1197 lines
46 KiB
C++
1197 lines
46 KiB
C++
//===- SparseTensorDialect.cpp - Sparse tensor dialect implementation -----===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include <utility>
|
|
|
|
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
|
|
#include "mlir/Dialect/SparseTensor/IR/SparseTensorType.h"
|
|
|
|
#include "mlir/Dialect/Arith/IR/Arith.h"
|
|
#include "mlir/IR/Builders.h"
|
|
#include "mlir/IR/DialectImplementation.h"
|
|
#include "mlir/IR/Matchers.h"
|
|
#include "mlir/IR/OpImplementation.h"
|
|
#include "mlir/IR/PatternMatch.h"
|
|
#include "llvm/ADT/TypeSwitch.h"
|
|
#include "llvm/Support/FormatVariadic.h"
|
|
|
|
#define GET_ATTRDEF_CLASSES
|
|
#include "mlir/Dialect/SparseTensor/IR/SparseTensorAttrDefs.cpp.inc"
|
|
#include "mlir/Dialect/SparseTensor/IR/SparseTensorAttrEnums.cpp.inc"
|
|
|
|
#define GET_TYPEDEF_CLASSES
|
|
#include "mlir/Dialect/SparseTensor/IR/SparseTensorTypes.cpp.inc"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::sparse_tensor;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Additional convenience methods.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Gets the dimension-rank of the type of some `T`. (In particular
|
|
/// this is only used for `Value` and `TypedValue<RankedTensorType>`.)
|
|
template <typename T>
|
|
static inline Dimension getDimRank(T t) {
|
|
return getRankedTensorType(t).getRank();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TensorDialect Attribute Methods.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static bool acceptBitWidth(unsigned bitWidth) {
|
|
switch (bitWidth) {
|
|
case 0:
|
|
case 8:
|
|
case 16:
|
|
case 32:
|
|
case 64:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
void SparseTensorDimSliceAttr::print(AsmPrinter &printer) const {
|
|
printer << "(";
|
|
printer << (getStaticOffset() ? std::to_string(*getStaticOffset()) : "?");
|
|
printer << ", ";
|
|
printer << (getStaticSize() ? std::to_string(*getStaticSize()) : "?");
|
|
printer << ", ";
|
|
printer << (getStaticStride() ? std::to_string(*getStaticStride()) : "?");
|
|
printer << ")";
|
|
}
|
|
|
|
static ParseResult parseOptionalStaticSlice(int64_t &result,
|
|
AsmParser &parser) {
|
|
auto parseResult = parser.parseOptionalInteger(result);
|
|
if (parseResult.has_value()) {
|
|
if (parseResult.value().succeeded() && result < 0) {
|
|
parser.emitError(
|
|
parser.getCurrentLocation(),
|
|
"expect positive value or ? for slice offset/size/stride");
|
|
return failure();
|
|
}
|
|
return parseResult.value();
|
|
}
|
|
|
|
// Else, and '?' which represented dynamic slice
|
|
result = SparseTensorDimSliceAttr::kDynamic;
|
|
return parser.parseQuestion();
|
|
}
|
|
|
|
Attribute SparseTensorDimSliceAttr::parse(AsmParser &parser, Type type) {
|
|
int64_t offset = -1, size = -1, stride = -1;
|
|
|
|
if (failed(parser.parseLParen()) ||
|
|
failed(parseOptionalStaticSlice(offset, parser)) ||
|
|
failed(parser.parseComma()) ||
|
|
failed(parseOptionalStaticSlice(size, parser)) ||
|
|
failed(parser.parseComma()) ||
|
|
failed(parseOptionalStaticSlice(stride, parser)) ||
|
|
failed(parser.parseRParen()))
|
|
return {};
|
|
|
|
return parser.getChecked<SparseTensorDimSliceAttr>(parser.getContext(),
|
|
offset, size, stride);
|
|
}
|
|
|
|
LogicalResult
|
|
SparseTensorDimSliceAttr::verify(function_ref<InFlightDiagnostic()> emitError,
|
|
int64_t offset, int64_t size, int64_t stride) {
|
|
if ((offset == SparseTensorDimSliceAttr::kDynamic || offset >= 0) &&
|
|
(size == SparseTensorDimSliceAttr::kDynamic || size > 0) &&
|
|
(stride == SparseTensorDimSliceAttr::kDynamic || stride > 0)) {
|
|
return success();
|
|
}
|
|
return emitError()
|
|
<< "expect positive value or ? for slice offset/size/stride";
|
|
}
|
|
|
|
Type mlir::sparse_tensor::detail::getIntegerOrIndexType(MLIRContext *ctx,
|
|
unsigned bitwidth) {
|
|
if (bitwidth)
|
|
return IntegerType::get(ctx, bitwidth);
|
|
return IndexType::get(ctx);
|
|
}
|
|
|
|
Type SparseTensorEncodingAttr::getPosType() const {
|
|
return detail::getIntegerOrIndexType(getContext(), getPosWidth());
|
|
}
|
|
|
|
Type SparseTensorEncodingAttr::getCrdType() const {
|
|
return detail::getIntegerOrIndexType(getContext(), getCrdWidth());
|
|
}
|
|
|
|
SparseTensorEncodingAttr SparseTensorEncodingAttr::withoutOrdering() const {
|
|
return SparseTensorEncodingAttr::get(getContext(), getDimLevelType(),
|
|
AffineMap(), AffineMap(), getPosWidth(),
|
|
getCrdWidth());
|
|
}
|
|
|
|
SparseTensorEncodingAttr SparseTensorEncodingAttr::withoutBitWidths() const {
|
|
return SparseTensorEncodingAttr::get(getContext(), getDimLevelType(),
|
|
getDimOrdering(), getHigherOrdering(), 0,
|
|
0);
|
|
}
|
|
|
|
bool SparseTensorEncodingAttr::isAllDense() const {
|
|
return !getImpl() || llvm::all_of(getDimLevelType(), isDenseDLT);
|
|
}
|
|
|
|
bool SparseTensorEncodingAttr::isAllOrdered() const {
|
|
return !getImpl() || llvm::all_of(getDimLevelType(), isOrderedDLT);
|
|
}
|
|
|
|
bool SparseTensorEncodingAttr::hasIdDimOrdering() const {
|
|
return !getImpl() || !getDimOrdering() || getDimOrdering().isIdentity();
|
|
}
|
|
|
|
Level SparseTensorEncodingAttr::getLvlRank() const {
|
|
assert(getImpl() && "Uninitialized SparseTensorEncodingAttr");
|
|
return getDimLevelType().size();
|
|
}
|
|
|
|
DimLevelType SparseTensorEncodingAttr::getLvlType(Level l) const {
|
|
if (!getImpl())
|
|
return DimLevelType::Dense;
|
|
assert(l < getLvlRank() && "Level is out of bounds");
|
|
return getDimLevelType()[l];
|
|
}
|
|
|
|
std::optional<uint64_t>
|
|
SparseTensorEncodingAttr::getStaticDimSliceOffset(Dimension dim) const {
|
|
return getDimSlices()[dim].getStaticOffset();
|
|
}
|
|
|
|
std::optional<uint64_t>
|
|
SparseTensorEncodingAttr::getStaticDimSliceSize(Dimension dim) const {
|
|
return getDimSlices()[dim].getStaticSize();
|
|
}
|
|
|
|
std::optional<uint64_t>
|
|
SparseTensorEncodingAttr::getStaticDimSliceStride(Dimension dim) const {
|
|
return getDimSlices()[dim].getStaticStride();
|
|
}
|
|
|
|
std::optional<uint64_t>
|
|
SparseTensorEncodingAttr::getStaticLvlSliceOffset(Level lvl) const {
|
|
// FIXME: `toOrigDim` is deprecated.
|
|
return getStaticDimSliceOffset(toOrigDim(*this, lvl));
|
|
}
|
|
|
|
std::optional<uint64_t>
|
|
SparseTensorEncodingAttr::getStaticLvlSliceSize(Level lvl) const {
|
|
// FIXME: `toOrigDim` is deprecated.
|
|
return getStaticDimSliceSize(toOrigDim(*this, lvl));
|
|
}
|
|
|
|
std::optional<uint64_t>
|
|
SparseTensorEncodingAttr::getStaticLvlSliceStride(Level lvl) const {
|
|
// FIXME: `toOrigDim` is deprecated.
|
|
return getStaticDimSliceStride(toOrigDim(*this, lvl));
|
|
}
|
|
|
|
const static DimLevelType validDLTs[] = {DimLevelType::Dense,
|
|
DimLevelType::Compressed,
|
|
DimLevelType::CompressedNu,
|
|
DimLevelType::CompressedNo,
|
|
DimLevelType::CompressedNuNo,
|
|
DimLevelType::Singleton,
|
|
DimLevelType::SingletonNu,
|
|
DimLevelType::SingletonNo,
|
|
DimLevelType::SingletonNuNo,
|
|
DimLevelType::CompressedWithHi,
|
|
DimLevelType::CompressedWithHiNu,
|
|
DimLevelType::CompressedWithHiNo,
|
|
DimLevelType::CompressedWithHiNuNo};
|
|
|
|
static std::optional<DimLevelType> parseDLT(StringRef str) {
|
|
for (DimLevelType dlt : validDLTs)
|
|
if (str == toMLIRString(dlt))
|
|
return dlt;
|
|
return std::nullopt;
|
|
}
|
|
|
|
Attribute SparseTensorEncodingAttr::parse(AsmParser &parser, Type type) {
|
|
#define RETURN_ON_FAIL(stmt) \
|
|
if (failed(stmt)) { \
|
|
return {}; \
|
|
}
|
|
#define ERROR_IF(COND, MSG) \
|
|
if (COND) { \
|
|
parser.emitError(parser.getNameLoc(), MSG); \
|
|
return {}; \
|
|
}
|
|
|
|
RETURN_ON_FAIL(parser.parseLess())
|
|
RETURN_ON_FAIL(parser.parseLBrace())
|
|
|
|
// Process the data from the parsed dictionary value into struct-like data.
|
|
SmallVector<DimLevelType> lvlTypes;
|
|
SmallVector<SparseTensorDimSliceAttr> slices;
|
|
AffineMap dimOrd = {};
|
|
AffineMap higherOrd = {};
|
|
unsigned posWidth = 0;
|
|
unsigned crdWidth = 0;
|
|
|
|
StringRef attrName;
|
|
// Exactly 6 keys.
|
|
SmallVector<StringRef, 6> keys = {"dimLevelType", "dimOrdering",
|
|
"higherOrdering", "posWidth",
|
|
"crdWidth", "slice"};
|
|
while (succeeded(parser.parseOptionalKeyword(&attrName))) {
|
|
if (!llvm::is_contained(keys, attrName)) {
|
|
parser.emitError(parser.getNameLoc(), "unexpected key: ") << attrName;
|
|
return {};
|
|
}
|
|
|
|
// Consume the `=` after keys
|
|
RETURN_ON_FAIL(parser.parseEqual())
|
|
// FIXME: using `operator==` below duplicates the string comparison
|
|
// cost of the `is_contained` check above. Should instead use some
|
|
// "find" function that returns the index into `keys` so that we can
|
|
// dispatch on that instead.
|
|
if (attrName == "dimLevelType") {
|
|
Attribute attr;
|
|
RETURN_ON_FAIL(parser.parseAttribute(attr));
|
|
auto arrayAttr = attr.dyn_cast<ArrayAttr>();
|
|
ERROR_IF(!arrayAttr, "expected an array for dimension level types")
|
|
for (auto i : arrayAttr) {
|
|
auto strAttr = i.dyn_cast<StringAttr>();
|
|
ERROR_IF(!strAttr, "expected a string value in dimension level types")
|
|
auto strVal = strAttr.getValue();
|
|
if (auto optDLT = parseDLT(strVal)) {
|
|
lvlTypes.push_back(optDLT.value());
|
|
} else {
|
|
parser.emitError(parser.getNameLoc(),
|
|
"unexpected dimension level type: ")
|
|
<< strVal;
|
|
return {};
|
|
}
|
|
}
|
|
} else if (attrName == "dimOrdering") {
|
|
Attribute attr;
|
|
RETURN_ON_FAIL(parser.parseAttribute(attr))
|
|
auto affineAttr = attr.dyn_cast<AffineMapAttr>();
|
|
ERROR_IF(!affineAttr, "expected an affine map for dimension ordering")
|
|
dimOrd = affineAttr.getValue();
|
|
} else if (attrName == "higherOrdering") {
|
|
Attribute attr;
|
|
RETURN_ON_FAIL(parser.parseAttribute(attr))
|
|
auto affineAttr = attr.dyn_cast<AffineMapAttr>();
|
|
ERROR_IF(!affineAttr, "expected an affine map for higher ordering")
|
|
higherOrd = affineAttr.getValue();
|
|
} else if (attrName == "posWidth") {
|
|
Attribute attr;
|
|
RETURN_ON_FAIL(parser.parseAttribute(attr))
|
|
auto intAttr = attr.dyn_cast<IntegerAttr>();
|
|
ERROR_IF(!intAttr, "expected an integral position bitwidth")
|
|
posWidth = intAttr.getInt();
|
|
} else if (attrName == "crdWidth") {
|
|
Attribute attr;
|
|
RETURN_ON_FAIL(parser.parseAttribute(attr))
|
|
auto intAttr = attr.dyn_cast<IntegerAttr>();
|
|
ERROR_IF(!intAttr, "expected an integral index bitwidth")
|
|
crdWidth = intAttr.getInt();
|
|
} else if (attrName == "slice") {
|
|
RETURN_ON_FAIL(parser.parseLSquare())
|
|
// Dispatches to DimSliceAttr to skip mnemonic
|
|
bool finished = false;
|
|
while (auto attr = SparseTensorDimSliceAttr::parse(parser, nullptr)) {
|
|
auto sliceAttr = attr.cast<SparseTensorDimSliceAttr>();
|
|
slices.push_back(sliceAttr);
|
|
if (parser.parseOptionalComma().failed()) {
|
|
finished = true;
|
|
break;
|
|
}
|
|
}
|
|
// Wrong when parsing slices
|
|
if (!finished)
|
|
return {};
|
|
RETURN_ON_FAIL(parser.parseRSquare())
|
|
}
|
|
|
|
// Only the last item can omit the comma
|
|
if (parser.parseOptionalComma().failed())
|
|
break;
|
|
}
|
|
|
|
RETURN_ON_FAIL(parser.parseRBrace())
|
|
RETURN_ON_FAIL(parser.parseGreater())
|
|
#undef ERROR_IF
|
|
#undef RETURN_ON_FAIL
|
|
|
|
// Construct struct-like storage for attribute.
|
|
return parser.getChecked<SparseTensorEncodingAttr>(
|
|
parser.getContext(), lvlTypes, dimOrd, higherOrd, posWidth, crdWidth,
|
|
slices);
|
|
}
|
|
|
|
void SparseTensorEncodingAttr::print(AsmPrinter &printer) const {
|
|
// Print the struct-like storage in dictionary fashion.
|
|
printer << "<{ dimLevelType = [ ";
|
|
llvm::interleaveComma(getDimLevelType(), printer, [&](DimLevelType dlt) {
|
|
printer << "\"" << toMLIRString(dlt) << "\"";
|
|
});
|
|
printer << " ]";
|
|
// Print remaining members only for non-default values.
|
|
if (!hasIdDimOrdering())
|
|
printer << ", dimOrdering = affine_map<" << getDimOrdering() << ">";
|
|
if (getHigherOrdering())
|
|
printer << ", higherOrdering = affine_map<" << getHigherOrdering() << ">";
|
|
if (getPosWidth())
|
|
printer << ", posWidth = " << getPosWidth();
|
|
if (getCrdWidth())
|
|
printer << ", crdWidth = " << getCrdWidth();
|
|
if (!getDimSlices().empty()) {
|
|
printer << ", slice = [ ";
|
|
llvm::interleaveComma(getDimSlices(), printer,
|
|
[&](SparseTensorDimSliceAttr attr) {
|
|
// Calls SparseTensorDimSliceAttr::print directly to
|
|
// skip mnemonic.
|
|
attr.print(printer);
|
|
});
|
|
printer << " ]";
|
|
}
|
|
|
|
printer << " }>";
|
|
}
|
|
|
|
LogicalResult SparseTensorEncodingAttr::verify(
|
|
function_ref<InFlightDiagnostic()> emitError,
|
|
ArrayRef<DimLevelType> dimLevelType, AffineMap dimOrdering,
|
|
AffineMap higherOrdering, unsigned posWidth, unsigned crdWidth,
|
|
ArrayRef<SparseTensorDimSliceAttr> dimSlices) {
|
|
if (!acceptBitWidth(posWidth))
|
|
return emitError() << "unexpected position bitwidth: " << posWidth;
|
|
if (!acceptBitWidth(crdWidth))
|
|
return emitError() << "unexpected coordinate bitwidth: " << crdWidth;
|
|
// Before we can check that the level-rank is consistent/coherent
|
|
// across all fields, we need to define it. The source-of-truth for
|
|
// the `getLvlRank` method is the length of the level-types array,
|
|
// since it must always be provided and have full rank; therefore we
|
|
// use that same source-of-truth here.
|
|
const Level lvlRank = dimLevelType.size();
|
|
if (lvlRank == 0)
|
|
return emitError() << "expected a non-empty array for level types";
|
|
if (dimOrdering) {
|
|
if (!dimOrdering.isPermutation())
|
|
return emitError()
|
|
<< "expected a permutation affine map for dimension ordering";
|
|
if (dimOrdering.getNumResults() != lvlRank)
|
|
return emitError() << "unexpected mismatch in ordering and dimension "
|
|
"level types size";
|
|
}
|
|
if (higherOrdering) {
|
|
if (higherOrdering.getNumDims() >= higherOrdering.getNumResults())
|
|
return emitError() << "unexpected higher ordering mapping from "
|
|
<< higherOrdering.getNumDims() << " to "
|
|
<< higherOrdering.getNumResults();
|
|
if (higherOrdering.getNumResults() != lvlRank)
|
|
return emitError() << "unexpected mismatch in higher ordering and "
|
|
"dimension level types size";
|
|
}
|
|
if (!dimSlices.empty() && dimSlices.size() != lvlRank) {
|
|
return emitError() << "unexpected mismatch in dimension slices and "
|
|
"dimension level type size";
|
|
}
|
|
return success();
|
|
}
|
|
|
|
#define RETURN_FAILURE_IF_FAILED(X) \
|
|
if (failed(X)) { \
|
|
return failure(); \
|
|
}
|
|
|
|
LogicalResult SparseTensorEncodingAttr::verifyEncoding(
|
|
ArrayRef<DynSize> dimShape, Type elementType,
|
|
function_ref<InFlightDiagnostic()> emitError) const {
|
|
// Check structural integrity. In particular, this ensures that the
|
|
// level-rank is coherent across all the fields.
|
|
RETURN_FAILURE_IF_FAILED(verify(emitError, getDimLevelType(),
|
|
getDimOrdering(), getHigherOrdering(),
|
|
getPosWidth(), getCrdWidth(), getDimSlices()))
|
|
// Check integrity with tensor type specifics. In particular, we
|
|
// need only check that the dimension-rank of the tensor agrees with
|
|
// the dimension-rank of the encoding.
|
|
const Dimension dimRank = dimShape.size();
|
|
if (dimRank == 0)
|
|
return emitError() << "expected non-scalar sparse tensor";
|
|
if (const auto higherOrdering = getHigherOrdering()) {
|
|
if (higherOrdering.getNumDims() != dimRank)
|
|
return emitError() << "expected an affine map with " << dimRank
|
|
<< " dimensions for higher ordering";
|
|
// TODO: verification of higher ordering contents
|
|
} else if (dimRank != getLvlRank()) {
|
|
return emitError() << "expected an array of size " << dimRank
|
|
<< " for dimension level types";
|
|
}
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Convenience Methods.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
SparseTensorEncodingAttr
|
|
mlir::sparse_tensor::getSparseTensorEncoding(Type type) {
|
|
if (auto ttp = type.dyn_cast<RankedTensorType>())
|
|
return ttp.getEncoding().dyn_cast_or_null<SparseTensorEncodingAttr>();
|
|
if (auto mdtp = type.dyn_cast<StorageSpecifierType>())
|
|
return mdtp.getEncoding();
|
|
return nullptr;
|
|
}
|
|
|
|
bool mlir::sparse_tensor::isCOOType(SparseTensorEncodingAttr enc,
|
|
Level startLvl, bool isUnique) {
|
|
if (!enc ||
|
|
!(enc.isCompressedLvl(startLvl) || enc.isCompressedWithHiLvl(startLvl)))
|
|
return false;
|
|
const Level lvlRank = enc.getLvlRank();
|
|
for (Level l = startLvl + 1; l < lvlRank; ++l)
|
|
if (!enc.isSingletonLvl(l))
|
|
return false;
|
|
// If isUnique is true, then make sure that the last level is unique,
|
|
// that is, lvlRank == 1 (unique the only compressed) and lvlRank > 1
|
|
// (unique on the last singleton).
|
|
return !isUnique || enc.isUniqueLvl(lvlRank - 1);
|
|
}
|
|
|
|
bool mlir::sparse_tensor::isUniqueCOOType(Type tp) {
|
|
return isCOOType(getSparseTensorEncoding(tp), 0, /*isUnique=*/true);
|
|
}
|
|
|
|
Level mlir::sparse_tensor::getCOOStart(SparseTensorEncodingAttr enc) {
|
|
// We only consider COO region with at least two levels for the purpose
|
|
// of AOS storage optimization.
|
|
const Level lvlRank = enc.getLvlRank();
|
|
if (lvlRank > 1)
|
|
for (Level l = 0; l < lvlRank - 1; l++)
|
|
if (isCOOType(enc, l, /*isUnique=*/false))
|
|
return l;
|
|
return lvlRank;
|
|
}
|
|
|
|
// Helpers to setup a COO type.
|
|
RankedTensorType sparse_tensor::getCOOFromTypeWithOrdering(RankedTensorType rtt,
|
|
AffineMap lvlPerm,
|
|
bool ordered) {
|
|
const SparseTensorType src(rtt);
|
|
// The dim-rank of the source `RankedTensorType` is used as the lvl-rank
|
|
// of the result `RankedTensorType`. This follows from the fact that the
|
|
// result's encoding has the default higher-ordering (hence the result's
|
|
// lvl-rank equals its dim-rank). We don't need to assert that `lvlRank`
|
|
// agrees with the size of `lvlPerm` because that will be verified by
|
|
// `STEA::get`.
|
|
const Level lvlRank = src.getDimRank();
|
|
SmallVector<DimLevelType> lvlTypes;
|
|
|
|
// An unordered and non-unique compressed level at beginning.
|
|
// If this is also the last level, then it is unique.
|
|
lvlTypes.push_back(
|
|
*getDimLevelType(LevelFormat::Compressed, ordered, lvlRank == 1));
|
|
if (lvlRank > 1) {
|
|
// TODO: it is actually ordered at the level for ordered input.
|
|
// Followed by unordered non-unique n-2 singleton levels.
|
|
std::fill_n(std::back_inserter(lvlTypes), lvlRank - 2,
|
|
*getDimLevelType(LevelFormat::Singleton, ordered, false));
|
|
// Ends by a unique singleton level unless the lvlRank is 1.
|
|
lvlTypes.push_back(*getDimLevelType(LevelFormat::Singleton, ordered, true));
|
|
}
|
|
|
|
// TODO: Maybe pick the bitwidth based on input/output tensors (probably the
|
|
// largest one among them) in the original operation instead of using the
|
|
// default value.
|
|
unsigned posWidth = src.getPosWidth();
|
|
unsigned crdWidth = src.getCrdWidth();
|
|
auto enc = SparseTensorEncodingAttr::get(src.getContext(), lvlTypes, lvlPerm,
|
|
AffineMap(), posWidth, crdWidth);
|
|
return RankedTensorType::get(src.getDimShape(), src.getElementType(), enc);
|
|
}
|
|
|
|
RankedTensorType sparse_tensor::getCOOFromType(RankedTensorType src,
|
|
bool ordered) {
|
|
return getCOOFromTypeWithOrdering(
|
|
src, AffineMap::getMultiDimIdentityMap(src.getRank(), src.getContext()),
|
|
ordered);
|
|
}
|
|
|
|
// TODO: Remove this definition once all use-sites have been fixed to
|
|
// properly handle non-permutations.
|
|
Dimension mlir::sparse_tensor::toOrigDim(SparseTensorEncodingAttr enc,
|
|
Level l) {
|
|
if (enc) {
|
|
auto order = enc.getDimOrdering();
|
|
if (order) {
|
|
assert(order.isPermutation());
|
|
return order.getDimPosition(l);
|
|
}
|
|
}
|
|
return l;
|
|
}
|
|
|
|
// TODO: Remove this definition once all use-sites have been fixed to
|
|
// properly handle non-permutations.
|
|
Level mlir::sparse_tensor::toStoredDim(SparseTensorEncodingAttr enc,
|
|
Dimension d) {
|
|
if (enc) {
|
|
auto order = enc.getDimOrdering();
|
|
if (order) {
|
|
assert(order.isPermutation());
|
|
auto maybePos =
|
|
order.getResultPosition(getAffineDimExpr(d, enc.getContext()));
|
|
assert(maybePos.has_value());
|
|
return *maybePos;
|
|
}
|
|
}
|
|
return d;
|
|
}
|
|
|
|
// TODO: Remove this definition once all use-sites have been fixed to
|
|
// properly handle non-permutations.
|
|
Dimension mlir::sparse_tensor::toOrigDim(RankedTensorType type, Level l) {
|
|
const auto enc = getSparseTensorEncoding(type);
|
|
assert(l < enc.getLvlRank());
|
|
return toOrigDim(enc, l);
|
|
}
|
|
|
|
// TODO: Remove this definition once all use-sites have been fixed to
|
|
// properly handle non-permutations.
|
|
Level mlir::sparse_tensor::toStoredDim(RankedTensorType type, Dimension d) {
|
|
assert(d < static_cast<Dimension>(type.getRank()));
|
|
return toStoredDim(getSparseTensorEncoding(type), d);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SparseTensorDialect Types.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// We normalized sparse tensor encoding attribute by always using
|
|
/// ordered/unique DLT such that "compressed-nu-no" and "compressed-nu" (as well
|
|
/// as other variants) lead to the same storage specifier type, and stripping
|
|
/// irrelevant fields that do not alter the sparse tensor memory layout.
|
|
static SparseTensorEncodingAttr
|
|
getNormalizedEncodingForSpecifier(SparseTensorEncodingAttr enc) {
|
|
SmallVector<DimLevelType> dlts;
|
|
for (auto dlt : enc.getDimLevelType())
|
|
dlts.push_back(*getDimLevelType(*getLevelFormat(dlt), true, true));
|
|
|
|
return SparseTensorEncodingAttr::get(
|
|
enc.getContext(), dlts,
|
|
AffineMap(), // dimOrdering (irrelavant to storage speicifer)
|
|
AffineMap(), // highLvlOrdering (irrelavant to storage specifer)
|
|
// Always use `index` for memSize and lvlSize instead of reusing
|
|
// `getPosWidth` and `getCrdWidth`. It allows us to reuse the same SSA
|
|
// value for different bitwidth, it also avoids casting between index and
|
|
// integer (returned by DimOp)
|
|
0, 0, enc.getDimSlices());
|
|
}
|
|
|
|
StorageSpecifierType
|
|
StorageSpecifierType::get(MLIRContext *ctx, SparseTensorEncodingAttr encoding) {
|
|
return Base::get(ctx, getNormalizedEncodingForSpecifier(encoding));
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SparseTensorDialect Operations.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static LogicalResult lvlIsInBounds(Level lvl, Value tensor) {
|
|
return success(lvl < getSparseTensorType(tensor).getLvlRank());
|
|
}
|
|
|
|
static LogicalResult isMatchingWidth(Value mem, unsigned width) {
|
|
const Type etp = getMemRefType(mem).getElementType();
|
|
return success(width == 0 ? etp.isIndex() : etp.isInteger(width));
|
|
}
|
|
|
|
static LogicalResult verifySparsifierGetterSetter(
|
|
StorageSpecifierKind mdKind, std::optional<Level> lvl,
|
|
TypedValue<StorageSpecifierType> md, Operation *op) {
|
|
if (mdKind == StorageSpecifierKind::ValMemSize && lvl) {
|
|
return op->emitError(
|
|
"redundant level argument for querying value memory size");
|
|
}
|
|
|
|
const auto enc = md.getType().getEncoding();
|
|
const Level lvlRank = enc.getLvlRank();
|
|
|
|
if (mdKind == StorageSpecifierKind::DimOffset ||
|
|
mdKind == StorageSpecifierKind::DimStride)
|
|
if (!enc.isSlice())
|
|
return op->emitError("requested slice data on non-slice tensor");
|
|
|
|
if (mdKind != StorageSpecifierKind::ValMemSize) {
|
|
if (!lvl)
|
|
return op->emitError("missing level argument");
|
|
|
|
const Level l = lvl.value();
|
|
if (l >= lvlRank)
|
|
return op->emitError("requested level is out of bounds");
|
|
|
|
if (mdKind == StorageSpecifierKind::PosMemSize && enc.isSingletonLvl(l))
|
|
return op->emitError(
|
|
"requested position memory size on a singleton level");
|
|
}
|
|
return success();
|
|
}
|
|
|
|
static LogicalResult verifyPackUnPack(Operation *op, bool requiresStaticShape,
|
|
SparseTensorType tensorTp,
|
|
RankedTensorType valuesTp,
|
|
RankedTensorType coordinatesTp,
|
|
IntegerAttr batchedLvls) {
|
|
unsigned nBatched = batchedLvls ? batchedLvls.getValue().getZExtValue() : 0;
|
|
if (requiresStaticShape && !tensorTp.hasStaticDimShape())
|
|
return op->emitError("the sparse-tensor must have static shape");
|
|
if (!tensorTp.hasEncoding())
|
|
return op->emitError("the sparse-tensor must have an encoding attribute");
|
|
if (!tensorTp.isIdentity())
|
|
return op->emitError("the sparse-tensor must have the identity mapping");
|
|
if (!isCOOType(tensorTp.getEncoding(), nBatched, true))
|
|
return op->emitError("the sparse-tensor must have a COO type");
|
|
|
|
if (coordinatesTp.getRank() != 2 + nBatched)
|
|
return op->emitError("coordinates must have rank 2 + batched_lvls");
|
|
if (requiresStaticShape && !coordinatesTp.hasStaticShape())
|
|
return op->emitError("coordinates must have static shape");
|
|
if (coordinatesTp.getElementType() != tensorTp.getCrdType())
|
|
return op->emitError("input/output coordinate-types don't match");
|
|
|
|
if (valuesTp.getRank() != 1 + nBatched)
|
|
return op->emitError("values must have rank 1 + batched_lvls");
|
|
if (requiresStaticShape && !valuesTp.hasStaticShape())
|
|
return op->emitError("values must have static shape");
|
|
if (valuesTp.getElementType() != tensorTp.getElementType())
|
|
return op->emitError("input/output element-types don't match");
|
|
|
|
for (unsigned i = 0; i < nBatched; i++) {
|
|
const auto valBatch = valuesTp.getShape()[i];
|
|
const auto crdBatch = coordinatesTp.getShape()[i];
|
|
if (ShapedType::isDynamic(valBatch) || ShapedType::isDynamic(crdBatch) ||
|
|
crdBatch != valBatch) {
|
|
return op->emitError(
|
|
"values/coordinates batched level sizes don't match statically");
|
|
}
|
|
}
|
|
|
|
const auto valuesNSE = valuesTp.getShape()[nBatched];
|
|
const auto coordsNSE = coordinatesTp.getShape()[nBatched];
|
|
if (!ShapedType::isDynamic(valuesNSE) && !ShapedType::isDynamic(coordsNSE) &&
|
|
valuesNSE != coordsNSE)
|
|
return op->emitError("values/coordinates number-of-elements don't match");
|
|
|
|
// NOTE: We use `getLvlRank` because the `coordinatesTp` is for
|
|
// level-coordinates (cf., the op documentation).
|
|
const DynSize coordsRank = coordinatesTp.getShape()[1 + nBatched];
|
|
const Level tensorRank = tensorTp.getLvlRank();
|
|
// FIXME: replace the `operator!=` with our backported `safelyNE`.
|
|
if (!ShapedType::isDynamic(coordsRank) &&
|
|
coordsRank != static_cast<DynSize>(tensorRank) - nBatched)
|
|
return op->emitError("input/output level-ranks don't match");
|
|
|
|
return success();
|
|
}
|
|
|
|
LogicalResult PackOp::verify() {
|
|
const auto valuesTp = getRankedTensorType(getValues());
|
|
const auto coordinatesTp = getRankedTensorType(getCoordinates());
|
|
const auto resTp = getSparseTensorType(getResult());
|
|
return verifyPackUnPack(*this, true, resTp, valuesTp, coordinatesTp,
|
|
getBatchedLvlsAttr());
|
|
}
|
|
|
|
unsigned PackOp::getNumBatchedLvls() {
|
|
return getBatchedLvls().has_value() ? getBatchedLvls()->getZExtValue() : 0;
|
|
}
|
|
|
|
LogicalResult UnpackOp::verify() {
|
|
const auto valuesTp = getRankedTensorType(getValues());
|
|
const auto coordinatesTp = getRankedTensorType(getCoordinates());
|
|
const auto srcTp = getSparseTensorType(getTensor());
|
|
return verifyPackUnPack(*this, false, srcTp, valuesTp, coordinatesTp,
|
|
getBatchedLvlsAttr());
|
|
}
|
|
|
|
unsigned UnpackOp::getNumBatchedLvls() {
|
|
return getBatchedLvls().has_value() ? getBatchedLvls()->getZExtValue() : 0;
|
|
}
|
|
|
|
LogicalResult ConvertOp::verify() {
|
|
if (auto tp1 = getSource().getType().dyn_cast<RankedTensorType>()) {
|
|
if (auto tp2 = getDest().getType().dyn_cast<RankedTensorType>()) {
|
|
if (tp1.getRank() != tp2.getRank())
|
|
return emitError("unexpected conversion mismatch in rank");
|
|
auto dstEnc =
|
|
tp2.getEncoding().dyn_cast_or_null<SparseTensorEncodingAttr>();
|
|
if (dstEnc && dstEnc.isSlice())
|
|
return emitError("cannot convert to a sparse tensor slice");
|
|
|
|
auto shape1 = tp1.getShape();
|
|
auto shape2 = tp2.getShape();
|
|
// Accept size matches between the source and the destination type
|
|
// (e.g. 10 vs. 10, 10 vs. ?, or ? vs. ?), but reject direct mismatches or
|
|
// matches that would need a runtime assert (e.g. 10 vs. 20 or ? vs. 10).
|
|
for (Dimension d = 0, dimRank = tp1.getRank(); d < dimRank; d++)
|
|
if (shape1[d] != shape2[d] && shape2[d] != ShapedType::kDynamic)
|
|
return emitError("unexpected conversion mismatch in dimension ") << d;
|
|
return success();
|
|
}
|
|
}
|
|
return emitError("unexpected type in convert");
|
|
}
|
|
|
|
OpFoldResult ConvertOp::fold(FoldAdaptor adaptor) {
|
|
Type dstType = getType();
|
|
// Fold trivial dense-to-dense convert and leave trivial sparse-to-sparse
|
|
// convert for codegen to remove. This is because we use trivial
|
|
// sparse-to-sparse convert to tell bufferization that the sparse codegen
|
|
// will expand the tensor buffer into sparse tensor storage.
|
|
if (!getSparseTensorEncoding(dstType) && dstType == getSource().getType())
|
|
return getSource();
|
|
return {};
|
|
}
|
|
|
|
LogicalResult ToPositionsOp::verify() {
|
|
auto e = getSparseTensorEncoding(getTensor().getType());
|
|
if (failed(lvlIsInBounds(getLevel(), getTensor())))
|
|
return emitError("requested level is out of bounds");
|
|
if (failed(isMatchingWidth(getResult(), e.getPosWidth())))
|
|
return emitError("unexpected type for positions");
|
|
return success();
|
|
}
|
|
|
|
LogicalResult ToCoordinatesOp::verify() {
|
|
auto e = getSparseTensorEncoding(getTensor().getType());
|
|
if (failed(lvlIsInBounds(getLevel(), getTensor())))
|
|
return emitError("requested level is out of bounds");
|
|
if (failed(isMatchingWidth(getResult(), e.getCrdWidth())))
|
|
return emitError("unexpected type for coordinates");
|
|
return success();
|
|
}
|
|
|
|
LogicalResult ToCoordinatesBufferOp::verify() {
|
|
auto e = getSparseTensorEncoding(getTensor().getType());
|
|
if (getCOOStart(e) >= e.getLvlRank())
|
|
return emitError("expected sparse tensor with a COO region");
|
|
return success();
|
|
}
|
|
|
|
LogicalResult ToValuesOp::verify() {
|
|
auto ttp = getRankedTensorType(getTensor());
|
|
auto mtp = getMemRefType(getResult());
|
|
if (ttp.getElementType() != mtp.getElementType())
|
|
return emitError("unexpected mismatch in element types");
|
|
return success();
|
|
}
|
|
|
|
LogicalResult ToSliceOffsetOp::verify() {
|
|
auto rank = getRankedTensorType(getSlice()).getRank();
|
|
if (rank <= getDim().getSExtValue() || getDim().getSExtValue() < 0)
|
|
return emitError("requested dimension out of bound");
|
|
return success();
|
|
}
|
|
|
|
LogicalResult ToSliceStrideOp::verify() {
|
|
auto rank = getRankedTensorType(getSlice()).getRank();
|
|
if (rank <= getDim().getSExtValue() || getDim().getSExtValue() < 0)
|
|
return emitError("requested dimension out of bound");
|
|
return success();
|
|
}
|
|
|
|
LogicalResult GetStorageSpecifierOp::verify() {
|
|
RETURN_FAILURE_IF_FAILED(verifySparsifierGetterSetter(
|
|
getSpecifierKind(), getLevel(), getSpecifier(), getOperation()))
|
|
return success();
|
|
}
|
|
|
|
template <typename SpecifierOp>
|
|
static SetStorageSpecifierOp getSpecifierSetDef(SpecifierOp op) {
|
|
return op.getSpecifier().template getDefiningOp<SetStorageSpecifierOp>();
|
|
}
|
|
|
|
OpFoldResult GetStorageSpecifierOp::fold(FoldAdaptor adaptor) {
|
|
const StorageSpecifierKind kind = getSpecifierKind();
|
|
const auto lvl = getLevel();
|
|
for (auto op = getSpecifierSetDef(*this); op; op = getSpecifierSetDef(op))
|
|
if (kind == op.getSpecifierKind() && lvl == op.getLevel())
|
|
return op.getValue();
|
|
return {};
|
|
}
|
|
|
|
LogicalResult SetStorageSpecifierOp::verify() {
|
|
RETURN_FAILURE_IF_FAILED(verifySparsifierGetterSetter(
|
|
getSpecifierKind(), getLevel(), getSpecifier(), getOperation()))
|
|
return success();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TensorDialect Linalg.Generic Operations.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
template <class T>
|
|
static LogicalResult verifyNumBlockArgs(T *op, Region ®ion,
|
|
const char *regionName,
|
|
TypeRange inputTypes, Type outputType) {
|
|
unsigned numArgs = region.getNumArguments();
|
|
unsigned expectedNum = inputTypes.size();
|
|
if (numArgs != expectedNum)
|
|
return op->emitError() << regionName << " region must have exactly "
|
|
<< expectedNum << " arguments";
|
|
|
|
for (unsigned i = 0; i < numArgs; i++) {
|
|
Type typ = region.getArgument(i).getType();
|
|
if (typ != inputTypes[i])
|
|
return op->emitError() << regionName << " region argument " << (i + 1)
|
|
<< " type mismatch";
|
|
}
|
|
Operation *term = region.front().getTerminator();
|
|
YieldOp yield = dyn_cast<YieldOp>(term);
|
|
if (!yield)
|
|
return op->emitError() << regionName
|
|
<< " region must end with sparse_tensor.yield";
|
|
if (!yield.getResult() || yield.getResult().getType() != outputType)
|
|
return op->emitError() << regionName << " region yield type mismatch";
|
|
|
|
return success();
|
|
}
|
|
|
|
LogicalResult BinaryOp::verify() {
|
|
NamedAttrList attrs = (*this)->getAttrs();
|
|
Type leftType = getX().getType();
|
|
Type rightType = getY().getType();
|
|
Type outputType = getOutput().getType();
|
|
Region &overlap = getOverlapRegion();
|
|
Region &left = getLeftRegion();
|
|
Region &right = getRightRegion();
|
|
|
|
// Check correct number of block arguments and return type for each
|
|
// non-empty region.
|
|
if (!overlap.empty()) {
|
|
RETURN_FAILURE_IF_FAILED(verifyNumBlockArgs(
|
|
this, overlap, "overlap", TypeRange{leftType, rightType}, outputType))
|
|
}
|
|
if (!left.empty()) {
|
|
RETURN_FAILURE_IF_FAILED(
|
|
verifyNumBlockArgs(this, left, "left", TypeRange{leftType}, outputType))
|
|
} else if (getLeftIdentity()) {
|
|
if (leftType != outputType)
|
|
return emitError("left=identity requires first argument to have the same "
|
|
"type as the output");
|
|
}
|
|
if (!right.empty()) {
|
|
RETURN_FAILURE_IF_FAILED(verifyNumBlockArgs(
|
|
this, right, "right", TypeRange{rightType}, outputType))
|
|
} else if (getRightIdentity()) {
|
|
if (rightType != outputType)
|
|
return emitError("right=identity requires second argument to have the "
|
|
"same type as the output");
|
|
}
|
|
return success();
|
|
}
|
|
|
|
LogicalResult UnaryOp::verify() {
|
|
Type inputType = getX().getType();
|
|
Type outputType = getOutput().getType();
|
|
|
|
// Check correct number of block arguments and return type for each
|
|
// non-empty region.
|
|
Region &present = getPresentRegion();
|
|
if (!present.empty()) {
|
|
RETURN_FAILURE_IF_FAILED(verifyNumBlockArgs(
|
|
this, present, "present", TypeRange{inputType}, outputType))
|
|
}
|
|
Region &absent = getAbsentRegion();
|
|
if (!absent.empty()) {
|
|
RETURN_FAILURE_IF_FAILED(
|
|
verifyNumBlockArgs(this, absent, "absent", TypeRange{}, outputType))
|
|
}
|
|
return success();
|
|
}
|
|
|
|
LogicalResult ConcatenateOp::verify() {
|
|
const auto dstTp = getSparseTensorType(*this);
|
|
const Dimension concatDim = getDimension();
|
|
const Dimension dimRank = dstTp.getDimRank();
|
|
|
|
if (getInputs().size() <= 1)
|
|
return emitError("Need at least two tensors to concatenate.");
|
|
|
|
if (concatDim >= dimRank)
|
|
return emitError(llvm::formatv(
|
|
"Concat-dimension is out of bounds for dimension-rank ({0} >= {1})",
|
|
concatDim, dimRank));
|
|
|
|
for (const auto &it : llvm::enumerate(getInputs())) {
|
|
const auto i = it.index();
|
|
const auto srcTp = getSparseTensorType(it.value());
|
|
if (srcTp.hasDynamicDimShape())
|
|
return emitError(llvm::formatv("Input tensor ${0} has dynamic shape", i));
|
|
const Dimension srcDimRank = srcTp.getDimRank();
|
|
if (srcDimRank != dimRank)
|
|
return emitError(
|
|
llvm::formatv("Input tensor ${0} has a different rank (rank={1}) "
|
|
"from the output tensor (rank={2}).",
|
|
i, srcDimRank, dimRank));
|
|
}
|
|
|
|
for (Dimension d = 0; d < dimRank; d++) {
|
|
const DynSize dstSh = dstTp.getDimShape()[d];
|
|
if (d == concatDim) {
|
|
if (!ShapedType::isDynamic(dstSh)) {
|
|
// If we reach here, then all inputs have static shapes. So we
|
|
// can use `getDimShape()[d]` instead of `*getDynamicDimSize(d)`
|
|
// to avoid redundant assertions in the loop.
|
|
StaticSize sumSz = 0;
|
|
for (const auto src : getInputs())
|
|
sumSz += getSparseTensorType(src).getDimShape()[d];
|
|
// If all dimension are statically known, the sum of all the input
|
|
// dimensions should be equal to the output dimension.
|
|
if (sumSz != dstSh)
|
|
return emitError(
|
|
"The concatenation dimension of the output tensor should be the "
|
|
"sum of all the concatenation dimensions of the input tensors.");
|
|
}
|
|
} else {
|
|
DynSize prev = dstSh;
|
|
for (const auto src : getInputs()) {
|
|
const auto sh = getSparseTensorType(src).getDimShape()[d];
|
|
if (!ShapedType::isDynamic(prev) && sh != prev)
|
|
return emitError("All dimensions (expect for the concatenating one) "
|
|
"should be equal.");
|
|
prev = sh;
|
|
}
|
|
}
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
LogicalResult InsertOp::verify() {
|
|
const auto stt = getSparseTensorType(getTensor());
|
|
if (stt.getLvlRank() != static_cast<Level>(getLvlCoords().size()))
|
|
return emitOpError("incorrect number of coordinates");
|
|
return success();
|
|
}
|
|
|
|
void PushBackOp::build(OpBuilder &builder, OperationState &result,
|
|
Value curSize, Value inBuffer, Value value) {
|
|
build(builder, result, curSize, inBuffer, value, Value());
|
|
}
|
|
|
|
LogicalResult PushBackOp::verify() {
|
|
if (Value n = getN()) {
|
|
auto nValue = dyn_cast_or_null<arith::ConstantIndexOp>(n.getDefiningOp());
|
|
if (nValue && nValue.value() < 1)
|
|
return emitOpError("n must be not less than 1");
|
|
}
|
|
return success();
|
|
}
|
|
|
|
LogicalResult CompressOp::verify() {
|
|
const auto stt = getSparseTensorType(getTensor());
|
|
if (stt.getLvlRank() != 1 + static_cast<Level>(getLvlCoords().size()))
|
|
return emitOpError("incorrect number of coordinates");
|
|
return success();
|
|
}
|
|
|
|
void ForeachOp::build(
|
|
OpBuilder &builder, OperationState &result, Value tensor,
|
|
ValueRange initArgs, AffineMapAttr order,
|
|
function_ref<void(OpBuilder &, Location, ValueRange, Value, ValueRange)>
|
|
bodyBuilder) {
|
|
build(builder, result, initArgs.getTypes(), tensor, initArgs, order);
|
|
// Builds foreach body.
|
|
if (!bodyBuilder)
|
|
return;
|
|
const auto stt = getSparseTensorType(tensor);
|
|
const Dimension dimRank = stt.getDimRank();
|
|
|
|
// Starts with `dimRank`-many coordinates.
|
|
SmallVector<Type> blockArgTypes(dimRank, builder.getIndexType());
|
|
// Followed by one value.
|
|
blockArgTypes.push_back(stt.getElementType());
|
|
// Followed by the reduction variables.
|
|
blockArgTypes.append(initArgs.getTypes().begin(), initArgs.getTypes().end());
|
|
|
|
SmallVector<Location> blockArgLocs(blockArgTypes.size(), tensor.getLoc());
|
|
|
|
OpBuilder::InsertionGuard guard(builder);
|
|
auto ®ion = *result.regions.front();
|
|
Block *bodyBlock =
|
|
builder.createBlock(®ion, region.end(), blockArgTypes, blockArgLocs);
|
|
bodyBuilder(builder, result.location,
|
|
bodyBlock->getArguments().slice(0, dimRank),
|
|
bodyBlock->getArguments()[dimRank],
|
|
bodyBlock->getArguments().drop_front(dimRank + 1));
|
|
}
|
|
|
|
LogicalResult ForeachOp::verify() {
|
|
const auto t = getSparseTensorType(getTensor());
|
|
const Dimension dimRank = t.getDimRank();
|
|
const auto args = getBody()->getArguments();
|
|
|
|
if (getOrder().has_value() &&
|
|
(t.getEncoding() || !getOrder()->isPermutation()))
|
|
return emitError("Only support permuted order on non encoded dense tensor");
|
|
|
|
if (static_cast<size_t>(dimRank) + 1 + getInitArgs().size() != args.size())
|
|
return emitError("Unmatched number of arguments in the block");
|
|
|
|
if (getNumResults() != getInitArgs().size())
|
|
return emitError("Mismatch in number of init arguments and results");
|
|
|
|
if (getResultTypes() != getInitArgs().getTypes())
|
|
return emitError("Mismatch in types of init arguments and results");
|
|
|
|
// Cannot mark this const, because the getters aren't.
|
|
auto yield = cast<YieldOp>(getBody()->getTerminator());
|
|
if (yield.getNumOperands() != getNumResults() ||
|
|
yield.getOperands().getTypes() != getResultTypes())
|
|
return emitError("Mismatch in types of yield values and results");
|
|
|
|
const auto iTp = IndexType::get(getContext());
|
|
for (Dimension d = 0; d < dimRank; d++)
|
|
if (args[d].getType() != iTp)
|
|
emitError(
|
|
llvm::formatv("Expecting Index type for argument at index {0}", d));
|
|
|
|
const auto elemTp = t.getElementType();
|
|
const auto valueTp = args[dimRank].getType();
|
|
if (elemTp != valueTp)
|
|
emitError(llvm::formatv("Unmatched element type between input tensor and "
|
|
"block argument, expected:{0}, got: {1}",
|
|
elemTp, valueTp));
|
|
return success();
|
|
}
|
|
|
|
LogicalResult ReduceOp::verify() {
|
|
Type inputType = getX().getType();
|
|
// Check correct number of block arguments and return type.
|
|
Region &formula = getRegion();
|
|
RETURN_FAILURE_IF_FAILED(verifyNumBlockArgs(
|
|
this, formula, "reduce", TypeRange{inputType, inputType}, inputType))
|
|
return success();
|
|
}
|
|
|
|
LogicalResult SelectOp::verify() {
|
|
Builder b(getContext());
|
|
Type inputType = getX().getType();
|
|
Type boolType = b.getI1Type();
|
|
// Check correct number of block arguments and return type.
|
|
Region &formula = getRegion();
|
|
RETURN_FAILURE_IF_FAILED(verifyNumBlockArgs(this, formula, "select",
|
|
TypeRange{inputType}, boolType))
|
|
return success();
|
|
}
|
|
|
|
LogicalResult SortOp::verify() {
|
|
if (getXs().empty())
|
|
return emitError("need at least one xs buffer.");
|
|
|
|
auto n = getN().getDefiningOp<arith::ConstantIndexOp>();
|
|
|
|
Type xtp = getMemRefType(getXs().front()).getElementType();
|
|
auto checkTypes = [&](ValueRange operands,
|
|
bool checkEleType = true) -> LogicalResult {
|
|
for (Value opnd : operands) {
|
|
auto mtp = getMemRefType(opnd);
|
|
const DynSize sh = mtp.getShape()[0];
|
|
// We can't check the size of dynamic dimension at compile-time, but all
|
|
// xs and ys should have a dimension not less than n at runtime.
|
|
if (n && !ShapedType::isDynamic(sh) && sh < n.value())
|
|
return emitError(llvm::formatv("xs and ys need to have a dimension >= n"
|
|
": {0} < {1}",
|
|
sh, n.value()));
|
|
|
|
if (checkEleType && xtp != mtp.getElementType())
|
|
return emitError("mismatch xs element types");
|
|
}
|
|
return success();
|
|
};
|
|
RETURN_FAILURE_IF_FAILED(checkTypes(getXs()))
|
|
return n ? checkTypes(getYs(), false) : success();
|
|
}
|
|
|
|
LogicalResult SortCooOp::verify() {
|
|
auto cn = getN().getDefiningOp<arith::ConstantIndexOp>();
|
|
// We can't check the size of the buffers when n or buffer dimensions aren't
|
|
// compile-time constants.
|
|
if (!cn)
|
|
return success();
|
|
|
|
uint64_t n = cn.value();
|
|
uint64_t nx = 1;
|
|
if (auto nxAttr = getNxAttr()) {
|
|
nx = nxAttr.getInt();
|
|
if (nx < 1)
|
|
emitError(llvm::formatv("Expected nx > 1, got {0}", nx));
|
|
}
|
|
uint64_t ny = 0;
|
|
if (auto nyAttr = getNyAttr()) {
|
|
ny = nyAttr.getInt();
|
|
}
|
|
|
|
// FIXME: update the types of variables used in expressions bassed as
|
|
// the `minSize` argument, to avoid implicit casting at the callsites
|
|
// of this lambda.
|
|
const auto checkDim = [&](Value v, StaticSize minSize, const char *message) {
|
|
const DynSize sh = getMemRefType(v).getShape()[0];
|
|
if (!ShapedType::isDynamic(sh) && sh < minSize)
|
|
emitError(llvm::formatv("{0} got {1} < {2}", message, sh, minSize));
|
|
};
|
|
|
|
checkDim(getXy(), n * (nx + ny), "Expected dimension(xy) >= n * (nx + ny)");
|
|
|
|
for (Value opnd : getYs()) {
|
|
checkDim(opnd, n, "Expected dimension(y) >= n");
|
|
}
|
|
|
|
return success();
|
|
}
|
|
|
|
LogicalResult YieldOp::verify() {
|
|
// Check for compatible parent.
|
|
auto *parentOp = (*this)->getParentOp();
|
|
if (isa<BinaryOp>(parentOp) || isa<UnaryOp>(parentOp) ||
|
|
isa<ReduceOp>(parentOp) || isa<SelectOp>(parentOp) ||
|
|
isa<ForeachOp>(parentOp))
|
|
return success();
|
|
|
|
return emitOpError("expected parent op to be sparse_tensor unary, binary, "
|
|
"reduce, select or foreach");
|
|
}
|
|
|
|
#undef RETURN_FAILURE_IF_FAILED
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// TensorDialect Methods.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void SparseTensorDialect::initialize() {
|
|
addAttributes<
|
|
#define GET_ATTRDEF_LIST
|
|
#include "mlir/Dialect/SparseTensor/IR/SparseTensorAttrDefs.cpp.inc"
|
|
>();
|
|
addTypes<
|
|
#define GET_TYPEDEF_LIST
|
|
#include "mlir/Dialect/SparseTensor/IR/SparseTensorTypes.cpp.inc"
|
|
>();
|
|
addOperations<
|
|
#define GET_OP_LIST
|
|
#include "mlir/Dialect/SparseTensor/IR/SparseTensorOps.cpp.inc"
|
|
>();
|
|
}
|
|
|
|
#define GET_OP_CLASSES
|
|
#include "mlir/Dialect/SparseTensor/IR/SparseTensorOps.cpp.inc"
|
|
|
|
#include "mlir/Dialect/SparseTensor/IR/SparseTensorOpsDialect.cpp.inc"
|