llvm-project/llvm/lib/Transforms/Scalar/LoopPredication.cpp
Anna Thomas 6879721453 [LoopPredication] NFC: Refactored code to separate out functions being reused
Summary:
Refactored the code to separate out common functions that are being
reused.
This is to reduce the changes for changes coming up wrt loop
predication with reverse loops.

This refactoring is what we have in our downstream code.

llvm-svn: 317324
2017-11-03 14:25:39 +00:00

674 lines
24 KiB
C++

//===-- LoopPredication.cpp - Guard based loop predication pass -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// The LoopPredication pass tries to convert loop variant range checks to loop
// invariant by widening checks across loop iterations. For example, it will
// convert
//
// for (i = 0; i < n; i++) {
// guard(i < len);
// ...
// }
//
// to
//
// for (i = 0; i < n; i++) {
// guard(n - 1 < len);
// ...
// }
//
// After this transformation the condition of the guard is loop invariant, so
// loop-unswitch can later unswitch the loop by this condition which basically
// predicates the loop by the widened condition:
//
// if (n - 1 < len)
// for (i = 0; i < n; i++) {
// ...
// }
// else
// deoptimize
//
// It's tempting to rely on SCEV here, but it has proven to be problematic.
// Generally the facts SCEV provides about the increment step of add
// recurrences are true if the backedge of the loop is taken, which implicitly
// assumes that the guard doesn't fail. Using these facts to optimize the
// guard results in a circular logic where the guard is optimized under the
// assumption that it never fails.
//
// For example, in the loop below the induction variable will be marked as nuw
// basing on the guard. Basing on nuw the guard predicate will be considered
// monotonic. Given a monotonic condition it's tempting to replace the induction
// variable in the condition with its value on the last iteration. But this
// transformation is not correct, e.g. e = 4, b = 5 breaks the loop.
//
// for (int i = b; i != e; i++)
// guard(i u< len)
//
// One of the ways to reason about this problem is to use an inductive proof
// approach. Given the loop:
//
// if (B(0)) {
// do {
// I = PHI(0, I.INC)
// I.INC = I + Step
// guard(G(I));
// } while (B(I));
// }
//
// where B(x) and G(x) are predicates that map integers to booleans, we want a
// loop invariant expression M such the following program has the same semantics
// as the above:
//
// if (B(0)) {
// do {
// I = PHI(0, I.INC)
// I.INC = I + Step
// guard(G(0) && M);
// } while (B(I));
// }
//
// One solution for M is M = forall X . (G(X) && B(X)) => G(X + Step)
//
// Informal proof that the transformation above is correct:
//
// By the definition of guards we can rewrite the guard condition to:
// G(I) && G(0) && M
//
// Let's prove that for each iteration of the loop:
// G(0) && M => G(I)
// And the condition above can be simplified to G(Start) && M.
//
// Induction base.
// G(0) && M => G(0)
//
// Induction step. Assuming G(0) && M => G(I) on the subsequent
// iteration:
//
// B(I) is true because it's the backedge condition.
// G(I) is true because the backedge is guarded by this condition.
//
// So M = forall X . (G(X) && B(X)) => G(X + Step) implies G(I + Step).
//
// Note that we can use anything stronger than M, i.e. any condition which
// implies M.
//
// For now the transformation is limited to the following case:
// * The loop has a single latch with the condition of the form:
// B(X) = latchStart + X <pred> latchLimit,
// where <pred> is u<, u<=, s<, or s<=.
// * The step of the IV used in the latch condition is 1.
// * The guard condition is of the form
// G(X) = guardStart + X u< guardLimit
//
// For the ult latch comparison case M is:
// forall X . guardStart + X u< guardLimit && latchStart + X <u latchLimit =>
// guardStart + X + 1 u< guardLimit
//
// The only way the antecedent can be true and the consequent can be false is
// if
// X == guardLimit - 1 - guardStart
// (and guardLimit is non-zero, but we won't use this latter fact).
// If X == guardLimit - 1 - guardStart then the second half of the antecedent is
// latchStart + guardLimit - 1 - guardStart u< latchLimit
// and its negation is
// latchStart + guardLimit - 1 - guardStart u>= latchLimit
//
// In other words, if
// latchLimit u<= latchStart + guardLimit - 1 - guardStart
// then:
// (the ranges below are written in ConstantRange notation, where [A, B) is the
// set for (I = A; I != B; I++ /*maywrap*/) yield(I);)
//
// forall X . guardStart + X u< guardLimit &&
// latchStart + X u< latchLimit =>
// guardStart + X + 1 u< guardLimit
// == forall X . guardStart + X u< guardLimit &&
// latchStart + X u< latchStart + guardLimit - 1 - guardStart =>
// guardStart + X + 1 u< guardLimit
// == forall X . (guardStart + X) in [0, guardLimit) &&
// (latchStart + X) in [0, latchStart + guardLimit - 1 - guardStart) =>
// (guardStart + X + 1) in [0, guardLimit)
// == forall X . X in [-guardStart, guardLimit - guardStart) &&
// X in [-latchStart, guardLimit - 1 - guardStart) =>
// X in [-guardStart - 1, guardLimit - guardStart - 1)
// == true
//
// So the widened condition is:
// guardStart u< guardLimit &&
// latchStart + guardLimit - 1 - guardStart u>= latchLimit
// Similarly for ule condition the widened condition is:
// guardStart u< guardLimit &&
// latchStart + guardLimit - 1 - guardStart u> latchLimit
// For slt condition the widened condition is:
// guardStart u< guardLimit &&
// latchStart + guardLimit - 1 - guardStart s>= latchLimit
// For sle condition the widened condition is:
// guardStart u< guardLimit &&
// latchStart + guardLimit - 1 - guardStart s> latchLimit
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar/LoopPredication.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#define DEBUG_TYPE "loop-predication"
using namespace llvm;
static cl::opt<bool> EnableIVTruncation("loop-predication-enable-iv-truncation",
cl::Hidden, cl::init(true));
namespace {
class LoopPredication {
/// Represents an induction variable check:
/// icmp Pred, <induction variable>, <loop invariant limit>
struct LoopICmp {
ICmpInst::Predicate Pred;
const SCEVAddRecExpr *IV;
const SCEV *Limit;
LoopICmp(ICmpInst::Predicate Pred, const SCEVAddRecExpr *IV,
const SCEV *Limit)
: Pred(Pred), IV(IV), Limit(Limit) {}
LoopICmp() {}
void dump() {
dbgs() << "LoopICmp Pred = " << Pred << ", IV = " << *IV
<< ", Limit = " << *Limit << "\n";
}
};
ScalarEvolution *SE;
Loop *L;
const DataLayout *DL;
BasicBlock *Preheader;
LoopICmp LatchCheck;
bool isSupportedStep(const SCEV* Step);
Optional<LoopICmp> parseLoopICmp(ICmpInst *ICI) {
return parseLoopICmp(ICI->getPredicate(), ICI->getOperand(0),
ICI->getOperand(1));
}
Optional<LoopICmp> parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS,
Value *RHS);
Optional<LoopICmp> parseLoopLatchICmp();
bool CanExpand(const SCEV* S);
Value *expandCheck(SCEVExpander &Expander, IRBuilder<> &Builder,
ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
Instruction *InsertAt);
Optional<Value *> widenICmpRangeCheck(ICmpInst *ICI, SCEVExpander &Expander,
IRBuilder<> &Builder);
Optional<Value *> widenICmpRangeCheckIncrementingLoop(LoopICmp LatchCheck,
LoopICmp RangeCheck,
SCEVExpander &Expander,
IRBuilder<> &Builder);
bool widenGuardConditions(IntrinsicInst *II, SCEVExpander &Expander);
// When the IV type is wider than the range operand type, we can still do loop
// predication, by generating SCEVs for the range and latch that are of the
// same type. We achieve this by generating a SCEV truncate expression for the
// latch IV. This is done iff truncation of the IV is a safe operation,
// without loss of information.
// Another way to achieve this is by generating a wider type SCEV for the
// range check operand, however, this needs a more involved check that
// operands do not overflow. This can lead to loss of information when the
// range operand is of the form: add i32 %offset, %iv. We need to prove that
// sext(x + y) is same as sext(x) + sext(y).
// This function returns true if we can safely represent the IV type in
// the RangeCheckType without loss of information.
bool isSafeToTruncateWideIVType(Type *RangeCheckType);
// Return the loopLatchCheck corresponding to the RangeCheckType if safe to do
// so.
Optional<LoopICmp> generateLoopLatchCheck(Type *RangeCheckType);
public:
LoopPredication(ScalarEvolution *SE) : SE(SE){};
bool runOnLoop(Loop *L);
};
class LoopPredicationLegacyPass : public LoopPass {
public:
static char ID;
LoopPredicationLegacyPass() : LoopPass(ID) {
initializeLoopPredicationLegacyPassPass(*PassRegistry::getPassRegistry());
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
getLoopAnalysisUsage(AU);
}
bool runOnLoop(Loop *L, LPPassManager &LPM) override {
if (skipLoop(L))
return false;
auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
LoopPredication LP(SE);
return LP.runOnLoop(L);
}
};
char LoopPredicationLegacyPass::ID = 0;
} // end namespace llvm
INITIALIZE_PASS_BEGIN(LoopPredicationLegacyPass, "loop-predication",
"Loop predication", false, false)
INITIALIZE_PASS_DEPENDENCY(LoopPass)
INITIALIZE_PASS_END(LoopPredicationLegacyPass, "loop-predication",
"Loop predication", false, false)
Pass *llvm::createLoopPredicationPass() {
return new LoopPredicationLegacyPass();
}
PreservedAnalyses LoopPredicationPass::run(Loop &L, LoopAnalysisManager &AM,
LoopStandardAnalysisResults &AR,
LPMUpdater &U) {
LoopPredication LP(&AR.SE);
if (!LP.runOnLoop(&L))
return PreservedAnalyses::all();
return getLoopPassPreservedAnalyses();
}
Optional<LoopPredication::LoopICmp>
LoopPredication::parseLoopICmp(ICmpInst::Predicate Pred, Value *LHS,
Value *RHS) {
const SCEV *LHSS = SE->getSCEV(LHS);
if (isa<SCEVCouldNotCompute>(LHSS))
return None;
const SCEV *RHSS = SE->getSCEV(RHS);
if (isa<SCEVCouldNotCompute>(RHSS))
return None;
// Canonicalize RHS to be loop invariant bound, LHS - a loop computable IV
if (SE->isLoopInvariant(LHSS, L)) {
std::swap(LHS, RHS);
std::swap(LHSS, RHSS);
Pred = ICmpInst::getSwappedPredicate(Pred);
}
const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHSS);
if (!AR || AR->getLoop() != L)
return None;
return LoopICmp(Pred, AR, RHSS);
}
Value *LoopPredication::expandCheck(SCEVExpander &Expander,
IRBuilder<> &Builder,
ICmpInst::Predicate Pred, const SCEV *LHS,
const SCEV *RHS, Instruction *InsertAt) {
// TODO: we can check isLoopEntryGuardedByCond before emitting the check
Type *Ty = LHS->getType();
assert(Ty == RHS->getType() && "expandCheck operands have different types?");
if (SE->isLoopEntryGuardedByCond(L, Pred, LHS, RHS))
return Builder.getTrue();
Value *LHSV = Expander.expandCodeFor(LHS, Ty, InsertAt);
Value *RHSV = Expander.expandCodeFor(RHS, Ty, InsertAt);
return Builder.CreateICmp(Pred, LHSV, RHSV);
}
Optional<LoopPredication::LoopICmp>
LoopPredication::generateLoopLatchCheck(Type *RangeCheckType) {
auto *LatchType = LatchCheck.IV->getType();
if (RangeCheckType == LatchType)
return LatchCheck;
// For now, bail out if latch type is narrower than range type.
if (DL->getTypeSizeInBits(LatchType) < DL->getTypeSizeInBits(RangeCheckType))
return None;
if (!isSafeToTruncateWideIVType(RangeCheckType))
return None;
// We can now safely identify the truncated version of the IV and limit for
// RangeCheckType.
LoopICmp NewLatchCheck;
NewLatchCheck.Pred = LatchCheck.Pred;
NewLatchCheck.IV = dyn_cast<SCEVAddRecExpr>(
SE->getTruncateExpr(LatchCheck.IV, RangeCheckType));
if (!NewLatchCheck.IV)
return None;
NewLatchCheck.Limit = SE->getTruncateExpr(LatchCheck.Limit, RangeCheckType);
DEBUG(dbgs() << "IV of type: " << *LatchType
<< "can be represented as range check type:" << *RangeCheckType
<< "\n");
DEBUG(dbgs() << "LatchCheck.IV: " << *NewLatchCheck.IV << "\n");
DEBUG(dbgs() << "LatchCheck.Limit: " << *NewLatchCheck.Limit << "\n");
return NewLatchCheck;
}
bool LoopPredication::isSupportedStep(const SCEV* Step) {
return Step->isOne();
}
bool LoopPredication::CanExpand(const SCEV* S) {
return SE->isLoopInvariant(S, L) && isSafeToExpand(S, *SE);
}
Optional<Value *> LoopPredication::widenICmpRangeCheckIncrementingLoop(
LoopPredication::LoopICmp LatchCheck, LoopPredication::LoopICmp RangeCheck,
SCEVExpander &Expander, IRBuilder<> &Builder) {
auto *Ty = RangeCheck.IV->getType();
// Generate the widened condition for the forward loop:
// guardStart u< guardLimit &&
// latchLimit <pred> guardLimit - 1 - guardStart + latchStart
// where <pred> depends on the latch condition predicate. See the file
// header comment for the reasoning.
// guardLimit - guardStart + latchStart - 1
const SCEV *GuardStart = RangeCheck.IV->getStart();
const SCEV *GuardLimit = RangeCheck.Limit;
const SCEV *LatchStart = LatchCheck.IV->getStart();
const SCEV *LatchLimit = LatchCheck.Limit;
// guardLimit - guardStart + latchStart - 1
const SCEV *RHS =
SE->getAddExpr(SE->getMinusSCEV(GuardLimit, GuardStart),
SE->getMinusSCEV(LatchStart, SE->getOne(Ty)));
if (!CanExpand(GuardStart) || !CanExpand(GuardLimit) ||
!CanExpand(LatchLimit) || !CanExpand(RHS)) {
DEBUG(dbgs() << "Can't expand limit check!\n");
return None;
}
ICmpInst::Predicate LimitCheckPred;
switch (LatchCheck.Pred) {
case ICmpInst::ICMP_ULT:
LimitCheckPred = ICmpInst::ICMP_ULE;
break;
case ICmpInst::ICMP_ULE:
LimitCheckPred = ICmpInst::ICMP_ULT;
break;
case ICmpInst::ICMP_SLT:
LimitCheckPred = ICmpInst::ICMP_SLE;
break;
case ICmpInst::ICMP_SLE:
LimitCheckPred = ICmpInst::ICMP_SLT;
break;
default:
llvm_unreachable("Unsupported loop latch!");
}
DEBUG(dbgs() << "LHS: " << *LatchLimit << "\n");
DEBUG(dbgs() << "RHS: " << *RHS << "\n");
DEBUG(dbgs() << "Pred: " << LimitCheckPred << "\n");
Instruction *InsertAt = Preheader->getTerminator();
auto *LimitCheck =
expandCheck(Expander, Builder, LimitCheckPred, LatchLimit, RHS, InsertAt);
auto *FirstIterationCheck = expandCheck(Expander, Builder, RangeCheck.Pred,
GuardStart, GuardLimit, InsertAt);
return Builder.CreateAnd(FirstIterationCheck, LimitCheck);
}
/// If ICI can be widened to a loop invariant condition emits the loop
/// invariant condition in the loop preheader and return it, otherwise
/// returns None.
Optional<Value *> LoopPredication::widenICmpRangeCheck(ICmpInst *ICI,
SCEVExpander &Expander,
IRBuilder<> &Builder) {
DEBUG(dbgs() << "Analyzing ICmpInst condition:\n");
DEBUG(ICI->dump());
// parseLoopStructure guarantees that the latch condition is:
// ++i <pred> latchLimit, where <pred> is u<, u<=, s<, or s<=.
// We are looking for the range checks of the form:
// i u< guardLimit
auto RangeCheck = parseLoopICmp(ICI);
if (!RangeCheck) {
DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
return None;
}
DEBUG(dbgs() << "Guard check:\n");
DEBUG(RangeCheck->dump());
if (RangeCheck->Pred != ICmpInst::ICMP_ULT) {
DEBUG(dbgs() << "Unsupported range check predicate(" << RangeCheck->Pred
<< ")!\n");
return None;
}
auto *RangeCheckIV = RangeCheck->IV;
if (!RangeCheckIV->isAffine()) {
DEBUG(dbgs() << "Range check IV is not affine!\n");
return None;
}
auto *Step = RangeCheckIV->getStepRecurrence(*SE);
// We cannot just compare with latch IV step because the latch and range IVs
// may have different types.
if (!isSupportedStep(Step)) {
DEBUG(dbgs() << "Range check and latch have IVs different steps!\n");
return None;
}
auto *Ty = RangeCheckIV->getType();
auto CurrLatchCheckOpt = generateLoopLatchCheck(Ty);
if (!CurrLatchCheckOpt) {
DEBUG(dbgs() << "Failed to generate a loop latch check "
"corresponding to range type: "
<< *Ty << "\n");
return None;
}
LoopICmp CurrLatchCheck = *CurrLatchCheckOpt;
// At this point the range check step and latch step should have the same
// value and type.
assert(Step == CurrLatchCheck.IV->getStepRecurrence(*SE) &&
"Range and latch should have same step recurrence!");
return widenICmpRangeCheckIncrementingLoop(CurrLatchCheck, *RangeCheck,
Expander, Builder);
}
bool LoopPredication::widenGuardConditions(IntrinsicInst *Guard,
SCEVExpander &Expander) {
DEBUG(dbgs() << "Processing guard:\n");
DEBUG(Guard->dump());
IRBuilder<> Builder(cast<Instruction>(Preheader->getTerminator()));
// The guard condition is expected to be in form of:
// cond1 && cond2 && cond3 ...
// Iterate over subconditions looking for for icmp conditions which can be
// widened across loop iterations. Widening these conditions remember the
// resulting list of subconditions in Checks vector.
SmallVector<Value *, 4> Worklist(1, Guard->getOperand(0));
SmallPtrSet<Value *, 4> Visited;
SmallVector<Value *, 4> Checks;
unsigned NumWidened = 0;
do {
Value *Condition = Worklist.pop_back_val();
if (!Visited.insert(Condition).second)
continue;
Value *LHS, *RHS;
using namespace llvm::PatternMatch;
if (match(Condition, m_And(m_Value(LHS), m_Value(RHS)))) {
Worklist.push_back(LHS);
Worklist.push_back(RHS);
continue;
}
if (ICmpInst *ICI = dyn_cast<ICmpInst>(Condition)) {
if (auto NewRangeCheck = widenICmpRangeCheck(ICI, Expander, Builder)) {
Checks.push_back(NewRangeCheck.getValue());
NumWidened++;
continue;
}
}
// Save the condition as is if we can't widen it
Checks.push_back(Condition);
} while (Worklist.size() != 0);
if (NumWidened == 0)
return false;
// Emit the new guard condition
Builder.SetInsertPoint(Guard);
Value *LastCheck = nullptr;
for (auto *Check : Checks)
if (!LastCheck)
LastCheck = Check;
else
LastCheck = Builder.CreateAnd(LastCheck, Check);
Guard->setOperand(0, LastCheck);
DEBUG(dbgs() << "Widened checks = " << NumWidened << "\n");
return true;
}
Optional<LoopPredication::LoopICmp> LoopPredication::parseLoopLatchICmp() {
using namespace PatternMatch;
BasicBlock *LoopLatch = L->getLoopLatch();
if (!LoopLatch) {
DEBUG(dbgs() << "The loop doesn't have a single latch!\n");
return None;
}
ICmpInst::Predicate Pred;
Value *LHS, *RHS;
BasicBlock *TrueDest, *FalseDest;
if (!match(LoopLatch->getTerminator(),
m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)), TrueDest,
FalseDest))) {
DEBUG(dbgs() << "Failed to match the latch terminator!\n");
return None;
}
assert((TrueDest == L->getHeader() || FalseDest == L->getHeader()) &&
"One of the latch's destinations must be the header");
if (TrueDest != L->getHeader())
Pred = ICmpInst::getInversePredicate(Pred);
auto Result = parseLoopICmp(Pred, LHS, RHS);
if (!Result) {
DEBUG(dbgs() << "Failed to parse the loop latch condition!\n");
return None;
}
// Check affine first, so if it's not we don't try to compute the step
// recurrence.
if (!Result->IV->isAffine()) {
DEBUG(dbgs() << "The induction variable is not affine!\n");
return None;
}
auto *Step = Result->IV->getStepRecurrence(*SE);
if (!isSupportedStep(Step)) {
DEBUG(dbgs() << "Unsupported loop stride(" << *Step << ")!\n");
return None;
}
auto IsUnsupportedPredicate = [](const SCEV *Step, ICmpInst::Predicate Pred) {
assert(Step->isOne() && "expected Step to be one!");
return Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_SLT &&
Pred != ICmpInst::ICMP_ULE && Pred != ICmpInst::ICMP_SLE;
};
if (IsUnsupportedPredicate(Step, Result->Pred)) {
DEBUG(dbgs() << "Unsupported loop latch predicate(" << Result->Pred
<< ")!\n");
return None;
}
return Result;
}
// Returns true if its safe to truncate the IV to RangeCheckType.
bool LoopPredication::isSafeToTruncateWideIVType(Type *RangeCheckType) {
if (!EnableIVTruncation)
return false;
assert(DL->getTypeSizeInBits(LatchCheck.IV->getType()) >
DL->getTypeSizeInBits(RangeCheckType) &&
"Expected latch check IV type to be larger than range check operand "
"type!");
// The start and end values of the IV should be known. This is to guarantee
// that truncating the wide type will not lose information.
auto *Limit = dyn_cast<SCEVConstant>(LatchCheck.Limit);
auto *Start = dyn_cast<SCEVConstant>(LatchCheck.IV->getStart());
if (!Limit || !Start)
return false;
// This check makes sure that the IV does not change sign during loop
// iterations. Consider latchType = i64, LatchStart = 5, Pred = ICMP_SGE,
// LatchEnd = 2, rangeCheckType = i32. If it's not a monotonic predicate, the
// IV wraps around, and the truncation of the IV would lose the range of
// iterations between 2^32 and 2^64.
bool Increasing;
if (!SE->isMonotonicPredicate(LatchCheck.IV, LatchCheck.Pred, Increasing))
return false;
// The active bits should be less than the bits in the RangeCheckType. This
// guarantees that truncating the latch check to RangeCheckType is a safe
// operation.
auto RangeCheckTypeBitSize = DL->getTypeSizeInBits(RangeCheckType);
return Start->getAPInt().getActiveBits() < RangeCheckTypeBitSize &&
Limit->getAPInt().getActiveBits() < RangeCheckTypeBitSize;
}
bool LoopPredication::runOnLoop(Loop *Loop) {
L = Loop;
DEBUG(dbgs() << "Analyzing ");
DEBUG(L->dump());
Module *M = L->getHeader()->getModule();
// There is nothing to do if the module doesn't use guards
auto *GuardDecl =
M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard));
if (!GuardDecl || GuardDecl->use_empty())
return false;
DL = &M->getDataLayout();
Preheader = L->getLoopPreheader();
if (!Preheader)
return false;
auto LatchCheckOpt = parseLoopLatchICmp();
if (!LatchCheckOpt)
return false;
LatchCheck = *LatchCheckOpt;
DEBUG(dbgs() << "Latch check:\n");
DEBUG(LatchCheck.dump());
// Collect all the guards into a vector and process later, so as not
// to invalidate the instruction iterator.
SmallVector<IntrinsicInst *, 4> Guards;
for (const auto BB : L->blocks())
for (auto &I : *BB)
if (auto *II = dyn_cast<IntrinsicInst>(&I))
if (II->getIntrinsicID() == Intrinsic::experimental_guard)
Guards.push_back(II);
if (Guards.empty())
return false;
SCEVExpander Expander(*SE, *DL, "loop-predication");
bool Changed = false;
for (auto *Guard : Guards)
Changed |= widenGuardConditions(Guard, Expander);
return Changed;
}