llvm-project/llvm/tools/opt/optdriver.cpp
Nikita Popov 979c275097
[IR] Store Triple in Module (NFC) (#129868)
The module currently stores the target triple as a string. This means
that any code that wants to actually use the triple first has to
instantiate a Triple, which is somewhat expensive. The change in #121652
caused a moderate compile-time regression due to this. While it would be
easy enough to work around, I think that architecturally, it makes more
sense to store the parsed Triple in the module, so that it can always be
directly queried.

For this change, I've opted not to add any magic conversions between
std::string and Triple for backwards-compatibilty purses, and instead
write out needed Triple()s or str()s explicitly. This is because I think
a decent number of them should be changed to work on Triple as well, to
avoid unnecessary conversions back and forth.

The only interesting part in this patch is that the default triple is
Triple("") instead of Triple() to preserve existing behavior. The former
defaults to using the ELF object format instead of unknown object
format. We should fix that as well.
2025-03-06 10:27:47 +01:00

924 lines
33 KiB
C++

//===- optdriver.cpp - The LLVM Modular Optimizer -------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Optimizations may be specified an arbitrary number of times on the command
// line, They are run in the order specified. Common driver library for re-use
// by potential downstream opt-variants.
//
//===----------------------------------------------------------------------===//
#include "NewPMDriver.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Analysis/CallGraphSCCPass.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/RegionPass.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/AsmParser/Parser.h"
#include "llvm/CodeGen/CommandFlags.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/LLVMRemarkStreamer.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/IR/LegacyPassNameParser.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/ModuleSummaryIndex.h"
#include "llvm/IR/Verifier.h"
#include "llvm/IRReader/IRReader.h"
#include "llvm/InitializePasses.h"
#include "llvm/LinkAllIR.h"
#include "llvm/LinkAllPasses.h"
#include "llvm/MC/TargetRegistry.h"
#include "llvm/Passes/PassPlugin.h"
#include "llvm/Remarks/HotnessThresholdParser.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/InitLLVM.h"
#include "llvm/Support/PluginLoader.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/SystemUtils.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Support/TimeProfiler.h"
#include "llvm/Support/ToolOutputFile.h"
#include "llvm/Support/YAMLTraits.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/TargetParser/Host.h"
#include "llvm/TargetParser/SubtargetFeature.h"
#include "llvm/TargetParser/Triple.h"
#include "llvm/Transforms/IPO/WholeProgramDevirt.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/Debugify.h"
#include <algorithm>
#include <memory>
#include <optional>
using namespace llvm;
using namespace opt_tool;
static codegen::RegisterCodeGenFlags CFG;
// The OptimizationList is automatically populated with registered Passes by the
// PassNameParser.
static cl::list<const PassInfo *, bool, PassNameParser> PassList(cl::desc(
"Optimizations available (use \"-passes=\" for the new pass manager)"));
static cl::opt<bool> EnableLegacyPassManager(
"bugpoint-enable-legacy-pm",
cl::desc(
"Enable the legacy pass manager. This is strictly for bugpoint "
"due to it not working with the new PM, please do not use otherwise."),
cl::init(false));
// This flag specifies a textual description of the optimization pass pipeline
// to run over the module. This flag switches opt to use the new pass manager
// infrastructure, completely disabling all of the flags specific to the old
// pass management.
static cl::opt<std::string> PassPipeline(
"passes",
cl::desc(
"A textual description of the pass pipeline. To have analysis passes "
"available before a certain pass, add \"require<foo-analysis>\"."));
static cl::alias PassPipeline2("p", cl::aliasopt(PassPipeline),
cl::desc("Alias for -passes"));
static cl::opt<bool> PrintPasses("print-passes",
cl::desc("Print available passes that can be "
"specified in -passes=foo and exit"));
static cl::opt<std::string> InputFilename(cl::Positional,
cl::desc("<input bitcode file>"),
cl::init("-"),
cl::value_desc("filename"));
static cl::opt<std::string> OutputFilename("o",
cl::desc("Override output filename"),
cl::value_desc("filename"));
static cl::opt<bool> Force("f", cl::desc("Enable binary output on terminals"));
static cl::opt<bool> NoOutput("disable-output",
cl::desc("Do not write result bitcode file"),
cl::Hidden);
static cl::opt<bool> OutputAssembly("S",
cl::desc("Write output as LLVM assembly"));
static cl::opt<bool>
OutputThinLTOBC("thinlto-bc",
cl::desc("Write output as ThinLTO-ready bitcode"));
static cl::opt<bool>
SplitLTOUnit("thinlto-split-lto-unit",
cl::desc("Enable splitting of a ThinLTO LTOUnit"));
static cl::opt<bool>
UnifiedLTO("unified-lto",
cl::desc("Use unified LTO piplines. Ignored unless -thinlto-bc "
"is also specified."),
cl::Hidden, cl::init(false));
static cl::opt<std::string> ThinLinkBitcodeFile(
"thin-link-bitcode-file", cl::value_desc("filename"),
cl::desc(
"A file in which to write minimized bitcode for the thin link only"));
static cl::opt<bool> NoVerify("disable-verify",
cl::desc("Do not run the verifier"), cl::Hidden);
static cl::opt<bool> NoUpgradeDebugInfo("disable-upgrade-debug-info",
cl::desc("Generate invalid output"),
cl::ReallyHidden);
static cl::opt<bool> VerifyEach("verify-each",
cl::desc("Verify after each transform"));
static cl::opt<bool>
DisableDITypeMap("disable-debug-info-type-map",
cl::desc("Don't use a uniquing type map for debug info"));
static cl::opt<bool>
StripDebug("strip-debug",
cl::desc("Strip debugger symbol info from translation unit"));
static cl::opt<bool>
StripNamedMetadata("strip-named-metadata",
cl::desc("Strip module-level named metadata"));
static cl::opt<bool>
OptLevelO0("O0", cl::desc("Optimization level 0. Similar to clang -O0. "
"Same as -passes=\"default<O0>\""));
static cl::opt<bool>
OptLevelO1("O1", cl::desc("Optimization level 1. Similar to clang -O1. "
"Same as -passes=\"default<O1>\""));
static cl::opt<bool>
OptLevelO2("O2", cl::desc("Optimization level 2. Similar to clang -O2. "
"Same as -passes=\"default<O2>\""));
static cl::opt<bool>
OptLevelOs("Os", cl::desc("Like -O2 but size-conscious. Similar to clang "
"-Os. Same as -passes=\"default<Os>\""));
static cl::opt<bool> OptLevelOz(
"Oz",
cl::desc("Like -O2 but optimize for code size above all else. Similar to "
"clang -Oz. Same as -passes=\"default<Oz>\""));
static cl::opt<bool>
OptLevelO3("O3", cl::desc("Optimization level 3. Similar to clang -O3. "
"Same as -passes=\"default<O3>\""));
static cl::opt<unsigned> CodeGenOptLevelCL(
"codegen-opt-level",
cl::desc("Override optimization level for codegen hooks, legacy PM only"));
static cl::opt<std::string>
TargetTriple("mtriple", cl::desc("Override target triple for module"));
static cl::opt<bool> EmitSummaryIndex("module-summary",
cl::desc("Emit module summary index"),
cl::init(false));
static cl::opt<bool> EmitModuleHash("module-hash", cl::desc("Emit module hash"),
cl::init(false));
static cl::opt<bool>
DisableSimplifyLibCalls("disable-simplify-libcalls",
cl::desc("Disable simplify-libcalls"));
static cl::list<std::string> DisableBuiltins(
"disable-builtin",
cl::desc("Disable specific target library builtin function"));
static cl::opt<bool> EnableDebugify(
"enable-debugify",
cl::desc(
"Start the pipeline with debugify and end it with check-debugify"));
static cl::opt<bool> VerifyDebugInfoPreserve(
"verify-debuginfo-preserve",
cl::desc("Start the pipeline with collecting and end it with checking of "
"debug info preservation."));
static cl::opt<std::string> ClDataLayout("data-layout",
cl::desc("data layout string to use"),
cl::value_desc("layout-string"),
cl::init(""));
static cl::opt<bool> PreserveBitcodeUseListOrder(
"preserve-bc-uselistorder",
cl::desc("Preserve use-list order when writing LLVM bitcode."),
cl::init(true), cl::Hidden);
static cl::opt<bool> PreserveAssemblyUseListOrder(
"preserve-ll-uselistorder",
cl::desc("Preserve use-list order when writing LLVM assembly."),
cl::init(false), cl::Hidden);
static cl::opt<bool> RunTwice("run-twice",
cl::desc("Run all passes twice, re-using the "
"same pass manager (legacy PM only)."),
cl::init(false), cl::Hidden);
static cl::opt<bool> DiscardValueNames(
"discard-value-names",
cl::desc("Discard names from Value (other than GlobalValue)."),
cl::init(false), cl::Hidden);
static cl::opt<bool> TimeTrace("time-trace", cl::desc("Record time trace"));
static cl::opt<unsigned> TimeTraceGranularity(
"time-trace-granularity",
cl::desc(
"Minimum time granularity (in microseconds) traced by time profiler"),
cl::init(500), cl::Hidden);
static cl::opt<std::string>
TimeTraceFile("time-trace-file",
cl::desc("Specify time trace file destination"),
cl::value_desc("filename"));
static cl::opt<bool> RemarksWithHotness(
"pass-remarks-with-hotness",
cl::desc("With PGO, include profile count in optimization remarks"),
cl::Hidden);
static cl::opt<std::optional<uint64_t>, false, remarks::HotnessThresholdParser>
RemarksHotnessThreshold(
"pass-remarks-hotness-threshold",
cl::desc("Minimum profile count required for "
"an optimization remark to be output. "
"Use 'auto' to apply the threshold from profile summary"),
cl::value_desc("N or 'auto'"), cl::init(0), cl::Hidden);
static cl::opt<std::string>
RemarksFilename("pass-remarks-output",
cl::desc("Output filename for pass remarks"),
cl::value_desc("filename"));
static cl::opt<std::string>
RemarksPasses("pass-remarks-filter",
cl::desc("Only record optimization remarks from passes whose "
"names match the given regular expression"),
cl::value_desc("regex"));
static cl::opt<std::string> RemarksFormat(
"pass-remarks-format",
cl::desc("The format used for serializing remarks (default: YAML)"),
cl::value_desc("format"), cl::init("yaml"));
static cl::list<std::string>
PassPlugins("load-pass-plugin",
cl::desc("Load passes from plugin library"));
static cl::opt<bool> TryUseNewDbgInfoFormat(
"try-experimental-debuginfo-iterators",
cl::desc("Enable debuginfo iterator positions, if they're built in"),
cl::init(false), cl::Hidden);
extern cl::opt<bool> UseNewDbgInfoFormat;
//===----------------------------------------------------------------------===//
// CodeGen-related helper functions.
//
static CodeGenOptLevel GetCodeGenOptLevel() {
return static_cast<CodeGenOptLevel>(unsigned(CodeGenOptLevelCL));
}
struct TimeTracerRAII {
TimeTracerRAII(StringRef ProgramName) {
if (TimeTrace)
timeTraceProfilerInitialize(TimeTraceGranularity, ProgramName);
}
~TimeTracerRAII() {
if (TimeTrace) {
if (auto E = timeTraceProfilerWrite(TimeTraceFile, OutputFilename)) {
handleAllErrors(std::move(E), [&](const StringError &SE) {
errs() << SE.getMessage() << "\n";
});
return;
}
timeTraceProfilerCleanup();
}
}
};
// For use in NPM transition. Currently this contains most codegen-specific
// passes. Remove passes from here when porting to the NPM.
// TODO: use a codegen version of PassRegistry.def/PassBuilder::is*Pass() once
// it exists.
static bool shouldPinPassToLegacyPM(StringRef Pass) {
static constexpr StringLiteral PassNameExactToIgnore[] = {
"nvvm-reflect",
"nvvm-intr-range",
"amdgpu-simplifylib",
"amdgpu-image-intrinsic-opt",
"amdgpu-usenative",
"amdgpu-promote-alloca",
"amdgpu-promote-alloca-to-vector",
"amdgpu-lower-kernel-attributes",
"amdgpu-propagate-attributes-early",
"amdgpu-propagate-attributes-late",
"amdgpu-unify-metadata",
"amdgpu-printf-runtime-binding",
"amdgpu-always-inline"};
if (llvm::is_contained(PassNameExactToIgnore, Pass))
return false;
static constexpr StringLiteral PassNamePrefix[] = {
"x86-", "xcore-", "wasm-", "systemz-", "ppc-", "nvvm-",
"nvptx-", "mips-", "lanai-", "hexagon-", "bpf-", "avr-",
"thumb2-", "arm-", "si-", "gcn-", "amdgpu-", "aarch64-",
"amdgcn-", "polly-", "riscv-", "dxil-"};
static constexpr StringLiteral PassNameContain[] = {"-eh-prepare"};
static constexpr StringLiteral PassNameExact[] = {
"safe-stack",
"cost-model",
"codegenprepare",
"interleaved-load-combine",
"unreachableblockelim",
"verify-safepoint-ir",
"atomic-expand",
"expandvp",
"mve-tail-predication",
"interleaved-access",
"global-merge",
"pre-isel-intrinsic-lowering",
"expand-reductions",
"indirectbr-expand",
"generic-to-nvvm",
"expand-memcmp",
"loop-reduce",
"lower-amx-type",
"lower-amx-intrinsics",
"polyhedral-info",
"print-polyhedral-info",
"replace-with-veclib",
"jmc-instrumenter",
"dot-regions",
"dot-regions-only",
"view-regions",
"view-regions-only",
"select-optimize",
"expand-large-div-rem",
"structurizecfg",
"fix-irreducible",
"expand-large-fp-convert",
"callbrprepare",
"scalarizer",
};
for (const auto &P : PassNamePrefix)
if (Pass.starts_with(P))
return true;
for (const auto &P : PassNameContain)
if (Pass.contains(P))
return true;
return llvm::is_contained(PassNameExact, Pass);
}
// For use in NPM transition.
static bool shouldForceLegacyPM() {
for (const auto &P : PassList) {
StringRef Arg = P->getPassArgument();
if (shouldPinPassToLegacyPM(Arg))
return true;
}
return false;
}
//===----------------------------------------------------------------------===//
// main for opt
//
extern "C" int optMain(
int argc, char **argv,
ArrayRef<std::function<void(llvm::PassBuilder &)>> PassBuilderCallbacks) {
InitLLVM X(argc, argv);
// Enable debug stream buffering.
EnableDebugBuffering = true;
InitializeAllTargets();
InitializeAllTargetMCs();
InitializeAllAsmPrinters();
InitializeAllAsmParsers();
// Initialize passes
PassRegistry &Registry = *PassRegistry::getPassRegistry();
initializeCore(Registry);
initializeScalarOpts(Registry);
initializeVectorization(Registry);
initializeIPO(Registry);
initializeAnalysis(Registry);
initializeTransformUtils(Registry);
initializeInstCombine(Registry);
initializeTarget(Registry);
// For codegen passes, only passes that do IR to IR transformation are
// supported.
initializeExpandLargeDivRemLegacyPassPass(Registry);
initializeExpandLargeFpConvertLegacyPassPass(Registry);
initializeExpandMemCmpLegacyPassPass(Registry);
initializeScalarizeMaskedMemIntrinLegacyPassPass(Registry);
initializeSelectOptimizePass(Registry);
initializeCallBrPreparePass(Registry);
initializeCodeGenPrepareLegacyPassPass(Registry);
initializeAtomicExpandLegacyPass(Registry);
initializeWinEHPreparePass(Registry);
initializeDwarfEHPrepareLegacyPassPass(Registry);
initializeSafeStackLegacyPassPass(Registry);
initializeSjLjEHPreparePass(Registry);
initializePreISelIntrinsicLoweringLegacyPassPass(Registry);
initializeGlobalMergePass(Registry);
initializeIndirectBrExpandLegacyPassPass(Registry);
initializeInterleavedLoadCombinePass(Registry);
initializeInterleavedAccessPass(Registry);
initializePostInlineEntryExitInstrumenterPass(Registry);
initializeUnreachableBlockElimLegacyPassPass(Registry);
initializeExpandReductionsPass(Registry);
initializeWasmEHPreparePass(Registry);
initializeWriteBitcodePassPass(Registry);
initializeReplaceWithVeclibLegacyPass(Registry);
initializeJMCInstrumenterPass(Registry);
SmallVector<PassPlugin, 1> PluginList;
PassPlugins.setCallback([&](const std::string &PluginPath) {
auto Plugin = PassPlugin::Load(PluginPath);
if (!Plugin)
report_fatal_error(Plugin.takeError(), /*gen_crash_diag=*/false);
PluginList.emplace_back(Plugin.get());
});
// Register the Target and CPU printer for --version.
cl::AddExtraVersionPrinter(sys::printDefaultTargetAndDetectedCPU);
cl::ParseCommandLineOptions(
argc, argv, "llvm .bc -> .bc modular optimizer and analysis printer\n");
// RemoveDIs debug-info transition: tests may request that we /try/ to use the
// new debug-info format.
if (TryUseNewDbgInfoFormat) {
// Turn the new debug-info format on.
UseNewDbgInfoFormat = true;
}
LLVMContext Context;
// TODO: remove shouldForceLegacyPM().
const bool UseNPM = (!EnableLegacyPassManager && !shouldForceLegacyPM()) ||
PassPipeline.getNumOccurrences() > 0;
if (UseNPM && !PassList.empty()) {
errs() << "The `opt -passname` syntax for the new pass manager is "
"not supported, please use `opt -passes=<pipeline>` (or the `-p` "
"alias for a more concise version).\n";
errs() << "See https://llvm.org/docs/NewPassManager.html#invoking-opt "
"for more details on the pass pipeline syntax.\n\n";
return 1;
}
if (!UseNPM && PluginList.size()) {
errs() << argv[0] << ": " << PassPlugins.ArgStr
<< " specified with legacy PM.\n";
return 1;
}
// FIXME: once the legacy PM code is deleted, move runPassPipeline() here and
// construct the PassBuilder before parsing IR so we can reuse the same
// PassBuilder for print passes.
if (PrintPasses) {
printPasses(outs());
return 0;
}
TimeTracerRAII TimeTracer(argv[0]);
SMDiagnostic Err;
Context.setDiscardValueNames(DiscardValueNames);
if (!DisableDITypeMap)
Context.enableDebugTypeODRUniquing();
Expected<std::unique_ptr<ToolOutputFile>> RemarksFileOrErr =
setupLLVMOptimizationRemarks(Context, RemarksFilename, RemarksPasses,
RemarksFormat, RemarksWithHotness,
RemarksHotnessThreshold);
if (Error E = RemarksFileOrErr.takeError()) {
errs() << toString(std::move(E)) << '\n';
return 1;
}
std::unique_ptr<ToolOutputFile> RemarksFile = std::move(*RemarksFileOrErr);
// Load the input module...
auto SetDataLayout = [&](StringRef IRTriple,
StringRef IRLayout) -> std::optional<std::string> {
// Data layout specified on the command line has the highest priority.
if (!ClDataLayout.empty())
return ClDataLayout;
// If an explicit data layout is already defined in the IR, don't infer.
if (!IRLayout.empty())
return std::nullopt;
// If an explicit triple was specified (either in the IR or on the
// command line), use that to infer the default data layout. However, the
// command line target triple should override the IR file target triple.
std::string TripleStr =
TargetTriple.empty() ? IRTriple.str() : Triple::normalize(TargetTriple);
// If the triple string is still empty, we don't fall back to
// sys::getDefaultTargetTriple() since we do not want to have differing
// behaviour dependent on the configured default triple. Therefore, if the
// user did not pass -mtriple or define an explicit triple/datalayout in
// the IR, we should default to an empty (default) DataLayout.
if (TripleStr.empty())
return std::nullopt;
// Otherwise we infer the DataLayout from the target machine.
Expected<std::unique_ptr<TargetMachine>> ExpectedTM =
codegen::createTargetMachineForTriple(TripleStr, GetCodeGenOptLevel());
if (!ExpectedTM) {
errs() << argv[0] << ": warning: failed to infer data layout: "
<< toString(ExpectedTM.takeError()) << "\n";
return std::nullopt;
}
return (*ExpectedTM)->createDataLayout().getStringRepresentation();
};
std::unique_ptr<Module> M;
if (NoUpgradeDebugInfo)
M = parseAssemblyFileWithIndexNoUpgradeDebugInfo(
InputFilename, Err, Context, nullptr, SetDataLayout)
.Mod;
else
M = parseIRFile(InputFilename, Err, Context,
ParserCallbacks(SetDataLayout));
if (!M) {
Err.print(argv[0], errs());
return 1;
}
// Strip debug info before running the verifier.
if (StripDebug)
StripDebugInfo(*M);
// Erase module-level named metadata, if requested.
if (StripNamedMetadata) {
while (!M->named_metadata_empty()) {
NamedMDNode *NMD = &*M->named_metadata_begin();
M->eraseNamedMetadata(NMD);
}
}
// If we are supposed to override the target triple, do so now.
if (!TargetTriple.empty())
M->setTargetTriple(Triple(Triple::normalize(TargetTriple)));
// Immediately run the verifier to catch any problems before starting up the
// pass pipelines. Otherwise we can crash on broken code during
// doInitialization().
if (!NoVerify && verifyModule(*M, &errs())) {
errs() << argv[0] << ": " << InputFilename
<< ": error: input module is broken!\n";
return 1;
}
// Enable testing of whole program devirtualization on this module by invoking
// the facility for updating public visibility to linkage unit visibility when
// specified by an internal option. This is normally done during LTO which is
// not performed via opt.
updateVCallVisibilityInModule(
*M,
/*WholeProgramVisibilityEnabledInLTO=*/false,
// FIXME: These need linker information via a
// TBD new interface.
/*DynamicExportSymbols=*/{},
/*ValidateAllVtablesHaveTypeInfos=*/false,
/*IsVisibleToRegularObj=*/[](StringRef) { return true; });
// Figure out what stream we are supposed to write to...
std::unique_ptr<ToolOutputFile> Out;
std::unique_ptr<ToolOutputFile> ThinLinkOut;
if (NoOutput) {
if (!OutputFilename.empty())
errs() << "WARNING: The -o (output filename) option is ignored when\n"
"the --disable-output option is used.\n";
} else {
// Default to standard output.
if (OutputFilename.empty())
OutputFilename = "-";
std::error_code EC;
sys::fs::OpenFlags Flags =
OutputAssembly ? sys::fs::OF_TextWithCRLF : sys::fs::OF_None;
Out.reset(new ToolOutputFile(OutputFilename, EC, Flags));
if (EC) {
errs() << EC.message() << '\n';
return 1;
}
if (!ThinLinkBitcodeFile.empty()) {
ThinLinkOut.reset(
new ToolOutputFile(ThinLinkBitcodeFile, EC, sys::fs::OF_None));
if (EC) {
errs() << EC.message() << '\n';
return 1;
}
}
}
Triple ModuleTriple(M->getTargetTriple());
std::string CPUStr, FeaturesStr;
std::unique_ptr<TargetMachine> TM;
if (ModuleTriple.getArch()) {
CPUStr = codegen::getCPUStr();
FeaturesStr = codegen::getFeaturesStr();
Expected<std::unique_ptr<TargetMachine>> ExpectedTM =
codegen::createTargetMachineForTriple(ModuleTriple.str(),
GetCodeGenOptLevel());
if (auto E = ExpectedTM.takeError()) {
errs() << argv[0] << ": WARNING: failed to create target machine for '"
<< ModuleTriple.str() << "': " << toString(std::move(E)) << "\n";
} else {
TM = std::move(*ExpectedTM);
}
} else if (ModuleTriple.getArchName() != "unknown" &&
ModuleTriple.getArchName() != "") {
errs() << argv[0] << ": unrecognized architecture '"
<< ModuleTriple.getArchName() << "' provided.\n";
return 1;
}
// Override function attributes based on CPUStr, FeaturesStr, and command line
// flags.
codegen::setFunctionAttributes(CPUStr, FeaturesStr, *M);
// If the output is set to be emitted to standard out, and standard out is a
// console, print out a warning message and refuse to do it. We don't
// impress anyone by spewing tons of binary goo to a terminal.
if (!Force && !NoOutput && !OutputAssembly)
if (CheckBitcodeOutputToConsole(Out->os()))
NoOutput = true;
if (OutputThinLTOBC) {
M->addModuleFlag(Module::Error, "EnableSplitLTOUnit", SplitLTOUnit);
if (UnifiedLTO)
M->addModuleFlag(Module::Error, "UnifiedLTO", 1);
}
// Add an appropriate TargetLibraryInfo pass for the module's triple.
TargetLibraryInfoImpl TLII(ModuleTriple);
// The -disable-simplify-libcalls flag actually disables all builtin optzns.
if (DisableSimplifyLibCalls)
TLII.disableAllFunctions();
else {
// Disable individual builtin functions in TargetLibraryInfo.
LibFunc F;
for (auto &FuncName : DisableBuiltins)
if (TLII.getLibFunc(FuncName, F))
TLII.setUnavailable(F);
else {
errs() << argv[0] << ": cannot disable nonexistent builtin function "
<< FuncName << '\n';
return 1;
}
}
if (UseNPM) {
if (legacy::debugPassSpecified()) {
errs() << "-debug-pass does not work with the new PM, either use "
"-debug-pass-manager, or use the legacy PM\n";
return 1;
}
auto NumOLevel = OptLevelO0 + OptLevelO1 + OptLevelO2 + OptLevelO3 +
OptLevelOs + OptLevelOz;
if (NumOLevel > 1) {
errs() << "Cannot specify multiple -O#\n";
return 1;
}
if (NumOLevel > 0 && (PassPipeline.getNumOccurrences() > 0)) {
errs() << "Cannot specify -O# and --passes=/--foo-pass, use "
"-passes='default<O#>,other-pass'\n";
return 1;
}
std::string Pipeline = PassPipeline;
if (OptLevelO0)
Pipeline = "default<O0>";
if (OptLevelO1)
Pipeline = "default<O1>";
if (OptLevelO2)
Pipeline = "default<O2>";
if (OptLevelO3)
Pipeline = "default<O3>";
if (OptLevelOs)
Pipeline = "default<Os>";
if (OptLevelOz)
Pipeline = "default<Oz>";
OutputKind OK = OK_NoOutput;
if (!NoOutput)
OK = OutputAssembly
? OK_OutputAssembly
: (OutputThinLTOBC ? OK_OutputThinLTOBitcode : OK_OutputBitcode);
VerifierKind VK = VerifierKind::InputOutput;
if (NoVerify)
VK = VerifierKind::None;
else if (VerifyEach)
VK = VerifierKind::EachPass;
// The user has asked to use the new pass manager and provided a pipeline
// string. Hand off the rest of the functionality to the new code for that
// layer.
return runPassPipeline(
argv[0], *M, TM.get(), &TLII, Out.get(), ThinLinkOut.get(),
RemarksFile.get(), Pipeline, PluginList, PassBuilderCallbacks,
OK, VK, PreserveAssemblyUseListOrder,
PreserveBitcodeUseListOrder, EmitSummaryIndex, EmitModuleHash,
EnableDebugify, VerifyDebugInfoPreserve, UnifiedLTO)
? 0
: 1;
}
if (OptLevelO0 || OptLevelO1 || OptLevelO2 || OptLevelOs || OptLevelOz ||
OptLevelO3) {
errs() << "Cannot use -O# with legacy PM.\n";
return 1;
}
if (EmitSummaryIndex) {
errs() << "Cannot use -module-summary with legacy PM.\n";
return 1;
}
if (EmitModuleHash) {
errs() << "Cannot use -module-hash with legacy PM.\n";
return 1;
}
if (OutputThinLTOBC) {
errs() << "Cannot use -thinlto-bc with legacy PM.\n";
return 1;
}
// Create a PassManager to hold and optimize the collection of passes we are
// about to build. If the -debugify-each option is set, wrap each pass with
// the (-check)-debugify passes.
DebugifyCustomPassManager Passes;
DebugifyStatsMap DIStatsMap;
DebugInfoPerPass DebugInfoBeforePass;
if (DebugifyEach) {
Passes.setDebugifyMode(DebugifyMode::SyntheticDebugInfo);
Passes.setDIStatsMap(DIStatsMap);
} else if (VerifyEachDebugInfoPreserve) {
Passes.setDebugifyMode(DebugifyMode::OriginalDebugInfo);
Passes.setDebugInfoBeforePass(DebugInfoBeforePass);
if (!VerifyDIPreserveExport.empty())
Passes.setOrigDIVerifyBugsReportFilePath(VerifyDIPreserveExport);
}
bool AddOneTimeDebugifyPasses =
(EnableDebugify && !DebugifyEach) ||
(VerifyDebugInfoPreserve && !VerifyEachDebugInfoPreserve);
Passes.add(new TargetLibraryInfoWrapperPass(TLII));
// Add internal analysis passes from the target machine.
Passes.add(createTargetTransformInfoWrapperPass(TM ? TM->getTargetIRAnalysis()
: TargetIRAnalysis()));
if (AddOneTimeDebugifyPasses) {
if (EnableDebugify) {
Passes.setDIStatsMap(DIStatsMap);
Passes.add(createDebugifyModulePass());
} else if (VerifyDebugInfoPreserve) {
Passes.setDebugInfoBeforePass(DebugInfoBeforePass);
Passes.add(createDebugifyModulePass(DebugifyMode::OriginalDebugInfo, "",
&(Passes.getDebugInfoPerPass())));
}
}
if (TM) {
Pass *TPC = TM->createPassConfig(Passes);
if (!TPC) {
errs() << "Target Machine pass config creation failed.\n";
return 1;
}
Passes.add(TPC);
}
// Create a new optimization pass for each one specified on the command line
for (unsigned i = 0; i < PassList.size(); ++i) {
const PassInfo *PassInf = PassList[i];
if (PassInf->getNormalCtor()) {
Pass *P = PassInf->getNormalCtor()();
if (P) {
// Add the pass to the pass manager.
Passes.add(P);
// If we are verifying all of the intermediate steps, add the verifier.
if (VerifyEach)
Passes.add(createVerifierPass());
}
} else
errs() << argv[0] << ": cannot create pass: " << PassInf->getPassName()
<< "\n";
}
// Check that the module is well formed on completion of optimization
if (!NoVerify && !VerifyEach)
Passes.add(createVerifierPass());
if (AddOneTimeDebugifyPasses) {
if (EnableDebugify)
Passes.add(createCheckDebugifyModulePass(false));
else if (VerifyDebugInfoPreserve) {
if (!VerifyDIPreserveExport.empty())
Passes.setOrigDIVerifyBugsReportFilePath(VerifyDIPreserveExport);
Passes.add(createCheckDebugifyModulePass(
false, "", nullptr, DebugifyMode::OriginalDebugInfo,
&(Passes.getDebugInfoPerPass()), VerifyDIPreserveExport));
}
}
// In run twice mode, we want to make sure the output is bit-by-bit
// equivalent if we run the pass manager again, so setup two buffers and
// a stream to write to them. Note that llc does something similar and it
// may be worth to abstract this out in the future.
SmallVector<char, 0> Buffer;
SmallVector<char, 0> FirstRunBuffer;
std::unique_ptr<raw_svector_ostream> BOS;
raw_ostream *OS = nullptr;
const bool ShouldEmitOutput = !NoOutput;
// Write bitcode or assembly to the output as the last step...
if (ShouldEmitOutput || RunTwice) {
assert(Out);
OS = &Out->os();
if (RunTwice) {
BOS = std::make_unique<raw_svector_ostream>(Buffer);
OS = BOS.get();
}
if (OutputAssembly)
Passes.add(createPrintModulePass(*OS, "", PreserveAssemblyUseListOrder));
else
Passes.add(createBitcodeWriterPass(*OS, PreserveBitcodeUseListOrder));
}
// Before executing passes, print the final values of the LLVM options.
cl::PrintOptionValues();
if (!RunTwice) {
// Now that we have all of the passes ready, run them.
Passes.run(*M);
} else {
// If requested, run all passes twice with the same pass manager to catch
// bugs caused by persistent state in the passes.
std::unique_ptr<Module> M2(CloneModule(*M));
// Run all passes on the original module first, so the second run processes
// the clone to catch CloneModule bugs.
Passes.run(*M);
FirstRunBuffer = Buffer;
Buffer.clear();
Passes.run(*M2);
// Compare the two outputs and make sure they're the same
assert(Out);
if (Buffer.size() != FirstRunBuffer.size() ||
(memcmp(Buffer.data(), FirstRunBuffer.data(), Buffer.size()) != 0)) {
errs()
<< "Running the pass manager twice changed the output.\n"
"Writing the result of the second run to the specified output.\n"
"To generate the one-run comparison binary, just run without\n"
"the compile-twice option\n";
if (ShouldEmitOutput) {
Out->os() << BOS->str();
Out->keep();
}
if (RemarksFile)
RemarksFile->keep();
return 1;
}
if (ShouldEmitOutput)
Out->os() << BOS->str();
}
if (DebugifyEach && !DebugifyExport.empty())
exportDebugifyStats(DebugifyExport, Passes.getDebugifyStatsMap());
// Declare success.
if (!NoOutput)
Out->keep();
if (RemarksFile)
RemarksFile->keep();
if (ThinLinkOut)
ThinLinkOut->keep();
return 0;
}