llvm-project/llvm/lib/LTO/LTOModule.cpp
Nikita Popov 979c275097
[IR] Store Triple in Module (NFC) (#129868)
The module currently stores the target triple as a string. This means
that any code that wants to actually use the triple first has to
instantiate a Triple, which is somewhat expensive. The change in #121652
caused a moderate compile-time regression due to this. While it would be
easy enough to work around, I think that architecturally, it makes more
sense to store the parsed Triple in the module, so that it can always be
directly queried.

For this change, I've opted not to add any magic conversions between
std::string and Triple for backwards-compatibilty purses, and instead
write out needed Triple()s or str()s explicitly. This is because I think
a decent number of them should be changed to work on Triple as well, to
avoid unnecessary conversions back and forth.

The only interesting part in this patch is that the default triple is
Triple("") instead of Triple() to preserve existing behavior. The former
defaults to using the ELF object format instead of unknown object
format. We should fix that as well.
2025-03-06 10:27:47 +01:00

712 lines
23 KiB
C++

//===-- LTOModule.cpp - LLVM Link Time Optimizer --------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the Link Time Optimization library. This library is
// intended to be used by linker to optimize code at link time.
//
//===----------------------------------------------------------------------===//
#include "llvm/LTO/legacy/LTOModule.h"
#include "llvm/Bitcode/BitcodeReader.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Mangler.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCParser/MCAsmParser.h"
#include "llvm/MC/MCSection.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/TargetRegistry.h"
#include "llvm/Object/IRObjectFile.h"
#include "llvm/Object/MachO.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/TargetParser/Host.h"
#include "llvm/TargetParser/SubtargetFeature.h"
#include "llvm/TargetParser/Triple.h"
#include "llvm/Transforms/Utils/GlobalStatus.h"
#include <system_error>
using namespace llvm;
using namespace llvm::object;
LTOModule::LTOModule(std::unique_ptr<Module> M, MemoryBufferRef MBRef,
llvm::TargetMachine *TM)
: Mod(std::move(M)), MBRef(MBRef), _target(TM) {
assert(_target && "target machine is null");
SymTab.addModule(Mod.get());
}
LTOModule::~LTOModule() = default;
/// isBitcodeFile - Returns 'true' if the file (or memory contents) is LLVM
/// bitcode.
bool LTOModule::isBitcodeFile(const void *Mem, size_t Length) {
Expected<MemoryBufferRef> BCData = IRObjectFile::findBitcodeInMemBuffer(
MemoryBufferRef(StringRef((const char *)Mem, Length), "<mem>"));
return !errorToBool(BCData.takeError());
}
bool LTOModule::isBitcodeFile(StringRef Path) {
ErrorOr<std::unique_ptr<MemoryBuffer>> BufferOrErr =
MemoryBuffer::getFile(Path);
if (!BufferOrErr)
return false;
Expected<MemoryBufferRef> BCData = IRObjectFile::findBitcodeInMemBuffer(
BufferOrErr.get()->getMemBufferRef());
return !errorToBool(BCData.takeError());
}
bool LTOModule::isThinLTO() {
Expected<BitcodeLTOInfo> Result = getBitcodeLTOInfo(MBRef);
if (!Result) {
logAllUnhandledErrors(Result.takeError(), errs());
return false;
}
return Result->IsThinLTO;
}
bool LTOModule::isBitcodeForTarget(MemoryBuffer *Buffer,
StringRef TriplePrefix) {
Expected<MemoryBufferRef> BCOrErr =
IRObjectFile::findBitcodeInMemBuffer(Buffer->getMemBufferRef());
if (errorToBool(BCOrErr.takeError()))
return false;
LLVMContext Context;
ErrorOr<std::string> TripleOrErr =
expectedToErrorOrAndEmitErrors(Context, getBitcodeTargetTriple(*BCOrErr));
if (!TripleOrErr)
return false;
return StringRef(*TripleOrErr).starts_with(TriplePrefix);
}
std::string LTOModule::getProducerString(MemoryBuffer *Buffer) {
Expected<MemoryBufferRef> BCOrErr =
IRObjectFile::findBitcodeInMemBuffer(Buffer->getMemBufferRef());
if (errorToBool(BCOrErr.takeError()))
return "";
LLVMContext Context;
ErrorOr<std::string> ProducerOrErr = expectedToErrorOrAndEmitErrors(
Context, getBitcodeProducerString(*BCOrErr));
if (!ProducerOrErr)
return "";
return *ProducerOrErr;
}
ErrorOr<std::unique_ptr<LTOModule>>
LTOModule::createFromFile(LLVMContext &Context, StringRef path,
const TargetOptions &options) {
ErrorOr<std::unique_ptr<MemoryBuffer>> BufferOrErr =
MemoryBuffer::getFile(path);
if (std::error_code EC = BufferOrErr.getError()) {
Context.emitError(EC.message());
return EC;
}
std::unique_ptr<MemoryBuffer> Buffer = std::move(BufferOrErr.get());
return makeLTOModule(Buffer->getMemBufferRef(), options, Context,
/* ShouldBeLazy*/ false);
}
ErrorOr<std::unique_ptr<LTOModule>>
LTOModule::createFromOpenFile(LLVMContext &Context, int fd, StringRef path,
size_t size, const TargetOptions &options) {
return createFromOpenFileSlice(Context, fd, path, size, 0, options);
}
ErrorOr<std::unique_ptr<LTOModule>>
LTOModule::createFromOpenFileSlice(LLVMContext &Context, int fd, StringRef path,
size_t map_size, off_t offset,
const TargetOptions &options) {
ErrorOr<std::unique_ptr<MemoryBuffer>> BufferOrErr =
MemoryBuffer::getOpenFileSlice(sys::fs::convertFDToNativeFile(fd), path,
map_size, offset);
if (std::error_code EC = BufferOrErr.getError()) {
Context.emitError(EC.message());
return EC;
}
std::unique_ptr<MemoryBuffer> Buffer = std::move(BufferOrErr.get());
return makeLTOModule(Buffer->getMemBufferRef(), options, Context,
/* ShouldBeLazy */ false);
}
ErrorOr<std::unique_ptr<LTOModule>>
LTOModule::createFromBuffer(LLVMContext &Context, const void *mem,
size_t length, const TargetOptions &options,
StringRef path) {
StringRef Data((const char *)mem, length);
MemoryBufferRef Buffer(Data, path);
return makeLTOModule(Buffer, options, Context, /* ShouldBeLazy */ false);
}
ErrorOr<std::unique_ptr<LTOModule>>
LTOModule::createInLocalContext(std::unique_ptr<LLVMContext> Context,
const void *mem, size_t length,
const TargetOptions &options, StringRef path) {
StringRef Data((const char *)mem, length);
MemoryBufferRef Buffer(Data, path);
// If we own a context, we know this is being used only for symbol extraction,
// not linking. Be lazy in that case.
ErrorOr<std::unique_ptr<LTOModule>> Ret =
makeLTOModule(Buffer, options, *Context, /* ShouldBeLazy */ true);
if (Ret)
(*Ret)->OwnedContext = std::move(Context);
return Ret;
}
static ErrorOr<std::unique_ptr<Module>>
parseBitcodeFileImpl(MemoryBufferRef Buffer, LLVMContext &Context,
bool ShouldBeLazy) {
// Find the buffer.
Expected<MemoryBufferRef> MBOrErr =
IRObjectFile::findBitcodeInMemBuffer(Buffer);
if (Error E = MBOrErr.takeError()) {
std::error_code EC = errorToErrorCode(std::move(E));
Context.emitError(EC.message());
return EC;
}
if (!ShouldBeLazy) {
// Parse the full file.
return expectedToErrorOrAndEmitErrors(Context,
parseBitcodeFile(*MBOrErr, Context));
}
// Parse lazily.
return expectedToErrorOrAndEmitErrors(
Context,
getLazyBitcodeModule(*MBOrErr, Context, true /*ShouldLazyLoadMetadata*/));
}
ErrorOr<std::unique_ptr<LTOModule>>
LTOModule::makeLTOModule(MemoryBufferRef Buffer, const TargetOptions &options,
LLVMContext &Context, bool ShouldBeLazy) {
ErrorOr<std::unique_ptr<Module>> MOrErr =
parseBitcodeFileImpl(Buffer, Context, ShouldBeLazy);
if (std::error_code EC = MOrErr.getError())
return EC;
std::unique_ptr<Module> &M = *MOrErr;
llvm::Triple Triple = M->getTargetTriple();
if (Triple.empty())
Triple = llvm::Triple(sys::getDefaultTargetTriple());
// find machine architecture for this module
std::string errMsg;
const Target *march = TargetRegistry::lookupTarget(Triple, errMsg);
if (!march)
return make_error_code(object::object_error::arch_not_found);
// construct LTOModule, hand over ownership of module and target
SubtargetFeatures Features;
Features.getDefaultSubtargetFeatures(Triple);
std::string FeatureStr = Features.getString();
// Set a default CPU for Darwin triples.
std::string CPU;
if (Triple.isOSDarwin()) {
if (Triple.getArch() == llvm::Triple::x86_64)
CPU = "core2";
else if (Triple.getArch() == llvm::Triple::x86)
CPU = "yonah";
else if (Triple.isArm64e())
CPU = "apple-a12";
else if (Triple.getArch() == llvm::Triple::aarch64 ||
Triple.getArch() == llvm::Triple::aarch64_32)
CPU = "cyclone";
}
TargetMachine *target = march->createTargetMachine(
Triple.str(), CPU, FeatureStr, options, std::nullopt);
std::unique_ptr<LTOModule> Ret(new LTOModule(std::move(M), Buffer, target));
Ret->parseSymbols();
Ret->parseMetadata();
return std::move(Ret);
}
/// Create a MemoryBuffer from a memory range with an optional name.
std::unique_ptr<MemoryBuffer>
LTOModule::makeBuffer(const void *mem, size_t length, StringRef name) {
const char *startPtr = (const char*)mem;
return MemoryBuffer::getMemBuffer(StringRef(startPtr, length), name, false);
}
/// objcClassNameFromExpression - Get string that the data pointer points to.
bool
LTOModule::objcClassNameFromExpression(const Constant *c, std::string &name) {
if (const ConstantExpr *ce = dyn_cast<ConstantExpr>(c)) {
Constant *op = ce->getOperand(0);
if (GlobalVariable *gvn = dyn_cast<GlobalVariable>(op)) {
Constant *cn = gvn->getInitializer();
if (ConstantDataArray *ca = dyn_cast<ConstantDataArray>(cn)) {
if (ca->isCString()) {
name = (".objc_class_name_" + ca->getAsCString()).str();
return true;
}
}
}
}
return false;
}
/// addObjCClass - Parse i386/ppc ObjC class data structure.
void LTOModule::addObjCClass(const GlobalVariable *clgv) {
const ConstantStruct *c = dyn_cast<ConstantStruct>(clgv->getInitializer());
if (!c) return;
// second slot in __OBJC,__class is pointer to superclass name
std::string superclassName;
if (objcClassNameFromExpression(c->getOperand(1), superclassName)) {
auto IterBool =
_undefines.insert(std::make_pair(superclassName, NameAndAttributes()));
if (IterBool.second) {
NameAndAttributes &info = IterBool.first->second;
info.name = IterBool.first->first();
info.attributes = LTO_SYMBOL_DEFINITION_UNDEFINED;
info.isFunction = false;
info.symbol = clgv;
}
}
// third slot in __OBJC,__class is pointer to class name
std::string className;
if (objcClassNameFromExpression(c->getOperand(2), className)) {
auto Iter = _defines.insert(className).first;
NameAndAttributes info;
info.name = Iter->first();
info.attributes = LTO_SYMBOL_PERMISSIONS_DATA |
LTO_SYMBOL_DEFINITION_REGULAR | LTO_SYMBOL_SCOPE_DEFAULT;
info.isFunction = false;
info.symbol = clgv;
_symbols.push_back(info);
}
}
/// addObjCCategory - Parse i386/ppc ObjC category data structure.
void LTOModule::addObjCCategory(const GlobalVariable *clgv) {
const ConstantStruct *c = dyn_cast<ConstantStruct>(clgv->getInitializer());
if (!c) return;
// second slot in __OBJC,__category is pointer to target class name
std::string targetclassName;
if (!objcClassNameFromExpression(c->getOperand(1), targetclassName))
return;
auto IterBool =
_undefines.insert(std::make_pair(targetclassName, NameAndAttributes()));
if (!IterBool.second)
return;
NameAndAttributes &info = IterBool.first->second;
info.name = IterBool.first->first();
info.attributes = LTO_SYMBOL_DEFINITION_UNDEFINED;
info.isFunction = false;
info.symbol = clgv;
}
/// addObjCClassRef - Parse i386/ppc ObjC class list data structure.
void LTOModule::addObjCClassRef(const GlobalVariable *clgv) {
std::string targetclassName;
if (!objcClassNameFromExpression(clgv->getInitializer(), targetclassName))
return;
auto IterBool =
_undefines.insert(std::make_pair(targetclassName, NameAndAttributes()));
if (!IterBool.second)
return;
NameAndAttributes &info = IterBool.first->second;
info.name = IterBool.first->first();
info.attributes = LTO_SYMBOL_DEFINITION_UNDEFINED;
info.isFunction = false;
info.symbol = clgv;
}
void LTOModule::addDefinedDataSymbol(ModuleSymbolTable::Symbol Sym) {
SmallString<64> Buffer;
{
raw_svector_ostream OS(Buffer);
SymTab.printSymbolName(OS, Sym);
Buffer.c_str();
}
const GlobalValue *V = cast<GlobalValue *>(Sym);
addDefinedDataSymbol(Buffer, V);
}
void LTOModule::addDefinedDataSymbol(StringRef Name, const GlobalValue *v) {
// Add to list of defined symbols.
addDefinedSymbol(Name, v, false);
if (!v->hasSection() /* || !isTargetDarwin */)
return;
// Special case i386/ppc ObjC data structures in magic sections:
// The issue is that the old ObjC object format did some strange
// contortions to avoid real linker symbols. For instance, the
// ObjC class data structure is allocated statically in the executable
// that defines that class. That data structures contains a pointer to
// its superclass. But instead of just initializing that part of the
// struct to the address of its superclass, and letting the static and
// dynamic linkers do the rest, the runtime works by having that field
// instead point to a C-string that is the name of the superclass.
// At runtime the objc initialization updates that pointer and sets
// it to point to the actual super class. As far as the linker
// knows it is just a pointer to a string. But then someone wanted the
// linker to issue errors at build time if the superclass was not found.
// So they figured out a way in mach-o object format to use an absolute
// symbols (.objc_class_name_Foo = 0) and a floating reference
// (.reference .objc_class_name_Bar) to cause the linker into erroring when
// a class was missing.
// The following synthesizes the implicit .objc_* symbols for the linker
// from the ObjC data structures generated by the front end.
// special case if this data blob is an ObjC class definition
if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(v)) {
StringRef Section = GV->getSection();
if (Section.starts_with("__OBJC,__class,")) {
addObjCClass(GV);
}
// special case if this data blob is an ObjC category definition
else if (Section.starts_with("__OBJC,__category,")) {
addObjCCategory(GV);
}
// special case if this data blob is the list of referenced classes
else if (Section.starts_with("__OBJC,__cls_refs,")) {
addObjCClassRef(GV);
}
}
}
void LTOModule::addDefinedFunctionSymbol(ModuleSymbolTable::Symbol Sym) {
SmallString<64> Buffer;
{
raw_svector_ostream OS(Buffer);
SymTab.printSymbolName(OS, Sym);
Buffer.c_str();
}
auto *GV = cast<GlobalValue *>(Sym);
assert((isa<Function>(GV) ||
(isa<GlobalAlias>(GV) &&
isa<Function>(cast<GlobalAlias>(GV)->getAliasee()))) &&
"Not function or function alias");
addDefinedFunctionSymbol(Buffer, GV);
}
void LTOModule::addDefinedFunctionSymbol(StringRef Name, const GlobalValue *F) {
// add to list of defined symbols
addDefinedSymbol(Name, F, true);
}
void LTOModule::addDefinedSymbol(StringRef Name, const GlobalValue *def,
bool isFunction) {
const GlobalObject *go = dyn_cast<GlobalObject>(def);
uint32_t attr = go ? Log2(go->getAlign().valueOrOne()) : 0;
// set permissions part
if (isFunction) {
attr |= LTO_SYMBOL_PERMISSIONS_CODE;
} else {
const GlobalVariable *gv = dyn_cast<GlobalVariable>(def);
if (gv && gv->isConstant())
attr |= LTO_SYMBOL_PERMISSIONS_RODATA;
else
attr |= LTO_SYMBOL_PERMISSIONS_DATA;
}
// set definition part
if (def->hasWeakLinkage() || def->hasLinkOnceLinkage())
attr |= LTO_SYMBOL_DEFINITION_WEAK;
else if (def->hasCommonLinkage())
attr |= LTO_SYMBOL_DEFINITION_TENTATIVE;
else
attr |= LTO_SYMBOL_DEFINITION_REGULAR;
// set scope part
if (def->hasLocalLinkage())
// Ignore visibility if linkage is local.
attr |= LTO_SYMBOL_SCOPE_INTERNAL;
else if (def->hasHiddenVisibility())
attr |= LTO_SYMBOL_SCOPE_HIDDEN;
else if (def->hasProtectedVisibility())
attr |= LTO_SYMBOL_SCOPE_PROTECTED;
else if (def->canBeOmittedFromSymbolTable())
attr |= LTO_SYMBOL_SCOPE_DEFAULT_CAN_BE_HIDDEN;
else
attr |= LTO_SYMBOL_SCOPE_DEFAULT;
if (def->hasComdat())
attr |= LTO_SYMBOL_COMDAT;
if (isa<GlobalAlias>(def))
attr |= LTO_SYMBOL_ALIAS;
auto Iter = _defines.insert(Name).first;
// fill information structure
NameAndAttributes info;
StringRef NameRef = Iter->first();
info.name = NameRef;
assert(NameRef.data()[NameRef.size()] == '\0');
info.attributes = attr;
info.isFunction = isFunction;
info.symbol = def;
// add to table of symbols
_symbols.push_back(info);
}
/// addAsmGlobalSymbol - Add a global symbol from module-level ASM to the
/// defined list.
void LTOModule::addAsmGlobalSymbol(StringRef name,
lto_symbol_attributes scope) {
auto IterBool = _defines.insert(name);
// only add new define if not already defined
if (!IterBool.second)
return;
NameAndAttributes &info = _undefines[IterBool.first->first()];
if (info.symbol == nullptr) {
// FIXME: This is trying to take care of module ASM like this:
//
// module asm ".zerofill __FOO, __foo, _bar_baz_qux, 0"
//
// but is gross and its mother dresses it funny. Have the ASM parser give us
// more details for this type of situation so that we're not guessing so
// much.
// fill information structure
info.name = IterBool.first->first();
info.attributes =
LTO_SYMBOL_PERMISSIONS_DATA | LTO_SYMBOL_DEFINITION_REGULAR | scope;
info.isFunction = false;
info.symbol = nullptr;
// add to table of symbols
_symbols.push_back(info);
return;
}
if (info.isFunction)
addDefinedFunctionSymbol(info.name, cast<Function>(info.symbol));
else
addDefinedDataSymbol(info.name, info.symbol);
_symbols.back().attributes &= ~LTO_SYMBOL_SCOPE_MASK;
_symbols.back().attributes |= scope;
}
/// addAsmGlobalSymbolUndef - Add a global symbol from module-level ASM to the
/// undefined list.
void LTOModule::addAsmGlobalSymbolUndef(StringRef name) {
auto IterBool = _undefines.insert(std::make_pair(name, NameAndAttributes()));
_asm_undefines.push_back(IterBool.first->first());
// we already have the symbol
if (!IterBool.second)
return;
uint32_t attr = LTO_SYMBOL_DEFINITION_UNDEFINED;
attr |= LTO_SYMBOL_SCOPE_DEFAULT;
NameAndAttributes &info = IterBool.first->second;
info.name = IterBool.first->first();
info.attributes = attr;
info.isFunction = false;
info.symbol = nullptr;
}
/// Add a symbol which isn't defined just yet to a list to be resolved later.
void LTOModule::addPotentialUndefinedSymbol(ModuleSymbolTable::Symbol Sym,
bool isFunc) {
SmallString<64> name;
{
raw_svector_ostream OS(name);
SymTab.printSymbolName(OS, Sym);
name.c_str();
}
auto IterBool =
_undefines.insert(std::make_pair(name.str(), NameAndAttributes()));
// we already have the symbol
if (!IterBool.second)
return;
NameAndAttributes &info = IterBool.first->second;
info.name = IterBool.first->first();
const GlobalValue *decl = dyn_cast_if_present<GlobalValue *>(Sym);
if (decl->hasExternalWeakLinkage())
info.attributes = LTO_SYMBOL_DEFINITION_WEAKUNDEF;
else
info.attributes = LTO_SYMBOL_DEFINITION_UNDEFINED;
info.isFunction = isFunc;
info.symbol = decl;
}
void LTOModule::parseSymbols() {
for (auto Sym : SymTab.symbols()) {
auto *GV = dyn_cast_if_present<GlobalValue *>(Sym);
uint32_t Flags = SymTab.getSymbolFlags(Sym);
if (Flags & object::BasicSymbolRef::SF_FormatSpecific)
continue;
bool IsUndefined = Flags & object::BasicSymbolRef::SF_Undefined;
if (!GV) {
SmallString<64> Buffer;
{
raw_svector_ostream OS(Buffer);
SymTab.printSymbolName(OS, Sym);
Buffer.c_str();
}
StringRef Name = Buffer;
if (IsUndefined)
addAsmGlobalSymbolUndef(Name);
else if (Flags & object::BasicSymbolRef::SF_Global)
addAsmGlobalSymbol(Name, LTO_SYMBOL_SCOPE_DEFAULT);
else
addAsmGlobalSymbol(Name, LTO_SYMBOL_SCOPE_INTERNAL);
continue;
}
auto *F = dyn_cast<Function>(GV);
if (IsUndefined) {
addPotentialUndefinedSymbol(Sym, F != nullptr);
continue;
}
if (F) {
addDefinedFunctionSymbol(Sym);
continue;
}
if (isa<GlobalVariable>(GV)) {
addDefinedDataSymbol(Sym);
continue;
}
assert(isa<GlobalAlias>(GV));
if (isa<Function>(cast<GlobalAlias>(GV)->getAliasee()))
addDefinedFunctionSymbol(Sym);
else
addDefinedDataSymbol(Sym);
}
// make symbols for all undefines
for (StringMap<NameAndAttributes>::iterator u =_undefines.begin(),
e = _undefines.end(); u != e; ++u) {
// If this symbol also has a definition, then don't make an undefine because
// it is a tentative definition.
if (_defines.count(u->getKey())) continue;
NameAndAttributes info = u->getValue();
_symbols.push_back(info);
}
}
/// parseMetadata - Parse metadata from the module
void LTOModule::parseMetadata() {
raw_string_ostream OS(LinkerOpts);
// Linker Options
if (NamedMDNode *LinkerOptions =
getModule().getNamedMetadata("llvm.linker.options")) {
for (unsigned i = 0, e = LinkerOptions->getNumOperands(); i != e; ++i) {
MDNode *MDOptions = LinkerOptions->getOperand(i);
for (unsigned ii = 0, ie = MDOptions->getNumOperands(); ii != ie; ++ii) {
MDString *MDOption = cast<MDString>(MDOptions->getOperand(ii));
OS << " " << MDOption->getString();
}
}
}
// Globals - we only need to do this for COFF.
const Triple TT(_target->getTargetTriple());
if (!TT.isOSBinFormatCOFF())
return;
Mangler M;
for (const NameAndAttributes &Sym : _symbols) {
if (!Sym.symbol)
continue;
emitLinkerFlagsForGlobalCOFF(OS, Sym.symbol, TT, M);
}
}
lto::InputFile *LTOModule::createInputFile(const void *buffer,
size_t buffer_size, const char *path,
std::string &outErr) {
StringRef Data((const char *)buffer, buffer_size);
MemoryBufferRef BufferRef(Data, path);
Expected<std::unique_ptr<lto::InputFile>> ObjOrErr =
lto::InputFile::create(BufferRef);
if (ObjOrErr)
return ObjOrErr->release();
outErr = std::string(path) +
": Could not read LTO input file: " + toString(ObjOrErr.takeError());
return nullptr;
}
size_t LTOModule::getDependentLibraryCount(lto::InputFile *input) {
return input->getDependentLibraries().size();
}
const char *LTOModule::getDependentLibrary(lto::InputFile *input, size_t index,
size_t *size) {
StringRef S = input->getDependentLibraries()[index];
*size = S.size();
return S.data();
}
Expected<uint32_t> LTOModule::getMachOCPUType() const {
return MachO::getCPUType(Mod->getTargetTriple());
}
Expected<uint32_t> LTOModule::getMachOCPUSubType() const {
return MachO::getCPUSubType(Mod->getTargetTriple());
}
bool LTOModule::hasCtorDtor() const {
for (auto Sym : SymTab.symbols()) {
if (auto *GV = dyn_cast_if_present<GlobalValue *>(Sym)) {
StringRef Name = GV->getName();
if (Name.consume_front("llvm.global_")) {
if (Name == "ctors" || Name == "dtors")
return true;
}
}
}
return false;
}