive)
|
|
liveMap.setProvedLive(value);
|
|
}
|
|
|
|
static void propagateLiveness(Region ®ion, LiveMap &liveMap);
|
|
|
|
static void propagateTerminatorLiveness(Operation *op, LiveMap &liveMap) {
|
|
// Terminators are always live.
|
|
liveMap.setProvedLive(op);
|
|
|
|
// Check to see if we can reason about the successor operands and mutate them.
|
|
BranchOpInterface branchInterface = dyn_cast<BranchOpInterface>(op);
|
|
if (!branchInterface) {
|
|
for (Block *successor : op->getSuccessors())
|
|
for (BlockArgument arg : successor->getArguments())
|
|
liveMap.setProvedLive(arg);
|
|
return;
|
|
}
|
|
|
|
// If we can't reason about the operands to a successor, conservatively mark
|
|
// all arguments as live.
|
|
for (unsigned i = 0, e = op->getNumSuccessors(); i != e; ++i) {
|
|
if (!branchInterface.getMutableSuccessorOperands(i))
|
|
for (BlockArgument arg : op->getSuccessor(i)->getArguments())
|
|
liveMap.setProvedLive(arg);
|
|
}
|
|
}
|
|
|
|
static void propagateLiveness(Operation *op, LiveMap &liveMap) {
|
|
// Recurse on any regions the op has.
|
|
for (Region ®ion : op->getRegions())
|
|
propagateLiveness(region, liveMap);
|
|
|
|
// Process terminator operations.
|
|
if (op->hasTrait<OpTrait::IsTerminator>())
|
|
return propagateTerminatorLiveness(op, liveMap);
|
|
|
|
// Don't reprocess live operations.
|
|
if (liveMap.wasProvenLive(op))
|
|
return;
|
|
|
|
// Process the op itself.
|
|
if (!wouldOpBeTriviallyDead(op))
|
|
return liveMap.setProvedLive(op);
|
|
|
|
// If the op isn't intrinsically alive, check it's results.
|
|
for (Value value : op->getResults())
|
|
processValue(value, liveMap);
|
|
}
|
|
|
|
static void propagateLiveness(Region ®ion, LiveMap &liveMap) {
|
|
if (region.empty())
|
|
return;
|
|
|
|
for (Block *block : llvm::post_order(®ion.front())) {
|
|
// We process block arguments after the ops in the block, to promote
|
|
// faster convergence to a fixed point (we try to visit uses before defs).
|
|
for (Operation &op : llvm::reverse(block->getOperations()))
|
|
propagateLiveness(&op, liveMap);
|
|
|
|
// We currently do not remove entry block arguments, so there is no need to
|
|
// track their liveness.
|
|
// TODO: We could track these and enable removing dead operands/arguments
|
|
// from region control flow operations.
|
|
if (block->isEntryBlock())
|
|
continue;
|
|
|
|
for (Value value : block->getArguments()) {
|
|
if (!liveMap.wasProvenLive(value))
|
|
processValue(value, liveMap);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void eraseTerminatorSuccessorOperands(Operation *terminator,
|
|
LiveMap &liveMap) {
|
|
BranchOpInterface branchOp = dyn_cast<BranchOpInterface>(terminator);
|
|
if (!branchOp)
|
|
return;
|
|
|
|
for (unsigned succI = 0, succE = terminator->getNumSuccessors();
|
|
succI < succE; succI++) {
|
|
// Iterating successors in reverse is not strictly needed, since we
|
|
// aren't erasing any successors. But it is slightly more efficient
|
|
// since it will promote later operands of the terminator being erased
|
|
// first, reducing the quadratic-ness.
|
|
unsigned succ = succE - succI - 1;
|
|
Optional<MutableOperandRange> succOperands =
|
|
branchOp.getMutableSuccessorOperands(succ);
|
|
if (!succOperands)
|
|
continue;
|
|
Block *successor = terminator->getSuccessor(succ);
|
|
|
|
for (unsigned argI = 0, argE = succOperands->size(); argI < argE; ++argI) {
|
|
// Iterating args in reverse is needed for correctness, to avoid
|
|
// shifting later args when earlier args are erased.
|
|
unsigned arg = argE - argI - 1;
|
|
if (!liveMap.wasProvenLive(successor->getArgument(arg)))
|
|
succOperands->erase(arg);
|
|
}
|
|
}
|
|
}
|
|
|
|
static LogicalResult deleteDeadness(RewriterBase &rewriter,
|
|
MutableArrayRef<Region> regions,
|
|
LiveMap &liveMap) {
|
|
bool erasedAnything = false;
|
|
for (Region ®ion : regions) {
|
|
if (region.empty())
|
|
continue;
|
|
bool hasSingleBlock = llvm::hasSingleElement(region);
|
|
|
|
// Delete every operation that is not live. Graph regions may have cycles
|
|
// in the use-def graph, so we must explicitly dropAllUses() from each
|
|
// operation as we erase it. Visiting the operations in post-order
|
|
// guarantees that in SSA CFG regions value uses are removed before defs,
|
|
// which makes dropAllUses() a no-op.
|
|
for (Block *block : llvm::post_order(®ion.front())) {
|
|
if (!hasSingleBlock)
|
|
eraseTerminatorSuccessorOperands(block->getTerminator(), liveMap);
|
|
for (Operation &childOp :
|
|
llvm::make_early_inc_range(llvm::reverse(block->getOperations()))) {
|
|
if (!liveMap.wasProvenLive(&childOp)) {
|
|
erasedAnything = true;
|
|
childOp.dropAllUses();
|
|
rewriter.eraseOp(&childOp);
|
|
} else {
|
|
erasedAnything |= succeeded(
|
|
deleteDeadness(rewriter, childOp.getRegions(), liveMap));
|
|
}
|
|
}
|
|
}
|
|
// Delete block arguments.
|
|
// The entry block has an unknown contract with their enclosing block, so
|
|
// skip it.
|
|
for (Block &block : llvm::drop_begin(region.getBlocks(), 1)) {
|
|
block.eraseArguments(
|
|
[&](BlockArgument arg) { return !liveMap.wasProvenLive(arg); });
|
|
}
|
|
}
|
|
return success(erasedAnything);
|
|
}
|
|
|
|
// This function performs a simple dead code elimination algorithm over the
|
|
// given regions.
|
|
//
|
|
// The overall goal is to prove that Values are dead, which allows deleting ops
|
|
// and block arguments.
|
|
//
|
|
// This uses an optimistic algorithm that assumes everything is dead until
|
|
// proved otherwise, allowing it to delete recursively dead cycles.
|
|
//
|
|
// This is a simple fixed-point dataflow analysis algorithm on a lattice
|
|
// {Dead,Alive}. Because liveness flows backward, we generally try to
|
|
// iterate everything backward to speed up convergence to the fixed-point. This
|
|
// allows for being able to delete recursively dead cycles of the use-def graph,
|
|
// including block arguments.
|
|
//
|
|
// This function returns success if any operations or arguments were deleted,
|
|
// failure otherwise.
|
|
static LogicalResult runRegionDCE(RewriterBase &rewriter,
|
|
MutableArrayRef<Region> regions) {
|
|
LiveMap liveMap;
|
|
do {
|
|
liveMap.resetChanged();
|
|
|
|
for (Region ®ion : regions)
|
|
propagateLiveness(region, liveMap);
|
|
} while (liveMap.hasChanged());
|
|
|
|
return deleteDeadness(rewriter, regions, liveMap);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Block Merging
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// BlockEquivalenceData
|
|
|
|
namespace {
|
|
/// This class contains the information for comparing the equivalencies of two
|
|
/// blocks. Blocks are considered equivalent if they contain the same operations
|
|
/// in the same order. The only allowed divergence is for operands that come
|
|
/// from sources outside of the parent block, i.e. the uses of values produced
|
|
/// within the block must be equivalent.
|
|
/// e.g.,
|
|
/// Equivalent:
|
|
/// ^bb1(%arg0: i32)
|
|
/// return %arg0, %foo : i32, i32
|
|
/// ^bb2(%arg1: i32)
|
|
/// return %arg1, %bar : i32, i32
|
|
/// Not Equivalent:
|
|
/// ^bb1(%arg0: i32)
|
|
/// return %foo, %arg0 : i32, i32
|
|
/// ^bb2(%arg1: i32)
|
|
/// return %arg1, %bar : i32, i32
|
|
struct BlockEquivalenceData {
|
|
BlockEquivalenceData(Block *block);
|
|
|
|
/// Return the order index for the given value that is within the block of
|
|
/// this data.
|
|
unsigned getOrderOf(Value value) const;
|
|
|
|
/// The block this data refers to.
|
|
Block *block;
|
|
/// A hash value for this block.
|
|
llvm::hash_code hash;
|
|
/// A map of result producing operations to their relative orders within this
|
|
/// block. The order of an operation is the number of defined values that are
|
|
/// produced within the block before this operation.
|
|
DenseMap<Operation *, unsigned> opOrderIndex;
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
BlockEquivalenceData::BlockEquivalenceData(Block *block)
|
|
: block(block), hash(0) {
|
|
unsigned orderIt = block->getNumArguments();
|
|
for (Operation &op : *block) {
|
|
if (unsigned numResults = op.getNumResults()) {
|
|
opOrderIndex.try_emplace(&op, orderIt);
|
|
orderIt += numResults;
|
|
}
|
|
auto opHash = OperationEquivalence::computeHash(
|
|
&op, OperationEquivalence::Flags::IgnoreOperands);
|
|
hash = llvm::hash_combine(hash, opHash);
|
|
}
|
|
}
|
|
|
|
unsigned BlockEquivalenceData::getOrderOf(Value value) const {
|
|
assert(value.getParentBlock() == block && "expected value of this block");
|
|
|
|
// Arguments use the argument number as the order index.
|
|
if (BlockArgument arg = value.dyn_cast<BlockArgument>())
|
|
return arg.getArgNumber();
|
|
|
|
// Otherwise, the result order is offset from the parent op's order.
|
|
OpResult result = value.cast<OpResult>();
|
|
auto opOrderIt = opOrderIndex.find(result.getDefiningOp());
|
|
assert(opOrderIt != opOrderIndex.end() && "expected op to have an order");
|
|
return opOrderIt->second + result.getResultNumber();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// BlockMergeCluster
|
|
|
|
namespace {
|
|
/// This class represents a cluster of blocks to be merged together.
|
|
class BlockMergeCluster {
|
|
public:
|
|
BlockMergeCluster(BlockEquivalenceData &&leaderData)
|
|
: leaderData(std::move(leaderData)) {}
|
|
|
|
/// Attempt to add the given block to this cluster. Returns success if the
|
|
/// block was merged, failure otherwise.
|
|
LogicalResult addToCluster(BlockEquivalenceData &blockData);
|
|
|
|
/// Try to merge all of the blocks within this cluster into the leader block.
|
|
LogicalResult merge(RewriterBase &rewriter);
|
|
|
|
private:
|
|
/// The equivalence data for the leader of the cluster.
|
|
BlockEquivalenceData leaderData;
|
|
|
|
/// The set of blocks that can be merged into the leader.
|
|
llvm::SmallSetVector<Block *, 1> blocksToMerge;
|
|
|
|
/// A set of operand+index pairs that correspond to operands that need to be
|
|
/// replaced by arguments when the cluster gets merged.
|
|
std::set<std::pair<int, int>> operandsToMerge;
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
LogicalResult BlockMergeCluster::addToCluster(BlockEquivalenceData &blockData) {
|
|
if (leaderData.hash != blockData.hash)
|
|
return failure();
|
|
Block *leaderBlock = leaderData.block, *mergeBlock = blockData.block;
|
|
if (leaderBlock->getArgumentTypes() != mergeBlock->getArgumentTypes())
|
|
return failure();
|
|
|
|
// A set of operands that mismatch between the leader and the new block.
|
|
SmallVector<std::pair<int, int>, 8> mismatchedOperands;
|
|
auto lhsIt = leaderBlock->begin(), lhsE = leaderBlock->end();
|
|
auto rhsIt = blockData.block->begin(), rhsE = blockData.block->end();
|
|
for (int opI = 0; lhsIt != lhsE && rhsIt != rhsE; ++lhsIt, ++rhsIt, ++opI) {
|
|
// Check that the operations are equivalent.
|
|
if (!OperationEquivalence::isEquivalentTo(
|
|
&*lhsIt, &*rhsIt, OperationEquivalence::Flags::IgnoreOperands))
|
|
return failure();
|
|
|
|
// Compare the operands of the two operations. If the operand is within
|
|
// the block, it must refer to the same operation.
|
|
auto lhsOperands = lhsIt->getOperands(), rhsOperands = rhsIt->getOperands();
|
|
for (int operand : llvm::seq<int>(0, lhsIt->getNumOperands())) {
|
|
Value lhsOperand = lhsOperands[operand];
|
|
Value rhsOperand = rhsOperands[operand];
|
|
if (lhsOperand == rhsOperand)
|
|
continue;
|
|
// Check that the types of the operands match.
|
|
if (lhsOperand.getType() != rhsOperand.getType())
|
|
return failure();
|
|
|
|
// Check that these uses are both external, or both internal.
|
|
bool lhsIsInBlock = lhsOperand.getParentBlock() == leaderBlock;
|
|
bool rhsIsInBlock = rhsOperand.getParentBlock() == mergeBlock;
|
|
if (lhsIsInBlock != rhsIsInBlock)
|
|
return failure();
|
|
// Let the operands differ if they are defined in a different block. These
|
|
// will become new arguments if the blocks get merged.
|
|
if (!lhsIsInBlock) {
|
|
mismatchedOperands.emplace_back(opI, operand);
|
|
continue;
|
|
}
|
|
|
|
// Otherwise, these operands must have the same logical order within the
|
|
// parent block.
|
|
if (leaderData.getOrderOf(lhsOperand) != blockData.getOrderOf(rhsOperand))
|
|
return failure();
|
|
}
|
|
|
|
// If the lhs or rhs has external uses, the blocks cannot be merged as the
|
|
// merged version of this operation will not be either the lhs or rhs
|
|
// alone (thus semantically incorrect), but some mix dependending on which
|
|
// block preceeded this.
|
|
// TODO allow merging of operations when one block does not dominate the
|
|
// other
|
|
if (rhsIt->isUsedOutsideOfBlock(mergeBlock) ||
|
|
lhsIt->isUsedOutsideOfBlock(leaderBlock)) {
|
|
return failure();
|
|
}
|
|
}
|
|
// Make sure that the block sizes are equivalent.
|
|
if (lhsIt != lhsE || rhsIt != rhsE)
|
|
return failure();
|
|
|
|
// If we get here, the blocks are equivalent and can be merged.
|
|
operandsToMerge.insert(mismatchedOperands.begin(), mismatchedOperands.end());
|
|
blocksToMerge.insert(blockData.block);
|
|
return success();
|
|
}
|
|
|
|
/// Returns true if the predecessor terminators of the given block can not have
|
|
/// their operands updated.
|
|
static bool ableToUpdatePredOperands(Block *block) {
|
|
for (auto it = block->pred_begin(), e = block->pred_end(); it != e; ++it) {
|
|
auto branch = dyn_cast<BranchOpInterface>((*it)->getTerminator());
|
|
if (!branch || !branch.getMutableSuccessorOperands(it.getSuccessorIndex()))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
LogicalResult BlockMergeCluster::merge(RewriterBase &rewriter) {
|
|
// Don't consider clusters that don't have blocks to merge.
|
|
if (blocksToMerge.empty())
|
|
return failure();
|
|
|
|
Block *leaderBlock = leaderData.block;
|
|
if (!operandsToMerge.empty()) {
|
|
// If the cluster has operands to merge, verify that the predecessor
|
|
// terminators of each of the blocks can have their successor operands
|
|
// updated.
|
|
// TODO: We could try and sub-partition this cluster if only some blocks
|
|
// cause the mismatch.
|
|
if (!ableToUpdatePredOperands(leaderBlock) ||
|
|
!llvm::all_of(blocksToMerge, ableToUpdatePredOperands))
|
|
return failure();
|
|
|
|
// Collect the iterators for each of the blocks to merge. We will walk all
|
|
// of the iterators at once to avoid operand index invalidation.
|
|
SmallVector<Block::iterator, 2> blockIterators;
|
|
blockIterators.reserve(blocksToMerge.size() + 1);
|
|
blockIterators.push_back(leaderBlock->begin());
|
|
for (Block *mergeBlock : blocksToMerge)
|
|
blockIterators.push_back(mergeBlock->begin());
|
|
|
|
// Update each of the predecessor terminators with the new arguments.
|
|
SmallVector<SmallVector<Value, 8>, 2> newArguments(
|
|
1 + blocksToMerge.size(),
|
|
SmallVector<Value, 8>(operandsToMerge.size()));
|
|
unsigned curOpIndex = 0;
|
|
for (auto it : llvm::enumerate(operandsToMerge)) {
|
|
unsigned nextOpOffset = it.value().first - curOpIndex;
|
|
curOpIndex = it.value().first;
|
|
|
|
// Process the operand for each of the block iterators.
|
|
for (unsigned i = 0, e = blockIterators.size(); i != e; ++i) {
|
|
Block::iterator &blockIter = blockIterators[i];
|
|
std::advance(blockIter, nextOpOffset);
|
|
auto &operand = blockIter->getOpOperand(it.value().second);
|
|
newArguments[i][it.index()] = operand.get();
|
|
|
|
// Update the operand and insert an argument if this is the leader.
|
|
if (i == 0)
|
|
operand.set(leaderBlock->addArgument(operand.get().getType()));
|
|
}
|
|
}
|
|
// Update the predecessors for each of the blocks.
|
|
auto updatePredecessors = [&](Block *block, unsigned clusterIndex) {
|
|
for (auto predIt = block->pred_begin(), predE = block->pred_end();
|
|
predIt != predE; ++predIt) {
|
|
auto branch = cast<BranchOpInterface>((*predIt)->getTerminator());
|
|
unsigned succIndex = predIt.getSuccessorIndex();
|
|
branch.getMutableSuccessorOperands(succIndex)->append(
|
|
newArguments[clusterIndex]);
|
|
}
|
|
};
|
|
updatePredecessors(leaderBlock, /*clusterIndex=*/0);
|
|
for (unsigned i = 0, e = blocksToMerge.size(); i != e; ++i)
|
|
updatePredecessors(blocksToMerge[i], /*clusterIndex=*/i + 1);
|
|
}
|
|
|
|
// Replace all uses of the merged blocks with the leader and erase them.
|
|
for (Block *block : blocksToMerge) {
|
|
block->replaceAllUsesWith(leaderBlock);
|
|
rewriter.eraseBlock(block);
|
|
}
|
|
return success();
|
|
}
|
|
|
|
/// Identify identical blocks within the given region and merge them, inserting
|
|
/// new block arguments as necessary. Returns success if any blocks were merged,
|
|
/// failure otherwise.
|
|
static LogicalResult mergeIdenticalBlocks(RewriterBase &rewriter,
|
|
Region ®ion) {
|
|
if (region.empty() || llvm::hasSingleElement(region))
|
|
return failure();
|
|
|
|
// Identify sets of blocks, other than the entry block, that branch to the
|
|
// same successors. We will use these groups to create clusters of equivalent
|
|
// blocks.
|
|
DenseMap<SuccessorRange, SmallVector<Block *, 1>> matchingSuccessors;
|
|
for (Block &block : llvm::drop_begin(region, 1))
|
|
matchingSuccessors[block.getSuccessors()].push_back(&block);
|
|
|
|
bool mergedAnyBlocks = false;
|
|
for (ArrayRef<Block *> blocks : llvm::make_second_range(matchingSuccessors)) {
|
|
if (blocks.size() == 1)
|
|
continue;
|
|
|
|
SmallVector<BlockMergeCluster, 1> clusters;
|
|
for (Block *block : blocks) {
|
|
BlockEquivalenceData data(block);
|
|
|
|
// Don't allow merging if this block has any regions.
|
|
// TODO: Add support for regions if necessary.
|
|
bool hasNonEmptyRegion = llvm::any_of(*block, [](Operation &op) {
|
|
return llvm::any_of(op.getRegions(),
|
|
[](Region ®ion) { return !region.empty(); });
|
|
});
|
|
if (hasNonEmptyRegion)
|
|
continue;
|
|
|
|
// Try to add this block to an existing cluster.
|
|
bool addedToCluster = false;
|
|
for (auto &cluster : clusters)
|
|
if ((addedToCluster = succeeded(cluster.addToCluster(data))))
|
|
break;
|
|
if (!addedToCluster)
|
|
clusters.emplace_back(std::move(data));
|
|
}
|
|
for (auto &cluster : clusters)
|
|
mergedAnyBlocks |= succeeded(cluster.merge(rewriter));
|
|
}
|
|
|
|
return success(mergedAnyBlocks);
|
|
}
|
|
|
|
/// Identify identical blocks within the given regions and merge them, inserting
|
|
/// new block arguments as necessary.
|
|
static LogicalResult mergeIdenticalBlocks(RewriterBase &rewriter,
|
|
MutableArrayRef<Region> regions) {
|
|
llvm::SmallSetVector<Region *, 1> worklist;
|
|
for (auto ®ion : regions)
|
|
worklist.insert(®ion);
|
|
bool anyChanged = false;
|
|
while (!worklist.empty()) {
|
|
Region *region = worklist.pop_back_val();
|
|
if (succeeded(mergeIdenticalBlocks(rewriter, *region))) {
|
|
worklist.insert(region);
|
|
anyChanged = true;
|
|
}
|
|
|
|
// Add any nested regions to the worklist.
|
|
for (Block &block : *region)
|
|
for (auto &op : block)
|
|
for (auto &nestedRegion : op.getRegions())
|
|
worklist.insert(&nestedRegion);
|
|
}
|
|
|
|
return success(anyChanged);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Region Simplification
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Run a set of structural simplifications over the given regions. This
|
|
/// includes transformations like unreachable block elimination, dead argument
|
|
/// elimination, as well as some other DCE. This function returns success if any
|
|
/// of the regions were simplified, failure otherwise.
|
|
LogicalResult mlir::simplifyRegions(RewriterBase &rewriter,
|
|
MutableArrayRef<Region> regions) {
|
|
bool eliminatedBlocks = succeeded(eraseUnreachableBlocks(rewriter, regions));
|
|
bool eliminatedOpsOrArgs = succeeded(runRegionDCE(rewriter, regions));
|
|
bool mergedIdenticalBlocks =
|
|
succeeded(mergeIdenticalBlocks(rewriter, regions));
|
|
return success(eliminatedBlocks || eliminatedOpsOrArgs ||
|
|
mergedIdenticalBlocks);
|
|
}
|