Philip Reames 99c0a3ea98
[RISCV] Enable target attribute when invoked through clang driver (#74889)
d80e46d added support for the target function attribute. However, it
turns out that commit has a nasty bug/oversight. As the tests in that
revision show, everything works if clang -cc1 is directly invoked. I was
suprised to learn this morning that compiling with clang (i.e. the
typical user workflow) did not work.

The bug is that if a set of explicit negative extensions is passed to
cc1 at the command line (as the clang driver always does), we were
copying these negative extensions to the end of the rewritten extension
list. When this was later parsed, this had the effect of turning back
off any extension that the target attribute had enabled.

This patch updates the logic to only propagate the features from the
input which don't appear in the rewritten form in either positive or
negative form.

Note that this code structure is still highly suspect. In particular I'm
fairly sure that mixing extension versions with this code will result in
odd results. However, I figure its better to have something which mostly
works than something which doesn't work at all.
2023-12-11 08:55:21 -08:00

487 lines
17 KiB
C++

//===--- RISCV.cpp - Implement RISC-V target feature support --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements RISC-V TargetInfo objects.
//
//===----------------------------------------------------------------------===//
#include "RISCV.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/MacroBuilder.h"
#include "clang/Basic/TargetBuiltins.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/TargetParser/RISCVTargetParser.h"
#include <optional>
using namespace clang;
using namespace clang::targets;
ArrayRef<const char *> RISCVTargetInfo::getGCCRegNames() const {
// clang-format off
static const char *const GCCRegNames[] = {
// Integer registers
"x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
"x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
"x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
"x24", "x25", "x26", "x27", "x28", "x29", "x30", "x31",
// Floating point registers
"f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
"f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
"f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
"f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
// Vector registers
"v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7",
"v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15",
"v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23",
"v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31",
// CSRs
"fflags", "frm", "vtype", "vl", "vxsat", "vxrm"
};
// clang-format on
return llvm::ArrayRef(GCCRegNames);
}
ArrayRef<TargetInfo::GCCRegAlias> RISCVTargetInfo::getGCCRegAliases() const {
static const TargetInfo::GCCRegAlias GCCRegAliases[] = {
{{"zero"}, "x0"}, {{"ra"}, "x1"}, {{"sp"}, "x2"}, {{"gp"}, "x3"},
{{"tp"}, "x4"}, {{"t0"}, "x5"}, {{"t1"}, "x6"}, {{"t2"}, "x7"},
{{"s0"}, "x8"}, {{"s1"}, "x9"}, {{"a0"}, "x10"}, {{"a1"}, "x11"},
{{"a2"}, "x12"}, {{"a3"}, "x13"}, {{"a4"}, "x14"}, {{"a5"}, "x15"},
{{"a6"}, "x16"}, {{"a7"}, "x17"}, {{"s2"}, "x18"}, {{"s3"}, "x19"},
{{"s4"}, "x20"}, {{"s5"}, "x21"}, {{"s6"}, "x22"}, {{"s7"}, "x23"},
{{"s8"}, "x24"}, {{"s9"}, "x25"}, {{"s10"}, "x26"}, {{"s11"}, "x27"},
{{"t3"}, "x28"}, {{"t4"}, "x29"}, {{"t5"}, "x30"}, {{"t6"}, "x31"},
{{"ft0"}, "f0"}, {{"ft1"}, "f1"}, {{"ft2"}, "f2"}, {{"ft3"}, "f3"},
{{"ft4"}, "f4"}, {{"ft5"}, "f5"}, {{"ft6"}, "f6"}, {{"ft7"}, "f7"},
{{"fs0"}, "f8"}, {{"fs1"}, "f9"}, {{"fa0"}, "f10"}, {{"fa1"}, "f11"},
{{"fa2"}, "f12"}, {{"fa3"}, "f13"}, {{"fa4"}, "f14"}, {{"fa5"}, "f15"},
{{"fa6"}, "f16"}, {{"fa7"}, "f17"}, {{"fs2"}, "f18"}, {{"fs3"}, "f19"},
{{"fs4"}, "f20"}, {{"fs5"}, "f21"}, {{"fs6"}, "f22"}, {{"fs7"}, "f23"},
{{"fs8"}, "f24"}, {{"fs9"}, "f25"}, {{"fs10"}, "f26"}, {{"fs11"}, "f27"},
{{"ft8"}, "f28"}, {{"ft9"}, "f29"}, {{"ft10"}, "f30"}, {{"ft11"}, "f31"}};
return llvm::ArrayRef(GCCRegAliases);
}
bool RISCVTargetInfo::validateAsmConstraint(
const char *&Name, TargetInfo::ConstraintInfo &Info) const {
switch (*Name) {
default:
return false;
case 'I':
// A 12-bit signed immediate.
Info.setRequiresImmediate(-2048, 2047);
return true;
case 'J':
// Integer zero.
Info.setRequiresImmediate(0);
return true;
case 'K':
// A 5-bit unsigned immediate for CSR access instructions.
Info.setRequiresImmediate(0, 31);
return true;
case 'f':
// A floating-point register.
Info.setAllowsRegister();
return true;
case 'A':
// An address that is held in a general-purpose register.
Info.setAllowsMemory();
return true;
case 'S': // A symbolic address
Info.setAllowsRegister();
return true;
case 'v':
// A vector register.
if (Name[1] == 'r' || Name[1] == 'm') {
Info.setAllowsRegister();
Name += 1;
return true;
}
return false;
}
}
std::string RISCVTargetInfo::convertConstraint(const char *&Constraint) const {
std::string R;
switch (*Constraint) {
case 'v':
R = std::string("^") + std::string(Constraint, 2);
Constraint += 1;
break;
default:
R = TargetInfo::convertConstraint(Constraint);
break;
}
return R;
}
static unsigned getVersionValue(unsigned MajorVersion, unsigned MinorVersion) {
return MajorVersion * 1000000 + MinorVersion * 1000;
}
void RISCVTargetInfo::getTargetDefines(const LangOptions &Opts,
MacroBuilder &Builder) const {
Builder.defineMacro("__riscv");
bool Is64Bit = getTriple().isRISCV64();
Builder.defineMacro("__riscv_xlen", Is64Bit ? "64" : "32");
StringRef CodeModel = getTargetOpts().CodeModel;
unsigned FLen = ISAInfo->getFLen();
unsigned MinVLen = ISAInfo->getMinVLen();
unsigned MaxELen = ISAInfo->getMaxELen();
unsigned MaxELenFp = ISAInfo->getMaxELenFp();
if (CodeModel == "default")
CodeModel = "small";
if (CodeModel == "small")
Builder.defineMacro("__riscv_cmodel_medlow");
else if (CodeModel == "medium")
Builder.defineMacro("__riscv_cmodel_medany");
StringRef ABIName = getABI();
if (ABIName == "ilp32f" || ABIName == "lp64f")
Builder.defineMacro("__riscv_float_abi_single");
else if (ABIName == "ilp32d" || ABIName == "lp64d")
Builder.defineMacro("__riscv_float_abi_double");
else
Builder.defineMacro("__riscv_float_abi_soft");
if (ABIName == "ilp32e")
Builder.defineMacro("__riscv_abi_rve");
Builder.defineMacro("__riscv_arch_test");
for (auto &Extension : ISAInfo->getExtensions()) {
auto ExtName = Extension.first;
auto ExtInfo = Extension.second;
Builder.defineMacro(
Twine("__riscv_", ExtName),
Twine(getVersionValue(ExtInfo.MajorVersion, ExtInfo.MinorVersion)));
}
if (ISAInfo->hasExtension("m") || ISAInfo->hasExtension("zmmul"))
Builder.defineMacro("__riscv_mul");
if (ISAInfo->hasExtension("m")) {
Builder.defineMacro("__riscv_div");
Builder.defineMacro("__riscv_muldiv");
}
if (ISAInfo->hasExtension("a")) {
Builder.defineMacro("__riscv_atomic");
Builder.defineMacro("__GCC_HAVE_SYNC_COMPARE_AND_SWAP_1");
Builder.defineMacro("__GCC_HAVE_SYNC_COMPARE_AND_SWAP_2");
Builder.defineMacro("__GCC_HAVE_SYNC_COMPARE_AND_SWAP_4");
if (Is64Bit)
Builder.defineMacro("__GCC_HAVE_SYNC_COMPARE_AND_SWAP_8");
}
if (FLen) {
Builder.defineMacro("__riscv_flen", Twine(FLen));
Builder.defineMacro("__riscv_fdiv");
Builder.defineMacro("__riscv_fsqrt");
}
if (MinVLen) {
Builder.defineMacro("__riscv_v_min_vlen", Twine(MinVLen));
Builder.defineMacro("__riscv_v_elen", Twine(MaxELen));
Builder.defineMacro("__riscv_v_elen_fp", Twine(MaxELenFp));
}
if (ISAInfo->hasExtension("c"))
Builder.defineMacro("__riscv_compressed");
if (ISAInfo->hasExtension("zve32x")) {
Builder.defineMacro("__riscv_vector");
// Currently we support the v0.12 RISC-V V intrinsics.
Builder.defineMacro("__riscv_v_intrinsic", Twine(getVersionValue(0, 12)));
}
auto VScale = getVScaleRange(Opts);
if (VScale && VScale->first && VScale->first == VScale->second)
Builder.defineMacro("__riscv_v_fixed_vlen",
Twine(VScale->first * llvm::RISCV::RVVBitsPerBlock));
if (FastUnalignedAccess)
Builder.defineMacro("__riscv_misaligned_fast");
else
Builder.defineMacro("__riscv_misaligned_avoid");
}
static constexpr Builtin::Info BuiltinInfo[] = {
#define BUILTIN(ID, TYPE, ATTRS) \
{#ID, TYPE, ATTRS, nullptr, HeaderDesc::NO_HEADER, ALL_LANGUAGES},
#define TARGET_BUILTIN(ID, TYPE, ATTRS, FEATURE) \
{#ID, TYPE, ATTRS, FEATURE, HeaderDesc::NO_HEADER, ALL_LANGUAGES},
#include "clang/Basic/BuiltinsRISCVVector.def"
#define BUILTIN(ID, TYPE, ATTRS) \
{#ID, TYPE, ATTRS, nullptr, HeaderDesc::NO_HEADER, ALL_LANGUAGES},
#define TARGET_BUILTIN(ID, TYPE, ATTRS, FEATURE) \
{#ID, TYPE, ATTRS, FEATURE, HeaderDesc::NO_HEADER, ALL_LANGUAGES},
#include "clang/Basic/BuiltinsRISCV.def"
};
ArrayRef<Builtin::Info> RISCVTargetInfo::getTargetBuiltins() const {
return llvm::ArrayRef(BuiltinInfo,
clang::RISCV::LastTSBuiltin - Builtin::FirstTSBuiltin);
}
static std::vector<std::string>
collectNonISAExtFeature(ArrayRef<std::string> FeaturesNeedOverride, int XLen) {
auto ParseResult =
llvm::RISCVISAInfo::parseFeatures(XLen, FeaturesNeedOverride);
if (!ParseResult) {
consumeError(ParseResult.takeError());
return std::vector<std::string>();
}
std::vector<std::string> ImpliedFeatures = (*ParseResult)->toFeatureVector();
std::vector<std::string> NonISAExtFeatureVec;
llvm::copy_if(FeaturesNeedOverride, std::back_inserter(NonISAExtFeatureVec),
[&](const std::string &Feat) {
return !llvm::is_contained(ImpliedFeatures, Feat);
});
return NonISAExtFeatureVec;
}
static std::vector<std::string>
resolveTargetAttrOverride(const std::vector<std::string> &FeaturesVec,
int XLen) {
auto I = llvm::find(FeaturesVec, "__RISCV_TargetAttrNeedOverride");
if (I == FeaturesVec.end())
return FeaturesVec;
ArrayRef<std::string> FeaturesNeedOverride(&*FeaturesVec.begin(), &*I);
std::vector<std::string> NonISAExtFeature =
collectNonISAExtFeature(FeaturesNeedOverride, XLen);
std::vector<std::string> ResolvedFeature(++I, FeaturesVec.end());
ResolvedFeature.insert(ResolvedFeature.end(), NonISAExtFeature.begin(),
NonISAExtFeature.end());
return ResolvedFeature;
}
bool RISCVTargetInfo::initFeatureMap(
llvm::StringMap<bool> &Features, DiagnosticsEngine &Diags, StringRef CPU,
const std::vector<std::string> &FeaturesVec) const {
unsigned XLen = 32;
if (getTriple().isRISCV64()) {
Features["64bit"] = true;
XLen = 64;
} else {
Features["32bit"] = true;
}
std::vector<std::string> NewFeaturesVec =
resolveTargetAttrOverride(FeaturesVec, XLen);
auto ParseResult = llvm::RISCVISAInfo::parseFeatures(XLen, NewFeaturesVec);
if (!ParseResult) {
std::string Buffer;
llvm::raw_string_ostream OutputErrMsg(Buffer);
handleAllErrors(ParseResult.takeError(), [&](llvm::StringError &ErrMsg) {
OutputErrMsg << ErrMsg.getMessage();
});
Diags.Report(diag::err_invalid_feature_combination) << OutputErrMsg.str();
return false;
}
// RISCVISAInfo makes implications for ISA features
std::vector<std::string> ImpliedFeatures = (*ParseResult)->toFeatureVector();
// parseFeatures normalizes the feature set by dropping any explicit
// negatives, and non-extension features. We need to preserve the later
// for correctness and want to preserve the former for consistency.
for (auto &Feature : NewFeaturesVec) {
StringRef ExtName = Feature;
assert(ExtName.size() > 1 && (ExtName[0] == '+' || ExtName[0] == '-'));
ExtName = ExtName.drop_front(1); // Drop '+' or '-'
if (!llvm::is_contained(ImpliedFeatures, ("+" + ExtName).str()) &&
!llvm::is_contained(ImpliedFeatures, ("-" + ExtName).str()))
ImpliedFeatures.push_back(Feature);
}
return TargetInfo::initFeatureMap(Features, Diags, CPU, ImpliedFeatures);
}
std::optional<std::pair<unsigned, unsigned>>
RISCVTargetInfo::getVScaleRange(const LangOptions &LangOpts) const {
// RISCV::RVVBitsPerBlock is 64.
unsigned VScaleMin = ISAInfo->getMinVLen() / llvm::RISCV::RVVBitsPerBlock;
if (LangOpts.VScaleMin || LangOpts.VScaleMax) {
// Treat Zvl*b as a lower bound on vscale.
VScaleMin = std::max(VScaleMin, LangOpts.VScaleMin);
unsigned VScaleMax = LangOpts.VScaleMax;
if (VScaleMax != 0 && VScaleMax < VScaleMin)
VScaleMax = VScaleMin;
return std::pair<unsigned, unsigned>(VScaleMin ? VScaleMin : 1, VScaleMax);
}
if (VScaleMin > 0) {
unsigned VScaleMax = ISAInfo->getMaxVLen() / llvm::RISCV::RVVBitsPerBlock;
return std::make_pair(VScaleMin, VScaleMax);
}
return std::nullopt;
}
/// Return true if has this feature, need to sync with handleTargetFeatures.
bool RISCVTargetInfo::hasFeature(StringRef Feature) const {
bool Is64Bit = getTriple().isRISCV64();
auto Result = llvm::StringSwitch<std::optional<bool>>(Feature)
.Case("riscv", true)
.Case("riscv32", !Is64Bit)
.Case("riscv64", Is64Bit)
.Case("32bit", !Is64Bit)
.Case("64bit", Is64Bit)
.Default(std::nullopt);
if (Result)
return *Result;
return ISAInfo->hasExtension(Feature);
}
/// Perform initialization based on the user configured set of features.
bool RISCVTargetInfo::handleTargetFeatures(std::vector<std::string> &Features,
DiagnosticsEngine &Diags) {
unsigned XLen = getTriple().isArch64Bit() ? 64 : 32;
auto ParseResult = llvm::RISCVISAInfo::parseFeatures(XLen, Features);
if (!ParseResult) {
std::string Buffer;
llvm::raw_string_ostream OutputErrMsg(Buffer);
handleAllErrors(ParseResult.takeError(), [&](llvm::StringError &ErrMsg) {
OutputErrMsg << ErrMsg.getMessage();
});
Diags.Report(diag::err_invalid_feature_combination) << OutputErrMsg.str();
return false;
} else {
ISAInfo = std::move(*ParseResult);
}
if (ABI.empty())
ABI = ISAInfo->computeDefaultABI().str();
if (ISAInfo->hasExtension("zfh") || ISAInfo->hasExtension("zhinx"))
HasLegalHalfType = true;
FastUnalignedAccess = llvm::is_contained(Features, "+fast-unaligned-access");
return true;
}
bool RISCVTargetInfo::isValidCPUName(StringRef Name) const {
bool Is64Bit = getTriple().isArch64Bit();
return llvm::RISCV::parseCPU(Name, Is64Bit);
}
void RISCVTargetInfo::fillValidCPUList(
SmallVectorImpl<StringRef> &Values) const {
bool Is64Bit = getTriple().isArch64Bit();
llvm::RISCV::fillValidCPUArchList(Values, Is64Bit);
}
bool RISCVTargetInfo::isValidTuneCPUName(StringRef Name) const {
bool Is64Bit = getTriple().isArch64Bit();
return llvm::RISCV::parseTuneCPU(Name, Is64Bit);
}
void RISCVTargetInfo::fillValidTuneCPUList(
SmallVectorImpl<StringRef> &Values) const {
bool Is64Bit = getTriple().isArch64Bit();
llvm::RISCV::fillValidTuneCPUArchList(Values, Is64Bit);
}
static void handleFullArchString(StringRef FullArchStr,
std::vector<std::string> &Features) {
Features.push_back("__RISCV_TargetAttrNeedOverride");
auto RII = llvm::RISCVISAInfo::parseArchString(
FullArchStr, /* EnableExperimentalExtension */ true);
if (!RII) {
consumeError(RII.takeError());
// Forward the invalid FullArchStr.
Features.push_back("+" + FullArchStr.str());
} else {
std::vector<std::string> FeatStrings = (*RII)->toFeatureVector();
Features.insert(Features.end(), FeatStrings.begin(), FeatStrings.end());
}
}
ParsedTargetAttr RISCVTargetInfo::parseTargetAttr(StringRef Features) const {
ParsedTargetAttr Ret;
if (Features == "default")
return Ret;
SmallVector<StringRef, 1> AttrFeatures;
Features.split(AttrFeatures, ";");
bool FoundArch = false;
for (auto &Feature : AttrFeatures) {
Feature = Feature.trim();
StringRef AttrString = Feature.split("=").second.trim();
if (Feature.startswith("arch=")) {
// Override last features
Ret.Features.clear();
if (FoundArch)
Ret.Duplicate = "arch=";
FoundArch = true;
if (AttrString.startswith("+")) {
// EXTENSION like arch=+v,+zbb
SmallVector<StringRef, 1> Exts;
AttrString.split(Exts, ",");
for (auto Ext : Exts) {
if (Ext.empty())
continue;
StringRef ExtName = Ext.substr(1);
std::string TargetFeature =
llvm::RISCVISAInfo::getTargetFeatureForExtension(ExtName);
if (!TargetFeature.empty())
Ret.Features.push_back(Ext.front() + TargetFeature);
else
Ret.Features.push_back(Ext.str());
}
} else {
// full-arch-string like arch=rv64gcv
handleFullArchString(AttrString, Ret.Features);
}
} else if (Feature.startswith("cpu=")) {
if (!Ret.CPU.empty())
Ret.Duplicate = "cpu=";
Ret.CPU = AttrString;
if (!FoundArch) {
// Update Features with CPU's features
StringRef MarchFromCPU = llvm::RISCV::getMArchFromMcpu(Ret.CPU);
if (MarchFromCPU != "") {
Ret.Features.clear();
handleFullArchString(MarchFromCPU, Ret.Features);
}
}
} else if (Feature.startswith("tune=")) {
if (!Ret.Tune.empty())
Ret.Duplicate = "tune=";
Ret.Tune = AttrString;
}
}
return Ret;
}