llvm-project/clang/lib/CodeGen/BackendUtil.cpp
Nikita Popov 979c275097
[IR] Store Triple in Module (NFC) (#129868)
The module currently stores the target triple as a string. This means
that any code that wants to actually use the triple first has to
instantiate a Triple, which is somewhat expensive. The change in #121652
caused a moderate compile-time regression due to this. While it would be
easy enough to work around, I think that architecturally, it makes more
sense to store the parsed Triple in the module, so that it can always be
directly queried.

For this change, I've opted not to add any magic conversions between
std::string and Triple for backwards-compatibilty purses, and instead
write out needed Triple()s or str()s explicitly. This is because I think
a decent number of them should be changed to work on Triple as well, to
avoid unnecessary conversions back and forth.

The only interesting part in this patch is that the default triple is
Triple("") instead of Triple() to preserve existing behavior. The former
defaults to using the ELF object format instead of unknown object
format. We should fix that as well.
2025-03-06 10:27:47 +01:00

1479 lines
60 KiB
C++

//===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "clang/CodeGen/BackendUtil.h"
#include "BackendConsumer.h"
#include "LinkInModulesPass.h"
#include "clang/Basic/CodeGenOptions.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/LangOptions.h"
#include "clang/Basic/TargetOptions.h"
#include "clang/Frontend/FrontendDiagnostic.h"
#include "clang/Frontend/Utils.h"
#include "clang/Lex/HeaderSearchOptions.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Bitcode/BitcodeReader.h"
#include "llvm/Bitcode/BitcodeWriter.h"
#include "llvm/Bitcode/BitcodeWriterPass.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/Frontend/Driver/CodeGenOptions.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/ModuleSummaryIndex.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Verifier.h"
#include "llvm/IRPrinter/IRPrintingPasses.h"
#include "llvm/LTO/LTOBackend.h"
#include "llvm/MC/TargetRegistry.h"
#include "llvm/Object/OffloadBinary.h"
#include "llvm/Passes/PassBuilder.h"
#include "llvm/Passes/PassPlugin.h"
#include "llvm/Passes/StandardInstrumentations.h"
#include "llvm/ProfileData/InstrProfCorrelator.h"
#include "llvm/Support/BuryPointer.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/PrettyStackTrace.h"
#include "llvm/Support/Program.h"
#include "llvm/Support/TimeProfiler.h"
#include "llvm/Support/Timer.h"
#include "llvm/Support/ToolOutputFile.h"
#include "llvm/Support/VirtualFileSystem.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/TargetParser/SubtargetFeature.h"
#include "llvm/TargetParser/Triple.h"
#include "llvm/Transforms/HipStdPar/HipStdPar.h"
#include "llvm/Transforms/IPO/EmbedBitcodePass.h"
#include "llvm/Transforms/IPO/LowerTypeTests.h"
#include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h"
#include "llvm/Transforms/InstCombine/InstCombine.h"
#include "llvm/Transforms/Instrumentation/AddressSanitizer.h"
#include "llvm/Transforms/Instrumentation/AddressSanitizerOptions.h"
#include "llvm/Transforms/Instrumentation/BoundsChecking.h"
#include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h"
#include "llvm/Transforms/Instrumentation/GCOVProfiler.h"
#include "llvm/Transforms/Instrumentation/HWAddressSanitizer.h"
#include "llvm/Transforms/Instrumentation/InstrProfiling.h"
#include "llvm/Transforms/Instrumentation/KCFI.h"
#include "llvm/Transforms/Instrumentation/LowerAllowCheckPass.h"
#include "llvm/Transforms/Instrumentation/MemProfiler.h"
#include "llvm/Transforms/Instrumentation/MemorySanitizer.h"
#include "llvm/Transforms/Instrumentation/NumericalStabilitySanitizer.h"
#include "llvm/Transforms/Instrumentation/PGOInstrumentation.h"
#include "llvm/Transforms/Instrumentation/RealtimeSanitizer.h"
#include "llvm/Transforms/Instrumentation/SanitizerBinaryMetadata.h"
#include "llvm/Transforms/Instrumentation/SanitizerCoverage.h"
#include "llvm/Transforms/Instrumentation/ThreadSanitizer.h"
#include "llvm/Transforms/Instrumentation/TypeSanitizer.h"
#include "llvm/Transforms/ObjCARC.h"
#include "llvm/Transforms/Scalar/EarlyCSE.h"
#include "llvm/Transforms/Scalar/GVN.h"
#include "llvm/Transforms/Scalar/JumpThreading.h"
#include "llvm/Transforms/Utils/Debugify.h"
#include "llvm/Transforms/Utils/ModuleUtils.h"
#include <limits>
#include <memory>
#include <optional>
using namespace clang;
using namespace llvm;
#define HANDLE_EXTENSION(Ext) \
llvm::PassPluginLibraryInfo get##Ext##PluginInfo();
#include "llvm/Support/Extension.def"
namespace llvm {
extern cl::opt<bool> PrintPipelinePasses;
// Experiment to move sanitizers earlier.
static cl::opt<bool> ClSanitizeOnOptimizerEarlyEP(
"sanitizer-early-opt-ep", cl::Optional,
cl::desc("Insert sanitizers on OptimizerEarlyEP."));
// Experiment to mark cold functions as optsize/minsize/optnone.
// TODO: remove once this is exposed as a proper driver flag.
static cl::opt<PGOOptions::ColdFuncOpt> ClPGOColdFuncAttr(
"pgo-cold-func-opt", cl::init(PGOOptions::ColdFuncOpt::Default), cl::Hidden,
cl::desc(
"Function attribute to apply to cold functions as determined by PGO"),
cl::values(clEnumValN(PGOOptions::ColdFuncOpt::Default, "default",
"Default (no attribute)"),
clEnumValN(PGOOptions::ColdFuncOpt::OptSize, "optsize",
"Mark cold functions with optsize."),
clEnumValN(PGOOptions::ColdFuncOpt::MinSize, "minsize",
"Mark cold functions with minsize."),
clEnumValN(PGOOptions::ColdFuncOpt::OptNone, "optnone",
"Mark cold functions with optnone.")));
extern cl::opt<InstrProfCorrelator::ProfCorrelatorKind> ProfileCorrelate;
} // namespace llvm
namespace clang {
extern llvm::cl::opt<bool> ClSanitizeGuardChecks;
}
// Default filename used for profile generation.
static std::string getDefaultProfileGenName() {
return DebugInfoCorrelate || ProfileCorrelate != InstrProfCorrelator::NONE
? "default_%m.proflite"
: "default_%m.profraw";
}
// Path and name of file used for profile generation
static std::string getProfileGenName(const CodeGenOptions &CodeGenOpts) {
std::string FileName = CodeGenOpts.InstrProfileOutput.empty()
? getDefaultProfileGenName()
: CodeGenOpts.InstrProfileOutput;
if (CodeGenOpts.ContinuousProfileSync)
FileName = "%c" + FileName;
return FileName;
}
namespace {
class EmitAssemblyHelper {
CompilerInstance &CI;
DiagnosticsEngine &Diags;
const CodeGenOptions &CodeGenOpts;
const clang::TargetOptions &TargetOpts;
const LangOptions &LangOpts;
llvm::Module *TheModule;
IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS;
std::unique_ptr<raw_pwrite_stream> OS;
Triple TargetTriple;
TargetIRAnalysis getTargetIRAnalysis() const {
if (TM)
return TM->getTargetIRAnalysis();
return TargetIRAnalysis();
}
/// Generates the TargetMachine.
/// Leaves TM unchanged if it is unable to create the target machine.
/// Some of our clang tests specify triples which are not built
/// into clang. This is okay because these tests check the generated
/// IR, and they require DataLayout which depends on the triple.
/// In this case, we allow this method to fail and not report an error.
/// When MustCreateTM is used, we print an error if we are unable to load
/// the requested target.
void CreateTargetMachine(bool MustCreateTM);
/// Add passes necessary to emit assembly or LLVM IR.
///
/// \return True on success.
bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action,
raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS);
std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) {
std::error_code EC;
auto F = std::make_unique<llvm::ToolOutputFile>(Path, EC,
llvm::sys::fs::OF_None);
if (EC) {
Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message();
F.reset();
}
return F;
}
void RunOptimizationPipeline(
BackendAction Action, std::unique_ptr<raw_pwrite_stream> &OS,
std::unique_ptr<llvm::ToolOutputFile> &ThinLinkOS, BackendConsumer *BC);
void RunCodegenPipeline(BackendAction Action,
std::unique_ptr<raw_pwrite_stream> &OS,
std::unique_ptr<llvm::ToolOutputFile> &DwoOS);
/// Check whether we should emit a module summary for regular LTO.
/// The module summary should be emitted by default for regular LTO
/// except for ld64 targets.
///
/// \return True if the module summary should be emitted.
bool shouldEmitRegularLTOSummary() const {
return CodeGenOpts.PrepareForLTO && !CodeGenOpts.DisableLLVMPasses &&
TargetTriple.getVendor() != llvm::Triple::Apple;
}
/// Check whether we should emit a flag for UnifiedLTO.
/// The UnifiedLTO module flag should be set when UnifiedLTO is enabled for
/// ThinLTO or Full LTO with module summaries.
bool shouldEmitUnifiedLTOModueFlag() const {
return CodeGenOpts.UnifiedLTO &&
(CodeGenOpts.PrepareForThinLTO || shouldEmitRegularLTOSummary());
}
public:
EmitAssemblyHelper(CompilerInstance &CI, CodeGenOptions &CGOpts,
llvm::Module *M,
IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS)
: CI(CI), Diags(CI.getDiagnostics()), CodeGenOpts(CGOpts),
TargetOpts(CI.getTargetOpts()), LangOpts(CI.getLangOpts()),
TheModule(M), VFS(std::move(VFS)),
TargetTriple(TheModule->getTargetTriple()) {}
~EmitAssemblyHelper() {
if (CodeGenOpts.DisableFree)
BuryPointer(std::move(TM));
}
std::unique_ptr<TargetMachine> TM;
// Emit output using the new pass manager for the optimization pipeline.
void emitAssembly(BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS,
BackendConsumer *BC);
};
} // namespace
static SanitizerCoverageOptions
getSancovOptsFromCGOpts(const CodeGenOptions &CGOpts) {
SanitizerCoverageOptions Opts;
Opts.CoverageType =
static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType);
Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls;
Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB;
Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp;
Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv;
Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep;
Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters;
Opts.TracePC = CGOpts.SanitizeCoverageTracePC;
Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard;
Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune;
Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters;
Opts.InlineBoolFlag = CGOpts.SanitizeCoverageInlineBoolFlag;
Opts.PCTable = CGOpts.SanitizeCoveragePCTable;
Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth;
Opts.TraceLoads = CGOpts.SanitizeCoverageTraceLoads;
Opts.TraceStores = CGOpts.SanitizeCoverageTraceStores;
Opts.CollectControlFlow = CGOpts.SanitizeCoverageControlFlow;
return Opts;
}
static SanitizerBinaryMetadataOptions
getSanitizerBinaryMetadataOptions(const CodeGenOptions &CGOpts) {
SanitizerBinaryMetadataOptions Opts;
Opts.Covered = CGOpts.SanitizeBinaryMetadataCovered;
Opts.Atomics = CGOpts.SanitizeBinaryMetadataAtomics;
Opts.UAR = CGOpts.SanitizeBinaryMetadataUAR;
return Opts;
}
// Check if ASan should use GC-friendly instrumentation for globals.
// First of all, there is no point if -fdata-sections is off (expect for MachO,
// where this is not a factor). Also, on ELF this feature requires an assembler
// extension that only works with -integrated-as at the moment.
static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) {
if (!CGOpts.SanitizeAddressGlobalsDeadStripping)
return false;
switch (T.getObjectFormat()) {
case Triple::MachO:
case Triple::COFF:
return true;
case Triple::ELF:
return !CGOpts.DisableIntegratedAS;
case Triple::GOFF:
llvm::report_fatal_error("ASan not implemented for GOFF");
case Triple::XCOFF:
llvm::report_fatal_error("ASan not implemented for XCOFF.");
case Triple::Wasm:
case Triple::DXContainer:
case Triple::SPIRV:
case Triple::UnknownObjectFormat:
break;
}
return false;
}
static std::optional<llvm::CodeModel::Model>
getCodeModel(const CodeGenOptions &CodeGenOpts) {
unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel)
.Case("tiny", llvm::CodeModel::Tiny)
.Case("small", llvm::CodeModel::Small)
.Case("kernel", llvm::CodeModel::Kernel)
.Case("medium", llvm::CodeModel::Medium)
.Case("large", llvm::CodeModel::Large)
.Case("default", ~1u)
.Default(~0u);
assert(CodeModel != ~0u && "invalid code model!");
if (CodeModel == ~1u)
return std::nullopt;
return static_cast<llvm::CodeModel::Model>(CodeModel);
}
static CodeGenFileType getCodeGenFileType(BackendAction Action) {
if (Action == Backend_EmitObj)
return CodeGenFileType::ObjectFile;
else if (Action == Backend_EmitMCNull)
return CodeGenFileType::Null;
else {
assert(Action == Backend_EmitAssembly && "Invalid action!");
return CodeGenFileType::AssemblyFile;
}
}
static bool actionRequiresCodeGen(BackendAction Action) {
return Action != Backend_EmitNothing && Action != Backend_EmitBC &&
Action != Backend_EmitLL;
}
static std::string flattenClangCommandLine(ArrayRef<std::string> Args,
StringRef MainFilename) {
if (Args.empty())
return std::string{};
std::string FlatCmdLine;
raw_string_ostream OS(FlatCmdLine);
bool PrintedOneArg = false;
if (!StringRef(Args[0]).contains("-cc1")) {
llvm::sys::printArg(OS, "-cc1", /*Quote=*/true);
PrintedOneArg = true;
}
for (unsigned i = 0; i < Args.size(); i++) {
StringRef Arg = Args[i];
if (Arg.empty())
continue;
if (Arg == "-main-file-name" || Arg == "-o") {
i++; // Skip this argument and next one.
continue;
}
if (Arg.starts_with("-object-file-name") || Arg == MainFilename)
continue;
// Skip fmessage-length for reproducibility.
if (Arg.starts_with("-fmessage-length"))
continue;
if (PrintedOneArg)
OS << " ";
llvm::sys::printArg(OS, Arg, /*Quote=*/true);
PrintedOneArg = true;
}
return FlatCmdLine;
}
static bool initTargetOptions(const CompilerInstance &CI,
DiagnosticsEngine &Diags,
llvm::TargetOptions &Options) {
const auto &CodeGenOpts = CI.getCodeGenOpts();
const auto &TargetOpts = CI.getTargetOpts();
const auto &LangOpts = CI.getLangOpts();
const auto &HSOpts = CI.getHeaderSearchOpts();
switch (LangOpts.getThreadModel()) {
case LangOptions::ThreadModelKind::POSIX:
Options.ThreadModel = llvm::ThreadModel::POSIX;
break;
case LangOptions::ThreadModelKind::Single:
Options.ThreadModel = llvm::ThreadModel::Single;
break;
}
// Set float ABI type.
assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" ||
CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) &&
"Invalid Floating Point ABI!");
Options.FloatABIType =
llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI)
.Case("soft", llvm::FloatABI::Soft)
.Case("softfp", llvm::FloatABI::Soft)
.Case("hard", llvm::FloatABI::Hard)
.Default(llvm::FloatABI::Default);
// Set FP fusion mode.
switch (LangOpts.getDefaultFPContractMode()) {
case LangOptions::FPM_Off:
// Preserve any contraction performed by the front-end. (Strict performs
// splitting of the muladd intrinsic in the backend.)
Options.AllowFPOpFusion = llvm::FPOpFusion::Standard;
break;
case LangOptions::FPM_On:
case LangOptions::FPM_FastHonorPragmas:
Options.AllowFPOpFusion = llvm::FPOpFusion::Standard;
break;
case LangOptions::FPM_Fast:
Options.AllowFPOpFusion = llvm::FPOpFusion::Fast;
break;
}
Options.BinutilsVersion =
llvm::TargetMachine::parseBinutilsVersion(CodeGenOpts.BinutilsVersion);
Options.UseInitArray = CodeGenOpts.UseInitArray;
Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS;
// Set EABI version.
Options.EABIVersion = TargetOpts.EABIVersion;
if (LangOpts.hasSjLjExceptions())
Options.ExceptionModel = llvm::ExceptionHandling::SjLj;
if (LangOpts.hasSEHExceptions())
Options.ExceptionModel = llvm::ExceptionHandling::WinEH;
if (LangOpts.hasDWARFExceptions())
Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI;
if (LangOpts.hasWasmExceptions())
Options.ExceptionModel = llvm::ExceptionHandling::Wasm;
Options.NoInfsFPMath = LangOpts.NoHonorInfs;
Options.NoNaNsFPMath = LangOpts.NoHonorNaNs;
Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS;
Options.UnsafeFPMath = LangOpts.AllowFPReassoc && LangOpts.AllowRecip &&
LangOpts.NoSignedZero && LangOpts.ApproxFunc &&
(LangOpts.getDefaultFPContractMode() ==
LangOptions::FPModeKind::FPM_Fast ||
LangOpts.getDefaultFPContractMode() ==
LangOptions::FPModeKind::FPM_FastHonorPragmas);
Options.ApproxFuncFPMath = LangOpts.ApproxFunc;
Options.BBAddrMap = CodeGenOpts.BBAddrMap;
Options.BBSections =
llvm::StringSwitch<llvm::BasicBlockSection>(CodeGenOpts.BBSections)
.Case("all", llvm::BasicBlockSection::All)
.StartsWith("list=", llvm::BasicBlockSection::List)
.Case("none", llvm::BasicBlockSection::None)
.Default(llvm::BasicBlockSection::None);
if (Options.BBSections == llvm::BasicBlockSection::List) {
ErrorOr<std::unique_ptr<MemoryBuffer>> MBOrErr =
MemoryBuffer::getFile(CodeGenOpts.BBSections.substr(5));
if (!MBOrErr) {
Diags.Report(diag::err_fe_unable_to_load_basic_block_sections_file)
<< MBOrErr.getError().message();
return false;
}
Options.BBSectionsFuncListBuf = std::move(*MBOrErr);
}
Options.EnableMachineFunctionSplitter = CodeGenOpts.SplitMachineFunctions;
Options.FunctionSections = CodeGenOpts.FunctionSections;
Options.DataSections = CodeGenOpts.DataSections;
Options.IgnoreXCOFFVisibility = LangOpts.IgnoreXCOFFVisibility;
Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames;
Options.UniqueBasicBlockSectionNames =
CodeGenOpts.UniqueBasicBlockSectionNames;
Options.SeparateNamedSections = CodeGenOpts.SeparateNamedSections;
Options.TLSSize = CodeGenOpts.TLSSize;
Options.EnableTLSDESC = CodeGenOpts.EnableTLSDESC;
Options.EmulatedTLS = CodeGenOpts.EmulatedTLS;
Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning();
Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection;
Options.StackUsageOutput = CodeGenOpts.StackUsageOutput;
Options.EmitAddrsig = CodeGenOpts.Addrsig;
Options.ForceDwarfFrameSection = CodeGenOpts.ForceDwarfFrameSection;
Options.EmitCallSiteInfo = CodeGenOpts.EmitCallSiteInfo;
Options.EnableAIXExtendedAltivecABI = LangOpts.EnableAIXExtendedAltivecABI;
Options.XRayFunctionIndex = CodeGenOpts.XRayFunctionIndex;
Options.LoopAlignment = CodeGenOpts.LoopAlignment;
Options.DebugStrictDwarf = CodeGenOpts.DebugStrictDwarf;
Options.ObjectFilenameForDebug = CodeGenOpts.ObjectFilenameForDebug;
Options.Hotpatch = CodeGenOpts.HotPatch;
Options.JMCInstrument = CodeGenOpts.JMCInstrument;
Options.XCOFFReadOnlyPointers = CodeGenOpts.XCOFFReadOnlyPointers;
switch (CodeGenOpts.getSwiftAsyncFramePointer()) {
case CodeGenOptions::SwiftAsyncFramePointerKind::Auto:
Options.SwiftAsyncFramePointer =
SwiftAsyncFramePointerMode::DeploymentBased;
break;
case CodeGenOptions::SwiftAsyncFramePointerKind::Always:
Options.SwiftAsyncFramePointer = SwiftAsyncFramePointerMode::Always;
break;
case CodeGenOptions::SwiftAsyncFramePointerKind::Never:
Options.SwiftAsyncFramePointer = SwiftAsyncFramePointerMode::Never;
break;
}
Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile;
Options.MCOptions.EmitDwarfUnwind = CodeGenOpts.getEmitDwarfUnwind();
Options.MCOptions.EmitCompactUnwindNonCanonical =
CodeGenOpts.EmitCompactUnwindNonCanonical;
Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll;
Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels;
Options.MCOptions.MCUseDwarfDirectory =
CodeGenOpts.NoDwarfDirectoryAsm
? llvm::MCTargetOptions::DisableDwarfDirectory
: llvm::MCTargetOptions::EnableDwarfDirectory;
Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack;
Options.MCOptions.MCIncrementalLinkerCompatible =
CodeGenOpts.IncrementalLinkerCompatible;
Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings;
Options.MCOptions.MCNoWarn = CodeGenOpts.NoWarn;
Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose;
Options.MCOptions.Dwarf64 = CodeGenOpts.Dwarf64;
Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments;
Options.MCOptions.Crel = CodeGenOpts.Crel;
Options.MCOptions.ImplicitMapSyms = CodeGenOpts.ImplicitMapSyms;
Options.MCOptions.X86RelaxRelocations = CodeGenOpts.X86RelaxRelocations;
Options.MCOptions.CompressDebugSections =
CodeGenOpts.getCompressDebugSections();
if (CodeGenOpts.OutputAsmVariant != 3) // 3 (default): not specified
Options.MCOptions.OutputAsmVariant = CodeGenOpts.OutputAsmVariant;
Options.MCOptions.ABIName = TargetOpts.ABI;
for (const auto &Entry : HSOpts.UserEntries)
if (!Entry.IsFramework &&
(Entry.Group == frontend::IncludeDirGroup::Quoted ||
Entry.Group == frontend::IncludeDirGroup::Angled ||
Entry.Group == frontend::IncludeDirGroup::System))
Options.MCOptions.IASSearchPaths.push_back(
Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path);
Options.MCOptions.Argv0 = CodeGenOpts.Argv0 ? CodeGenOpts.Argv0 : "";
Options.MCOptions.CommandlineArgs = flattenClangCommandLine(
CodeGenOpts.CommandLineArgs, CodeGenOpts.MainFileName);
Options.MCOptions.AsSecureLogFile = CodeGenOpts.AsSecureLogFile;
Options.MCOptions.PPCUseFullRegisterNames =
CodeGenOpts.PPCUseFullRegisterNames;
Options.MisExpect = CodeGenOpts.MisExpect;
return true;
}
static std::optional<GCOVOptions>
getGCOVOptions(const CodeGenOptions &CodeGenOpts, const LangOptions &LangOpts) {
if (CodeGenOpts.CoverageNotesFile.empty() &&
CodeGenOpts.CoverageDataFile.empty())
return std::nullopt;
// Not using 'GCOVOptions::getDefault' allows us to avoid exiting if
// LLVM's -default-gcov-version flag is set to something invalid.
GCOVOptions Options;
Options.EmitNotes = !CodeGenOpts.CoverageNotesFile.empty();
Options.EmitData = !CodeGenOpts.CoverageDataFile.empty();
llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version));
Options.NoRedZone = CodeGenOpts.DisableRedZone;
Options.Filter = CodeGenOpts.ProfileFilterFiles;
Options.Exclude = CodeGenOpts.ProfileExcludeFiles;
Options.Atomic = CodeGenOpts.AtomicProfileUpdate;
return Options;
}
static std::optional<InstrProfOptions>
getInstrProfOptions(const CodeGenOptions &CodeGenOpts,
const LangOptions &LangOpts) {
if (!CodeGenOpts.hasProfileClangInstr())
return std::nullopt;
InstrProfOptions Options;
Options.NoRedZone = CodeGenOpts.DisableRedZone;
Options.InstrProfileOutput = CodeGenOpts.ContinuousProfileSync
? ("%c" + CodeGenOpts.InstrProfileOutput)
: CodeGenOpts.InstrProfileOutput;
Options.Atomic = CodeGenOpts.AtomicProfileUpdate;
return Options;
}
static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) {
SmallVector<const char *, 16> BackendArgs;
BackendArgs.push_back("clang"); // Fake program name.
if (!CodeGenOpts.DebugPass.empty()) {
BackendArgs.push_back("-debug-pass");
BackendArgs.push_back(CodeGenOpts.DebugPass.c_str());
}
if (!CodeGenOpts.LimitFloatPrecision.empty()) {
BackendArgs.push_back("-limit-float-precision");
BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str());
}
// Check for the default "clang" invocation that won't set any cl::opt values.
// Skip trying to parse the command line invocation to avoid the issues
// described below.
if (BackendArgs.size() == 1)
return;
BackendArgs.push_back(nullptr);
// FIXME: The command line parser below is not thread-safe and shares a global
// state, so this call might crash or overwrite the options of another Clang
// instance in the same process.
llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1,
BackendArgs.data());
}
void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) {
// Create the TargetMachine for generating code.
std::string Error;
std::string Triple = TheModule->getTargetTriple().str();
const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error);
if (!TheTarget) {
if (MustCreateTM)
Diags.Report(diag::err_fe_unable_to_create_target) << Error;
return;
}
std::optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts);
std::string FeaturesStr =
llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ",");
llvm::Reloc::Model RM = CodeGenOpts.RelocationModel;
std::optional<CodeGenOptLevel> OptLevelOrNone =
CodeGenOpt::getLevel(CodeGenOpts.OptimizationLevel);
assert(OptLevelOrNone && "Invalid optimization level!");
CodeGenOptLevel OptLevel = *OptLevelOrNone;
llvm::TargetOptions Options;
if (!initTargetOptions(CI, Diags, Options))
return;
TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr,
Options, RM, CM, OptLevel));
TM->setLargeDataThreshold(CodeGenOpts.LargeDataThreshold);
}
bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses,
BackendAction Action,
raw_pwrite_stream &OS,
raw_pwrite_stream *DwoOS) {
// Add LibraryInfo.
std::unique_ptr<TargetLibraryInfoImpl> TLII(
llvm::driver::createTLII(TargetTriple, CodeGenOpts.getVecLib()));
CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII));
// Normal mode, emit a .s or .o file by running the code generator. Note,
// this also adds codegenerator level optimization passes.
CodeGenFileType CGFT = getCodeGenFileType(Action);
if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT,
/*DisableVerify=*/!CodeGenOpts.VerifyModule)) {
Diags.Report(diag::err_fe_unable_to_interface_with_target);
return false;
}
return true;
}
static OptimizationLevel mapToLevel(const CodeGenOptions &Opts) {
switch (Opts.OptimizationLevel) {
default:
llvm_unreachable("Invalid optimization level!");
case 0:
return OptimizationLevel::O0;
case 1:
return OptimizationLevel::O1;
case 2:
switch (Opts.OptimizeSize) {
default:
llvm_unreachable("Invalid optimization level for size!");
case 0:
return OptimizationLevel::O2;
case 1:
return OptimizationLevel::Os;
case 2:
return OptimizationLevel::Oz;
}
case 3:
return OptimizationLevel::O3;
}
}
static void addKCFIPass(const Triple &TargetTriple, const LangOptions &LangOpts,
PassBuilder &PB) {
// If the back-end supports KCFI operand bundle lowering, skip KCFIPass.
if (TargetTriple.getArch() == llvm::Triple::x86_64 ||
TargetTriple.isAArch64(64) || TargetTriple.isRISCV())
return;
// Ensure we lower KCFI operand bundles with -O0.
PB.registerOptimizerLastEPCallback(
[&](ModulePassManager &MPM, OptimizationLevel Level, ThinOrFullLTOPhase) {
if (Level == OptimizationLevel::O0 &&
LangOpts.Sanitize.has(SanitizerKind::KCFI))
MPM.addPass(createModuleToFunctionPassAdaptor(KCFIPass()));
});
// When optimizations are requested, run KCIFPass after InstCombine to
// avoid unnecessary checks.
PB.registerPeepholeEPCallback(
[&](FunctionPassManager &FPM, OptimizationLevel Level) {
if (Level != OptimizationLevel::O0 &&
LangOpts.Sanitize.has(SanitizerKind::KCFI))
FPM.addPass(KCFIPass());
});
}
static void addSanitizers(const Triple &TargetTriple,
const CodeGenOptions &CodeGenOpts,
const LangOptions &LangOpts, PassBuilder &PB) {
auto SanitizersCallback = [&](ModulePassManager &MPM, OptimizationLevel Level,
ThinOrFullLTOPhase) {
if (CodeGenOpts.hasSanitizeCoverage()) {
auto SancovOpts = getSancovOptsFromCGOpts(CodeGenOpts);
MPM.addPass(SanitizerCoveragePass(
SancovOpts, CodeGenOpts.SanitizeCoverageAllowlistFiles,
CodeGenOpts.SanitizeCoverageIgnorelistFiles));
}
if (CodeGenOpts.hasSanitizeBinaryMetadata()) {
MPM.addPass(SanitizerBinaryMetadataPass(
getSanitizerBinaryMetadataOptions(CodeGenOpts),
CodeGenOpts.SanitizeMetadataIgnorelistFiles));
}
auto MSanPass = [&](SanitizerMask Mask, bool CompileKernel) {
if (LangOpts.Sanitize.has(Mask)) {
int TrackOrigins = CodeGenOpts.SanitizeMemoryTrackOrigins;
bool Recover = CodeGenOpts.SanitizeRecover.has(Mask);
MemorySanitizerOptions options(TrackOrigins, Recover, CompileKernel,
CodeGenOpts.SanitizeMemoryParamRetval);
MPM.addPass(MemorySanitizerPass(options));
if (Level != OptimizationLevel::O0) {
// MemorySanitizer inserts complex instrumentation that mostly follows
// the logic of the original code, but operates on "shadow" values. It
// can benefit from re-running some general purpose optimization
// passes.
MPM.addPass(RequireAnalysisPass<GlobalsAA, llvm::Module>());
FunctionPassManager FPM;
FPM.addPass(EarlyCSEPass(true /* Enable mem-ssa. */));
FPM.addPass(InstCombinePass());
FPM.addPass(JumpThreadingPass());
FPM.addPass(GVNPass());
FPM.addPass(InstCombinePass());
MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
}
}
};
MSanPass(SanitizerKind::Memory, false);
MSanPass(SanitizerKind::KernelMemory, true);
if (LangOpts.Sanitize.has(SanitizerKind::Thread)) {
MPM.addPass(ModuleThreadSanitizerPass());
MPM.addPass(createModuleToFunctionPassAdaptor(ThreadSanitizerPass()));
}
if (LangOpts.Sanitize.has(SanitizerKind::Type))
MPM.addPass(TypeSanitizerPass());
if (LangOpts.Sanitize.has(SanitizerKind::NumericalStability))
MPM.addPass(NumericalStabilitySanitizerPass());
if (LangOpts.Sanitize.has(SanitizerKind::Realtime))
MPM.addPass(RealtimeSanitizerPass());
auto ASanPass = [&](SanitizerMask Mask, bool CompileKernel) {
if (LangOpts.Sanitize.has(Mask)) {
bool UseGlobalGC = asanUseGlobalsGC(TargetTriple, CodeGenOpts);
bool UseOdrIndicator = CodeGenOpts.SanitizeAddressUseOdrIndicator;
llvm::AsanDtorKind DestructorKind =
CodeGenOpts.getSanitizeAddressDtor();
AddressSanitizerOptions Opts;
Opts.CompileKernel = CompileKernel;
Opts.Recover = CodeGenOpts.SanitizeRecover.has(Mask);
Opts.UseAfterScope = CodeGenOpts.SanitizeAddressUseAfterScope;
Opts.UseAfterReturn = CodeGenOpts.getSanitizeAddressUseAfterReturn();
MPM.addPass(AddressSanitizerPass(Opts, UseGlobalGC, UseOdrIndicator,
DestructorKind));
}
};
ASanPass(SanitizerKind::Address, false);
ASanPass(SanitizerKind::KernelAddress, true);
auto HWASanPass = [&](SanitizerMask Mask, bool CompileKernel) {
if (LangOpts.Sanitize.has(Mask)) {
bool Recover = CodeGenOpts.SanitizeRecover.has(Mask);
MPM.addPass(HWAddressSanitizerPass(
{CompileKernel, Recover,
/*DisableOptimization=*/CodeGenOpts.OptimizationLevel == 0}));
}
};
HWASanPass(SanitizerKind::HWAddress, false);
HWASanPass(SanitizerKind::KernelHWAddress, true);
if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) {
MPM.addPass(DataFlowSanitizerPass(LangOpts.NoSanitizeFiles));
}
};
if (ClSanitizeOnOptimizerEarlyEP) {
PB.registerOptimizerEarlyEPCallback(
[SanitizersCallback](ModulePassManager &MPM, OptimizationLevel Level,
ThinOrFullLTOPhase Phase) {
ModulePassManager NewMPM;
SanitizersCallback(NewMPM, Level, Phase);
if (!NewMPM.isEmpty()) {
// Sanitizers can abandon<GlobalsAA>.
NewMPM.addPass(RequireAnalysisPass<GlobalsAA, llvm::Module>());
MPM.addPass(std::move(NewMPM));
}
});
} else {
// LastEP does not need GlobalsAA.
PB.registerOptimizerLastEPCallback(SanitizersCallback);
}
// SanitizeSkipHotCutoffs: doubles with range [0, 1]
// Opts.cutoffs: unsigned ints with range [0, 1000000]
auto ScaledCutoffs = CodeGenOpts.SanitizeSkipHotCutoffs.getAllScaled(1000000);
// TODO: remove IsRequested()
if (LowerAllowCheckPass::IsRequested() || ScaledCutoffs.has_value()) {
// We want to call it after inline, which is about OptimizerEarlyEPCallback.
PB.registerOptimizerEarlyEPCallback(
[ScaledCutoffs](ModulePassManager &MPM, OptimizationLevel Level,
ThinOrFullLTOPhase Phase) {
LowerAllowCheckPass::Options Opts;
// TODO: after removing IsRequested(), make this unconditional
if (ScaledCutoffs.has_value())
Opts.cutoffs = ScaledCutoffs.value();
MPM.addPass(
createModuleToFunctionPassAdaptor(LowerAllowCheckPass(Opts)));
});
}
}
void EmitAssemblyHelper::RunOptimizationPipeline(
BackendAction Action, std::unique_ptr<raw_pwrite_stream> &OS,
std::unique_ptr<llvm::ToolOutputFile> &ThinLinkOS, BackendConsumer *BC) {
std::optional<PGOOptions> PGOOpt;
if (CodeGenOpts.hasProfileIRInstr())
// -fprofile-generate.
PGOOpt = PGOOptions(getProfileGenName(CodeGenOpts), "", "",
CodeGenOpts.MemoryProfileUsePath, nullptr,
PGOOptions::IRInstr, PGOOptions::NoCSAction,
ClPGOColdFuncAttr, CodeGenOpts.DebugInfoForProfiling,
/*PseudoProbeForProfiling=*/false,
CodeGenOpts.AtomicProfileUpdate);
else if (CodeGenOpts.hasProfileIRUse()) {
// -fprofile-use.
auto CSAction = CodeGenOpts.hasProfileCSIRUse() ? PGOOptions::CSIRUse
: PGOOptions::NoCSAction;
PGOOpt = PGOOptions(CodeGenOpts.ProfileInstrumentUsePath, "",
CodeGenOpts.ProfileRemappingFile,
CodeGenOpts.MemoryProfileUsePath, VFS,
PGOOptions::IRUse, CSAction, ClPGOColdFuncAttr,
CodeGenOpts.DebugInfoForProfiling);
} else if (!CodeGenOpts.SampleProfileFile.empty())
// -fprofile-sample-use
PGOOpt = PGOOptions(
CodeGenOpts.SampleProfileFile, "", CodeGenOpts.ProfileRemappingFile,
CodeGenOpts.MemoryProfileUsePath, VFS, PGOOptions::SampleUse,
PGOOptions::NoCSAction, ClPGOColdFuncAttr,
CodeGenOpts.DebugInfoForProfiling, CodeGenOpts.PseudoProbeForProfiling);
else if (!CodeGenOpts.MemoryProfileUsePath.empty())
// -fmemory-profile-use (without any of the above options)
PGOOpt = PGOOptions("", "", "", CodeGenOpts.MemoryProfileUsePath, VFS,
PGOOptions::NoAction, PGOOptions::NoCSAction,
ClPGOColdFuncAttr, CodeGenOpts.DebugInfoForProfiling);
else if (CodeGenOpts.PseudoProbeForProfiling)
// -fpseudo-probe-for-profiling
PGOOpt =
PGOOptions("", "", "", /*MemoryProfile=*/"", nullptr,
PGOOptions::NoAction, PGOOptions::NoCSAction,
ClPGOColdFuncAttr, CodeGenOpts.DebugInfoForProfiling, true);
else if (CodeGenOpts.DebugInfoForProfiling)
// -fdebug-info-for-profiling
PGOOpt = PGOOptions("", "", "", /*MemoryProfile=*/"", nullptr,
PGOOptions::NoAction, PGOOptions::NoCSAction,
ClPGOColdFuncAttr, true);
// Check to see if we want to generate a CS profile.
if (CodeGenOpts.hasProfileCSIRInstr()) {
assert(!CodeGenOpts.hasProfileCSIRUse() &&
"Cannot have both CSProfileUse pass and CSProfileGen pass at "
"the same time");
if (PGOOpt) {
assert(PGOOpt->Action != PGOOptions::IRInstr &&
PGOOpt->Action != PGOOptions::SampleUse &&
"Cannot run CSProfileGen pass with ProfileGen or SampleUse "
" pass");
PGOOpt->CSProfileGenFile = getProfileGenName(CodeGenOpts);
PGOOpt->CSAction = PGOOptions::CSIRInstr;
} else
PGOOpt = PGOOptions("", getProfileGenName(CodeGenOpts), "",
/*MemoryProfile=*/"", nullptr, PGOOptions::NoAction,
PGOOptions::CSIRInstr, ClPGOColdFuncAttr,
CodeGenOpts.DebugInfoForProfiling);
}
if (TM)
TM->setPGOOption(PGOOpt);
PipelineTuningOptions PTO;
PTO.LoopUnrolling = CodeGenOpts.UnrollLoops;
PTO.LoopInterchange = CodeGenOpts.InterchangeLoops;
// For historical reasons, loop interleaving is set to mirror setting for loop
// unrolling.
PTO.LoopInterleaving = CodeGenOpts.UnrollLoops;
PTO.LoopVectorization = CodeGenOpts.VectorizeLoop;
PTO.SLPVectorization = CodeGenOpts.VectorizeSLP;
PTO.MergeFunctions = CodeGenOpts.MergeFunctions;
// Only enable CGProfilePass when using integrated assembler, since
// non-integrated assemblers don't recognize .cgprofile section.
PTO.CallGraphProfile = !CodeGenOpts.DisableIntegratedAS;
PTO.UnifiedLTO = CodeGenOpts.UnifiedLTO;
LoopAnalysisManager LAM;
FunctionAnalysisManager FAM;
CGSCCAnalysisManager CGAM;
ModuleAnalysisManager MAM;
bool DebugPassStructure = CodeGenOpts.DebugPass == "Structure";
PassInstrumentationCallbacks PIC;
PrintPassOptions PrintPassOpts;
PrintPassOpts.Indent = DebugPassStructure;
PrintPassOpts.SkipAnalyses = DebugPassStructure;
StandardInstrumentations SI(
TheModule->getContext(),
(CodeGenOpts.DebugPassManager || DebugPassStructure),
CodeGenOpts.VerifyEach, PrintPassOpts);
SI.registerCallbacks(PIC, &MAM);
PassBuilder PB(TM.get(), PTO, PGOOpt, &PIC);
// Handle the assignment tracking feature options.
switch (CodeGenOpts.getAssignmentTrackingMode()) {
case CodeGenOptions::AssignmentTrackingOpts::Forced:
PB.registerPipelineStartEPCallback(
[&](ModulePassManager &MPM, OptimizationLevel Level) {
MPM.addPass(AssignmentTrackingPass());
});
break;
case CodeGenOptions::AssignmentTrackingOpts::Enabled:
// Disable assignment tracking in LTO builds for now as the performance
// cost is too high. Disable for LLDB tuning due to llvm.org/PR43126.
if (!CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.PrepareForLTO &&
CodeGenOpts.getDebuggerTuning() != llvm::DebuggerKind::LLDB) {
PB.registerPipelineStartEPCallback(
[&](ModulePassManager &MPM, OptimizationLevel Level) {
// Only use assignment tracking if optimisations are enabled.
if (Level != OptimizationLevel::O0)
MPM.addPass(AssignmentTrackingPass());
});
}
break;
case CodeGenOptions::AssignmentTrackingOpts::Disabled:
break;
}
// Enable verify-debuginfo-preserve-each for new PM.
DebugifyEachInstrumentation Debugify;
DebugInfoPerPass DebugInfoBeforePass;
if (CodeGenOpts.EnableDIPreservationVerify) {
Debugify.setDebugifyMode(DebugifyMode::OriginalDebugInfo);
Debugify.setDebugInfoBeforePass(DebugInfoBeforePass);
if (!CodeGenOpts.DIBugsReportFilePath.empty())
Debugify.setOrigDIVerifyBugsReportFilePath(
CodeGenOpts.DIBugsReportFilePath);
Debugify.registerCallbacks(PIC, MAM);
}
// Attempt to load pass plugins and register their callbacks with PB.
for (auto &PluginFN : CodeGenOpts.PassPlugins) {
auto PassPlugin = PassPlugin::Load(PluginFN);
if (PassPlugin) {
PassPlugin->registerPassBuilderCallbacks(PB);
} else {
Diags.Report(diag::err_fe_unable_to_load_plugin)
<< PluginFN << toString(PassPlugin.takeError());
}
}
for (const auto &PassCallback : CodeGenOpts.PassBuilderCallbacks)
PassCallback(PB);
#define HANDLE_EXTENSION(Ext) \
get##Ext##PluginInfo().RegisterPassBuilderCallbacks(PB);
#include "llvm/Support/Extension.def"
// Register the target library analysis directly and give it a customized
// preset TLI.
std::unique_ptr<TargetLibraryInfoImpl> TLII(
llvm::driver::createTLII(TargetTriple, CodeGenOpts.getVecLib()));
FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); });
// Register all the basic analyses with the managers.
PB.registerModuleAnalyses(MAM);
PB.registerCGSCCAnalyses(CGAM);
PB.registerFunctionAnalyses(FAM);
PB.registerLoopAnalyses(LAM);
PB.crossRegisterProxies(LAM, FAM, CGAM, MAM);
ModulePassManager MPM;
// Add a verifier pass, before any other passes, to catch CodeGen issues.
if (CodeGenOpts.VerifyModule)
MPM.addPass(VerifierPass());
if (!CodeGenOpts.DisableLLVMPasses) {
// Map our optimization levels into one of the distinct levels used to
// configure the pipeline.
OptimizationLevel Level = mapToLevel(CodeGenOpts);
const bool PrepareForThinLTO = CodeGenOpts.PrepareForThinLTO;
const bool PrepareForLTO = CodeGenOpts.PrepareForLTO;
if (LangOpts.ObjCAutoRefCount) {
PB.registerPipelineStartEPCallback(
[](ModulePassManager &MPM, OptimizationLevel Level) {
if (Level != OptimizationLevel::O0)
MPM.addPass(
createModuleToFunctionPassAdaptor(ObjCARCExpandPass()));
});
PB.registerPipelineEarlySimplificationEPCallback(
[](ModulePassManager &MPM, OptimizationLevel Level,
ThinOrFullLTOPhase) {
if (Level != OptimizationLevel::O0)
MPM.addPass(ObjCARCAPElimPass());
});
PB.registerScalarOptimizerLateEPCallback(
[](FunctionPassManager &FPM, OptimizationLevel Level) {
if (Level != OptimizationLevel::O0)
FPM.addPass(ObjCARCOptPass());
});
}
// If we reached here with a non-empty index file name, then the index
// file was empty and we are not performing ThinLTO backend compilation
// (used in testing in a distributed build environment).
bool IsThinLTOPostLink = !CodeGenOpts.ThinLTOIndexFile.empty();
// If so drop any the type test assume sequences inserted for whole program
// vtables so that codegen doesn't complain.
if (IsThinLTOPostLink)
PB.registerPipelineStartEPCallback(
[](ModulePassManager &MPM, OptimizationLevel Level) {
MPM.addPass(LowerTypeTestsPass(
/*ExportSummary=*/nullptr,
/*ImportSummary=*/nullptr,
/*DropTypeTests=*/lowertypetests::DropTestKind::Assume));
});
// Register callbacks to schedule sanitizer passes at the appropriate part
// of the pipeline.
if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds))
PB.registerScalarOptimizerLateEPCallback([this](FunctionPassManager &FPM,
OptimizationLevel Level) {
BoundsCheckingPass::Options Options;
if (CodeGenOpts.SanitizeSkipHotCutoffs[SanitizerKind::SO_LocalBounds] ||
ClSanitizeGuardChecks) {
static_assert(SanitizerKind::SO_LocalBounds <=
std::numeric_limits<
decltype(Options.GuardKind)::value_type>::max(),
"Update type of llvm.allow.ubsan.check to represent "
"SanitizerKind::SO_LocalBounds.");
Options.GuardKind = SanitizerKind::SO_LocalBounds;
}
Options.Merge =
CodeGenOpts.SanitizeMergeHandlers.has(SanitizerKind::LocalBounds);
if (!CodeGenOpts.SanitizeTrap.has(SanitizerKind::LocalBounds)) {
Options.Rt = {
/*MinRuntime=*/static_cast<bool>(
CodeGenOpts.SanitizeMinimalRuntime),
/*MayReturn=*/
CodeGenOpts.SanitizeRecover.has(SanitizerKind::LocalBounds),
};
}
FPM.addPass(BoundsCheckingPass(Options));
});
// Don't add sanitizers if we are here from ThinLTO PostLink. That already
// done on PreLink stage.
if (!IsThinLTOPostLink) {
addSanitizers(TargetTriple, CodeGenOpts, LangOpts, PB);
addKCFIPass(TargetTriple, LangOpts, PB);
}
if (std::optional<GCOVOptions> Options =
getGCOVOptions(CodeGenOpts, LangOpts))
PB.registerPipelineStartEPCallback(
[Options](ModulePassManager &MPM, OptimizationLevel Level) {
MPM.addPass(GCOVProfilerPass(*Options));
});
if (std::optional<InstrProfOptions> Options =
getInstrProfOptions(CodeGenOpts, LangOpts))
PB.registerPipelineStartEPCallback(
[Options](ModulePassManager &MPM, OptimizationLevel Level) {
MPM.addPass(InstrProfilingLoweringPass(*Options, false));
});
// TODO: Consider passing the MemoryProfileOutput to the pass builder via
// the PGOOptions, and set this up there.
if (!CodeGenOpts.MemoryProfileOutput.empty()) {
PB.registerOptimizerLastEPCallback([](ModulePassManager &MPM,
OptimizationLevel Level,
ThinOrFullLTOPhase) {
MPM.addPass(createModuleToFunctionPassAdaptor(MemProfilerPass()));
MPM.addPass(ModuleMemProfilerPass());
});
}
if (CodeGenOpts.FatLTO) {
MPM.addPass(PB.buildFatLTODefaultPipeline(
Level, PrepareForThinLTO,
PrepareForThinLTO || shouldEmitRegularLTOSummary()));
} else if (PrepareForThinLTO) {
MPM.addPass(PB.buildThinLTOPreLinkDefaultPipeline(Level));
} else if (PrepareForLTO) {
MPM.addPass(PB.buildLTOPreLinkDefaultPipeline(Level));
} else {
MPM.addPass(PB.buildPerModuleDefaultPipeline(Level));
}
}
// Link against bitcodes supplied via the -mlink-builtin-bitcode option
if (CodeGenOpts.LinkBitcodePostopt)
MPM.addPass(LinkInModulesPass(BC));
// Add a verifier pass if requested. We don't have to do this if the action
// requires code generation because there will already be a verifier pass in
// the code-generation pipeline.
// Since we already added a verifier pass above, this
// might even not run the analysis, if previous passes caused no changes.
if (!actionRequiresCodeGen(Action) && CodeGenOpts.VerifyModule)
MPM.addPass(VerifierPass());
if (Action == Backend_EmitBC || Action == Backend_EmitLL ||
CodeGenOpts.FatLTO) {
if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) {
if (!TheModule->getModuleFlag("EnableSplitLTOUnit"))
TheModule->addModuleFlag(llvm::Module::Error, "EnableSplitLTOUnit",
CodeGenOpts.EnableSplitLTOUnit);
if (Action == Backend_EmitBC) {
if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) {
ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile);
if (!ThinLinkOS)
return;
}
MPM.addPass(ThinLTOBitcodeWriterPass(
*OS, ThinLinkOS ? &ThinLinkOS->os() : nullptr));
} else if (Action == Backend_EmitLL) {
MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists,
/*EmitLTOSummary=*/true));
}
} else {
// Emit a module summary by default for Regular LTO except for ld64
// targets
bool EmitLTOSummary = shouldEmitRegularLTOSummary();
if (EmitLTOSummary) {
if (!TheModule->getModuleFlag("ThinLTO") && !CodeGenOpts.UnifiedLTO)
TheModule->addModuleFlag(llvm::Module::Error, "ThinLTO", uint32_t(0));
if (!TheModule->getModuleFlag("EnableSplitLTOUnit"))
TheModule->addModuleFlag(llvm::Module::Error, "EnableSplitLTOUnit",
uint32_t(1));
}
if (Action == Backend_EmitBC) {
MPM.addPass(BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists,
EmitLTOSummary));
} else if (Action == Backend_EmitLL) {
MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists,
EmitLTOSummary));
}
}
if (shouldEmitUnifiedLTOModueFlag())
TheModule->addModuleFlag(llvm::Module::Error, "UnifiedLTO", uint32_t(1));
}
// FIXME: This should eventually be replaced by a first-class driver option.
// This should be done for both clang and flang simultaneously.
// Print a textual, '-passes=' compatible, representation of pipeline if
// requested.
if (PrintPipelinePasses) {
MPM.printPipeline(outs(), [&PIC](StringRef ClassName) {
auto PassName = PIC.getPassNameForClassName(ClassName);
return PassName.empty() ? ClassName : PassName;
});
outs() << "\n";
return;
}
if (LangOpts.HIPStdPar && !LangOpts.CUDAIsDevice &&
LangOpts.HIPStdParInterposeAlloc)
MPM.addPass(HipStdParAllocationInterpositionPass());
// Now that we have all of the passes ready, run them.
{
PrettyStackTraceString CrashInfo("Optimizer");
llvm::TimeTraceScope TimeScope("Optimizer");
Timer timer;
if (CI.getCodeGenOpts().TimePasses) {
timer.init("optimizer", "Optimizer", CI.getTimerGroup());
CI.getFrontendTimer().yieldTo(timer);
}
MPM.run(*TheModule, MAM);
if (CI.getCodeGenOpts().TimePasses)
timer.yieldTo(CI.getFrontendTimer());
}
}
void EmitAssemblyHelper::RunCodegenPipeline(
BackendAction Action, std::unique_ptr<raw_pwrite_stream> &OS,
std::unique_ptr<llvm::ToolOutputFile> &DwoOS) {
// We still use the legacy PM to run the codegen pipeline since the new PM
// does not work with the codegen pipeline.
// FIXME: make the new PM work with the codegen pipeline.
legacy::PassManager CodeGenPasses;
// Append any output we need to the pass manager.
switch (Action) {
case Backend_EmitAssembly:
case Backend_EmitMCNull:
case Backend_EmitObj:
CodeGenPasses.add(
createTargetTransformInfoWrapperPass(getTargetIRAnalysis()));
if (!CodeGenOpts.SplitDwarfOutput.empty()) {
DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput);
if (!DwoOS)
return;
}
if (!AddEmitPasses(CodeGenPasses, Action, *OS,
DwoOS ? &DwoOS->os() : nullptr))
// FIXME: Should we handle this error differently?
return;
break;
default:
return;
}
// If -print-pipeline-passes is requested, don't run the legacy pass manager.
// FIXME: when codegen is switched to use the new pass manager, it should also
// emit pass names here.
if (PrintPipelinePasses) {
return;
}
{
PrettyStackTraceString CrashInfo("Code generation");
llvm::TimeTraceScope TimeScope("CodeGenPasses");
Timer timer;
if (CI.getCodeGenOpts().TimePasses) {
timer.init("codegen", "Machine code generation", CI.getTimerGroup());
CI.getFrontendTimer().yieldTo(timer);
}
CodeGenPasses.run(*TheModule);
if (CI.getCodeGenOpts().TimePasses)
timer.yieldTo(CI.getFrontendTimer());
}
}
void EmitAssemblyHelper::emitAssembly(BackendAction Action,
std::unique_ptr<raw_pwrite_stream> OS,
BackendConsumer *BC) {
setCommandLineOpts(CodeGenOpts);
bool RequiresCodeGen = actionRequiresCodeGen(Action);
CreateTargetMachine(RequiresCodeGen);
if (RequiresCodeGen && !TM)
return;
if (TM)
TheModule->setDataLayout(TM->createDataLayout());
// Before executing passes, print the final values of the LLVM options.
cl::PrintOptionValues();
std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS;
RunOptimizationPipeline(Action, OS, ThinLinkOS, BC);
RunCodegenPipeline(Action, OS, DwoOS);
if (ThinLinkOS)
ThinLinkOS->keep();
if (DwoOS)
DwoOS->keep();
}
static void
runThinLTOBackend(CompilerInstance &CI, ModuleSummaryIndex *CombinedIndex,
llvm::Module *M, std::unique_ptr<raw_pwrite_stream> OS,
std::string SampleProfile, std::string ProfileRemapping,
BackendAction Action) {
DiagnosticsEngine &Diags = CI.getDiagnostics();
const auto &CGOpts = CI.getCodeGenOpts();
const auto &TOpts = CI.getTargetOpts();
DenseMap<StringRef, DenseMap<GlobalValue::GUID, GlobalValueSummary *>>
ModuleToDefinedGVSummaries;
CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries);
setCommandLineOpts(CGOpts);
// We can simply import the values mentioned in the combined index, since
// we should only invoke this using the individual indexes written out
// via a WriteIndexesThinBackend.
FunctionImporter::ImportIDTable ImportIDs;
FunctionImporter::ImportMapTy ImportList(ImportIDs);
if (!lto::initImportList(*M, *CombinedIndex, ImportList))
return;
auto AddStream = [&](size_t Task, const Twine &ModuleName) {
return std::make_unique<CachedFileStream>(std::move(OS),
CGOpts.ObjectFilenameForDebug);
};
lto::Config Conf;
if (CGOpts.SaveTempsFilePrefix != "") {
if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".",
/* UseInputModulePath */ false)) {
handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) {
errs() << "Error setting up ThinLTO save-temps: " << EIB.message()
<< '\n';
});
}
}
Conf.CPU = TOpts.CPU;
Conf.CodeModel = getCodeModel(CGOpts);
Conf.MAttrs = TOpts.Features;
Conf.RelocModel = CGOpts.RelocationModel;
std::optional<CodeGenOptLevel> OptLevelOrNone =
CodeGenOpt::getLevel(CGOpts.OptimizationLevel);
assert(OptLevelOrNone && "Invalid optimization level!");
Conf.CGOptLevel = *OptLevelOrNone;
Conf.OptLevel = CGOpts.OptimizationLevel;
initTargetOptions(CI, Diags, Conf.Options);
Conf.SampleProfile = std::move(SampleProfile);
Conf.PTO.LoopUnrolling = CGOpts.UnrollLoops;
Conf.PTO.LoopInterchange = CGOpts.InterchangeLoops;
// For historical reasons, loop interleaving is set to mirror setting for loop
// unrolling.
Conf.PTO.LoopInterleaving = CGOpts.UnrollLoops;
Conf.PTO.LoopVectorization = CGOpts.VectorizeLoop;
Conf.PTO.SLPVectorization = CGOpts.VectorizeSLP;
// Only enable CGProfilePass when using integrated assembler, since
// non-integrated assemblers don't recognize .cgprofile section.
Conf.PTO.CallGraphProfile = !CGOpts.DisableIntegratedAS;
// Context sensitive profile.
if (CGOpts.hasProfileCSIRInstr()) {
Conf.RunCSIRInstr = true;
Conf.CSIRProfile = std::move(CGOpts.InstrProfileOutput);
} else if (CGOpts.hasProfileCSIRUse()) {
Conf.RunCSIRInstr = false;
Conf.CSIRProfile = std::move(CGOpts.ProfileInstrumentUsePath);
}
Conf.ProfileRemapping = std::move(ProfileRemapping);
Conf.DebugPassManager = CGOpts.DebugPassManager;
Conf.VerifyEach = CGOpts.VerifyEach;
Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness;
Conf.RemarksFilename = CGOpts.OptRecordFile;
Conf.RemarksPasses = CGOpts.OptRecordPasses;
Conf.RemarksFormat = CGOpts.OptRecordFormat;
Conf.SplitDwarfFile = CGOpts.SplitDwarfFile;
Conf.SplitDwarfOutput = CGOpts.SplitDwarfOutput;
switch (Action) {
case Backend_EmitNothing:
Conf.PreCodeGenModuleHook = [](size_t Task, const llvm::Module &Mod) {
return false;
};
break;
case Backend_EmitLL:
Conf.PreCodeGenModuleHook = [&](size_t Task, const llvm::Module &Mod) {
M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists);
return false;
};
break;
case Backend_EmitBC:
Conf.PreCodeGenModuleHook = [&](size_t Task, const llvm::Module &Mod) {
WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists);
return false;
};
break;
default:
Conf.CGFileType = getCodeGenFileType(Action);
break;
}
if (Error E =
thinBackend(Conf, -1, AddStream, *M, *CombinedIndex, ImportList,
ModuleToDefinedGVSummaries[M->getModuleIdentifier()],
/*ModuleMap=*/nullptr, Conf.CodeGenOnly,
/*IRAddStream=*/nullptr, CGOpts.CmdArgs)) {
handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) {
errs() << "Error running ThinLTO backend: " << EIB.message() << '\n';
});
}
}
void clang::emitBackendOutput(CompilerInstance &CI, CodeGenOptions &CGOpts,
StringRef TDesc, llvm::Module *M,
BackendAction Action,
IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS,
std::unique_ptr<raw_pwrite_stream> OS,
BackendConsumer *BC) {
llvm::TimeTraceScope TimeScope("Backend");
DiagnosticsEngine &Diags = CI.getDiagnostics();
std::unique_ptr<llvm::Module> EmptyModule;
if (!CGOpts.ThinLTOIndexFile.empty()) {
// If we are performing a ThinLTO importing compile, load the function index
// into memory and pass it into runThinLTOBackend, which will run the
// function importer and invoke LTO passes.
std::unique_ptr<ModuleSummaryIndex> CombinedIndex;
if (Error E = llvm::getModuleSummaryIndexForFile(
CGOpts.ThinLTOIndexFile,
/*IgnoreEmptyThinLTOIndexFile*/ true)
.moveInto(CombinedIndex)) {
logAllUnhandledErrors(std::move(E), errs(),
"Error loading index file '" +
CGOpts.ThinLTOIndexFile + "': ");
return;
}
// A null CombinedIndex means we should skip ThinLTO compilation
// (LLVM will optionally ignore empty index files, returning null instead
// of an error).
if (CombinedIndex) {
if (!CombinedIndex->skipModuleByDistributedBackend()) {
runThinLTOBackend(CI, CombinedIndex.get(), M, std::move(OS),
CGOpts.SampleProfileFile, CGOpts.ProfileRemappingFile,
Action);
return;
}
// Distributed indexing detected that nothing from the module is needed
// for the final linking. So we can skip the compilation. We sill need to
// output an empty object file to make sure that a linker does not fail
// trying to read it. Also for some features, like CFI, we must skip
// the compilation as CombinedIndex does not contain all required
// information.
EmptyModule = std::make_unique<llvm::Module>("empty", M->getContext());
EmptyModule->setTargetTriple(M->getTargetTriple());
M = EmptyModule.get();
}
}
EmitAssemblyHelper AsmHelper(CI, CGOpts, M, VFS);
AsmHelper.emitAssembly(Action, std::move(OS), BC);
// Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's
// DataLayout.
if (AsmHelper.TM) {
std::string DLDesc = M->getDataLayout().getStringRepresentation();
if (DLDesc != TDesc) {
unsigned DiagID = Diags.getCustomDiagID(
DiagnosticsEngine::Error, "backend data layout '%0' does not match "
"expected target description '%1'");
Diags.Report(DiagID) << DLDesc << TDesc;
}
}
}
// With -fembed-bitcode, save a copy of the llvm IR as data in the
// __LLVM,__bitcode section.
void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts,
llvm::MemoryBufferRef Buf) {
if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off)
return;
llvm::embedBitcodeInModule(
*M, Buf, CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker,
CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode,
CGOpts.CmdArgs);
}
void clang::EmbedObject(llvm::Module *M, const CodeGenOptions &CGOpts,
DiagnosticsEngine &Diags) {
if (CGOpts.OffloadObjects.empty())
return;
for (StringRef OffloadObject : CGOpts.OffloadObjects) {
llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> ObjectOrErr =
llvm::MemoryBuffer::getFileOrSTDIN(OffloadObject);
if (ObjectOrErr.getError()) {
auto DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
"could not open '%0' for embedding");
Diags.Report(DiagID) << OffloadObject;
return;
}
llvm::embedBufferInModule(*M, **ObjectOrErr, ".llvm.offloading",
Align(object::OffloadBinary::getAlignment()));
}
}