Alexandros Lamprineas 88c2af80fa
[NFC][clang][FMV][TargetInfo] Refactor API for FMV feature priority. (#116257)
Currently we have code with target hooks in CodeGenModule shared between
X86 and AArch64 for sorting MultiVersionResolverOptions. Those are used
when generating IFunc resolvers for FMV. The RISCV target has different
criteria for sorting, therefore it repeats sorting after calling
CodeGenFunction::EmitMultiVersionResolver.

I am moving the FMV priority logic in TargetInfo, so that it can be
implemented by the TargetParser which then makes it possible to query it
from llvm. Here is an example why this is handy:
https://github.com/llvm/llvm-project/pull/87939
2024-11-28 09:22:05 +00:00

284 lines
9.4 KiB
C++

//===- ABIInfo.cpp --------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "ABIInfo.h"
#include "ABIInfoImpl.h"
using namespace clang;
using namespace clang::CodeGen;
// Pin the vtable to this file.
ABIInfo::~ABIInfo() = default;
CGCXXABI &ABIInfo::getCXXABI() const { return CGT.getCXXABI(); }
ASTContext &ABIInfo::getContext() const { return CGT.getContext(); }
llvm::LLVMContext &ABIInfo::getVMContext() const {
return CGT.getLLVMContext();
}
const llvm::DataLayout &ABIInfo::getDataLayout() const {
return CGT.getDataLayout();
}
const TargetInfo &ABIInfo::getTarget() const { return CGT.getTarget(); }
const CodeGenOptions &ABIInfo::getCodeGenOpts() const {
return CGT.getCodeGenOpts();
}
bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); }
bool ABIInfo::isOHOSFamily() const {
return getTarget().getTriple().isOHOSFamily();
}
RValue ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
QualType Ty, AggValueSlot Slot) const {
return RValue::getIgnored();
}
bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
return false;
}
bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
uint64_t Members) const {
return false;
}
bool ABIInfo::isZeroLengthBitfieldPermittedInHomogeneousAggregate() const {
// For compatibility with GCC, ignore empty bitfields in C++ mode.
return getContext().getLangOpts().CPlusPlus;
}
bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base,
uint64_t &Members) const {
if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
uint64_t NElements = AT->getZExtSize();
if (NElements == 0)
return false;
if (!isHomogeneousAggregate(AT->getElementType(), Base, Members))
return false;
Members *= NElements;
} else if (const RecordType *RT = Ty->getAs<RecordType>()) {
const RecordDecl *RD = RT->getDecl();
if (RD->hasFlexibleArrayMember())
return false;
Members = 0;
// If this is a C++ record, check the properties of the record such as
// bases and ABI specific restrictions
if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
if (!getCXXABI().isPermittedToBeHomogeneousAggregate(CXXRD))
return false;
for (const auto &I : CXXRD->bases()) {
// Ignore empty records.
if (isEmptyRecord(getContext(), I.getType(), true))
continue;
uint64_t FldMembers;
if (!isHomogeneousAggregate(I.getType(), Base, FldMembers))
return false;
Members += FldMembers;
}
}
for (const auto *FD : RD->fields()) {
// Ignore (non-zero arrays of) empty records.
QualType FT = FD->getType();
while (const ConstantArrayType *AT =
getContext().getAsConstantArrayType(FT)) {
if (AT->isZeroSize())
return false;
FT = AT->getElementType();
}
if (isEmptyRecord(getContext(), FT, true))
continue;
if (isZeroLengthBitfieldPermittedInHomogeneousAggregate() &&
FD->isZeroLengthBitField(getContext()))
continue;
uint64_t FldMembers;
if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers))
return false;
Members = (RD->isUnion() ?
std::max(Members, FldMembers) : Members + FldMembers);
}
if (!Base)
return false;
// Ensure there is no padding.
if (getContext().getTypeSize(Base) * Members !=
getContext().getTypeSize(Ty))
return false;
} else {
Members = 1;
if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
Members = 2;
Ty = CT->getElementType();
}
// Most ABIs only support float, double, and some vector type widths.
if (!isHomogeneousAggregateBaseType(Ty))
return false;
// The base type must be the same for all members. Types that
// agree in both total size and mode (float vs. vector) are
// treated as being equivalent here.
const Type *TyPtr = Ty.getTypePtr();
if (!Base) {
Base = TyPtr;
// If it's a non-power-of-2 vector, its size is already a power-of-2,
// so make sure to widen it explicitly.
if (const VectorType *VT = Base->getAs<VectorType>()) {
QualType EltTy = VT->getElementType();
unsigned NumElements =
getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy);
Base = getContext()
.getVectorType(EltTy, NumElements, VT->getVectorKind())
.getTypePtr();
}
}
if (Base->isVectorType() != TyPtr->isVectorType() ||
getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr))
return false;
}
return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members);
}
bool ABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const {
if (getContext().isPromotableIntegerType(Ty))
return true;
if (const auto *EIT = Ty->getAs<BitIntType>())
if (EIT->getNumBits() < getContext().getTypeSize(getContext().IntTy))
return true;
return false;
}
ABIArgInfo ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByVal,
bool Realign,
llvm::Type *Padding) const {
return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), ByVal,
Realign, Padding);
}
ABIArgInfo ABIInfo::getNaturalAlignIndirectInReg(QualType Ty,
bool Realign) const {
return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty),
/*ByVal*/ false, Realign);
}
void ABIInfo::appendAttributeMangling(TargetAttr *Attr,
raw_ostream &Out) const {
if (Attr->isDefaultVersion())
return;
appendAttributeMangling(Attr->getFeaturesStr(), Out);
}
void ABIInfo::appendAttributeMangling(TargetVersionAttr *Attr,
raw_ostream &Out) const {
appendAttributeMangling(Attr->getNamesStr(), Out);
}
void ABIInfo::appendAttributeMangling(TargetClonesAttr *Attr, unsigned Index,
raw_ostream &Out) const {
appendAttributeMangling(Attr->getFeatureStr(Index), Out);
Out << '.' << Attr->getMangledIndex(Index);
}
void ABIInfo::appendAttributeMangling(StringRef AttrStr,
raw_ostream &Out) const {
if (AttrStr == "default") {
Out << ".default";
return;
}
Out << '.';
const TargetInfo &TI = CGT.getTarget();
ParsedTargetAttr Info = TI.parseTargetAttr(AttrStr);
llvm::sort(Info.Features, [&TI](StringRef LHS, StringRef RHS) {
// Multiversioning doesn't allow "no-${feature}", so we can
// only have "+" prefixes here.
assert(LHS.starts_with("+") && RHS.starts_with("+") &&
"Features should always have a prefix.");
return TI.getFMVPriority({LHS.substr(1)}) >
TI.getFMVPriority({RHS.substr(1)});
});
bool IsFirst = true;
if (!Info.CPU.empty()) {
IsFirst = false;
Out << "arch_" << Info.CPU;
}
for (StringRef Feat : Info.Features) {
if (!IsFirst)
Out << '_';
IsFirst = false;
Out << Feat.substr(1);
}
}
// Pin the vtable to this file.
SwiftABIInfo::~SwiftABIInfo() = default;
/// Does the given lowering require more than the given number of
/// registers when expanded?
///
/// This is intended to be the basis of a reasonable basic implementation
/// of should{Pass,Return}Indirectly.
///
/// For most targets, a limit of four total registers is reasonable; this
/// limits the amount of code required in order to move around the value
/// in case it wasn't produced immediately prior to the call by the caller
/// (or wasn't produced in exactly the right registers) or isn't used
/// immediately within the callee. But some targets may need to further
/// limit the register count due to an inability to support that many
/// return registers.
bool SwiftABIInfo::occupiesMoreThan(ArrayRef<llvm::Type *> scalarTypes,
unsigned maxAllRegisters) const {
unsigned intCount = 0, fpCount = 0;
for (llvm::Type *type : scalarTypes) {
if (type->isPointerTy()) {
intCount++;
} else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) {
auto ptrWidth = CGT.getTarget().getPointerWidth(LangAS::Default);
intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth;
} else {
assert(type->isVectorTy() || type->isFloatingPointTy());
fpCount++;
}
}
return (intCount + fpCount > maxAllRegisters);
}
bool SwiftABIInfo::shouldPassIndirectly(ArrayRef<llvm::Type *> ComponentTys,
bool AsReturnValue) const {
return occupiesMoreThan(ComponentTys, /*total=*/4);
}
bool SwiftABIInfo::isLegalVectorType(CharUnits VectorSize, llvm::Type *EltTy,
unsigned NumElts) const {
// The default implementation of this assumes that the target guarantees
// 128-bit SIMD support but nothing more.
return (VectorSize.getQuantity() > 8 && VectorSize.getQuantity() <= 16);
}