
Currently call slot optimization may be prevented because the lifetime markers for the destination only start after the call. In this case, rather than aborting the transform, we should move the lifetime.start before the call to enable the transform. Differential Revision: https://reviews.llvm.org/D135886
1721 lines
66 KiB
C++
1721 lines
66 KiB
C++
//===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass performs various transformations related to eliminating memcpy
|
|
// calls, or transforming sets of stores into memset's.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Scalar/MemCpyOptimizer.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/None.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/iterator_range.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/AssumptionCache.h"
|
|
#include "llvm/Analysis/CaptureTracking.h"
|
|
#include "llvm/Analysis/GlobalsModRef.h"
|
|
#include "llvm/Analysis/Loads.h"
|
|
#include "llvm/Analysis/MemoryLocation.h"
|
|
#include "llvm/Analysis/MemorySSA.h"
|
|
#include "llvm/Analysis/MemorySSAUpdater.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/GlobalVariable.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/InstrTypes.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/PassManager.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/User.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "memcpyopt"
|
|
|
|
static cl::opt<bool> EnableMemCpyOptWithoutLibcalls(
|
|
"enable-memcpyopt-without-libcalls", cl::Hidden,
|
|
cl::desc("Enable memcpyopt even when libcalls are disabled"));
|
|
|
|
STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted");
|
|
STATISTIC(NumMemSetInfer, "Number of memsets inferred");
|
|
STATISTIC(NumMoveToCpy, "Number of memmoves converted to memcpy");
|
|
STATISTIC(NumCpyToSet, "Number of memcpys converted to memset");
|
|
STATISTIC(NumCallSlot, "Number of call slot optimizations performed");
|
|
|
|
namespace {
|
|
|
|
/// Represents a range of memset'd bytes with the ByteVal value.
|
|
/// This allows us to analyze stores like:
|
|
/// store 0 -> P+1
|
|
/// store 0 -> P+0
|
|
/// store 0 -> P+3
|
|
/// store 0 -> P+2
|
|
/// which sometimes happens with stores to arrays of structs etc. When we see
|
|
/// the first store, we make a range [1, 2). The second store extends the range
|
|
/// to [0, 2). The third makes a new range [2, 3). The fourth store joins the
|
|
/// two ranges into [0, 3) which is memset'able.
|
|
struct MemsetRange {
|
|
// Start/End - A semi range that describes the span that this range covers.
|
|
// The range is closed at the start and open at the end: [Start, End).
|
|
int64_t Start, End;
|
|
|
|
/// StartPtr - The getelementptr instruction that points to the start of the
|
|
/// range.
|
|
Value *StartPtr;
|
|
|
|
/// Alignment - The known alignment of the first store.
|
|
MaybeAlign Alignment;
|
|
|
|
/// TheStores - The actual stores that make up this range.
|
|
SmallVector<Instruction*, 16> TheStores;
|
|
|
|
bool isProfitableToUseMemset(const DataLayout &DL) const;
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
bool MemsetRange::isProfitableToUseMemset(const DataLayout &DL) const {
|
|
// If we found more than 4 stores to merge or 16 bytes, use memset.
|
|
if (TheStores.size() >= 4 || End-Start >= 16) return true;
|
|
|
|
// If there is nothing to merge, don't do anything.
|
|
if (TheStores.size() < 2) return false;
|
|
|
|
// If any of the stores are a memset, then it is always good to extend the
|
|
// memset.
|
|
for (Instruction *SI : TheStores)
|
|
if (!isa<StoreInst>(SI))
|
|
return true;
|
|
|
|
// Assume that the code generator is capable of merging pairs of stores
|
|
// together if it wants to.
|
|
if (TheStores.size() == 2) return false;
|
|
|
|
// If we have fewer than 8 stores, it can still be worthwhile to do this.
|
|
// For example, merging 4 i8 stores into an i32 store is useful almost always.
|
|
// However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the
|
|
// memset will be split into 2 32-bit stores anyway) and doing so can
|
|
// pessimize the llvm optimizer.
|
|
//
|
|
// Since we don't have perfect knowledge here, make some assumptions: assume
|
|
// the maximum GPR width is the same size as the largest legal integer
|
|
// size. If so, check to see whether we will end up actually reducing the
|
|
// number of stores used.
|
|
unsigned Bytes = unsigned(End-Start);
|
|
unsigned MaxIntSize = DL.getLargestLegalIntTypeSizeInBits() / 8;
|
|
if (MaxIntSize == 0)
|
|
MaxIntSize = 1;
|
|
unsigned NumPointerStores = Bytes / MaxIntSize;
|
|
|
|
// Assume the remaining bytes if any are done a byte at a time.
|
|
unsigned NumByteStores = Bytes % MaxIntSize;
|
|
|
|
// If we will reduce the # stores (according to this heuristic), do the
|
|
// transformation. This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32
|
|
// etc.
|
|
return TheStores.size() > NumPointerStores+NumByteStores;
|
|
}
|
|
|
|
namespace {
|
|
|
|
class MemsetRanges {
|
|
using range_iterator = SmallVectorImpl<MemsetRange>::iterator;
|
|
|
|
/// A sorted list of the memset ranges.
|
|
SmallVector<MemsetRange, 8> Ranges;
|
|
|
|
const DataLayout &DL;
|
|
|
|
public:
|
|
MemsetRanges(const DataLayout &DL) : DL(DL) {}
|
|
|
|
using const_iterator = SmallVectorImpl<MemsetRange>::const_iterator;
|
|
|
|
const_iterator begin() const { return Ranges.begin(); }
|
|
const_iterator end() const { return Ranges.end(); }
|
|
bool empty() const { return Ranges.empty(); }
|
|
|
|
void addInst(int64_t OffsetFromFirst, Instruction *Inst) {
|
|
if (auto *SI = dyn_cast<StoreInst>(Inst))
|
|
addStore(OffsetFromFirst, SI);
|
|
else
|
|
addMemSet(OffsetFromFirst, cast<MemSetInst>(Inst));
|
|
}
|
|
|
|
void addStore(int64_t OffsetFromFirst, StoreInst *SI) {
|
|
TypeSize StoreSize = DL.getTypeStoreSize(SI->getOperand(0)->getType());
|
|
assert(!StoreSize.isScalable() && "Can't track scalable-typed stores");
|
|
addRange(OffsetFromFirst, StoreSize.getFixedSize(), SI->getPointerOperand(),
|
|
SI->getAlign(), SI);
|
|
}
|
|
|
|
void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) {
|
|
int64_t Size = cast<ConstantInt>(MSI->getLength())->getZExtValue();
|
|
addRange(OffsetFromFirst, Size, MSI->getDest(), MSI->getDestAlign(), MSI);
|
|
}
|
|
|
|
void addRange(int64_t Start, int64_t Size, Value *Ptr, MaybeAlign Alignment,
|
|
Instruction *Inst);
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
/// Add a new store to the MemsetRanges data structure. This adds a
|
|
/// new range for the specified store at the specified offset, merging into
|
|
/// existing ranges as appropriate.
|
|
void MemsetRanges::addRange(int64_t Start, int64_t Size, Value *Ptr,
|
|
MaybeAlign Alignment, Instruction *Inst) {
|
|
int64_t End = Start+Size;
|
|
|
|
range_iterator I = partition_point(
|
|
Ranges, [=](const MemsetRange &O) { return O.End < Start; });
|
|
|
|
// We now know that I == E, in which case we didn't find anything to merge
|
|
// with, or that Start <= I->End. If End < I->Start or I == E, then we need
|
|
// to insert a new range. Handle this now.
|
|
if (I == Ranges.end() || End < I->Start) {
|
|
MemsetRange &R = *Ranges.insert(I, MemsetRange());
|
|
R.Start = Start;
|
|
R.End = End;
|
|
R.StartPtr = Ptr;
|
|
R.Alignment = Alignment;
|
|
R.TheStores.push_back(Inst);
|
|
return;
|
|
}
|
|
|
|
// This store overlaps with I, add it.
|
|
I->TheStores.push_back(Inst);
|
|
|
|
// At this point, we may have an interval that completely contains our store.
|
|
// If so, just add it to the interval and return.
|
|
if (I->Start <= Start && I->End >= End)
|
|
return;
|
|
|
|
// Now we know that Start <= I->End and End >= I->Start so the range overlaps
|
|
// but is not entirely contained within the range.
|
|
|
|
// See if the range extends the start of the range. In this case, it couldn't
|
|
// possibly cause it to join the prior range, because otherwise we would have
|
|
// stopped on *it*.
|
|
if (Start < I->Start) {
|
|
I->Start = Start;
|
|
I->StartPtr = Ptr;
|
|
I->Alignment = Alignment;
|
|
}
|
|
|
|
// Now we know that Start <= I->End and Start >= I->Start (so the startpoint
|
|
// is in or right at the end of I), and that End >= I->Start. Extend I out to
|
|
// End.
|
|
if (End > I->End) {
|
|
I->End = End;
|
|
range_iterator NextI = I;
|
|
while (++NextI != Ranges.end() && End >= NextI->Start) {
|
|
// Merge the range in.
|
|
I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end());
|
|
if (NextI->End > I->End)
|
|
I->End = NextI->End;
|
|
Ranges.erase(NextI);
|
|
NextI = I;
|
|
}
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// MemCpyOptLegacyPass Pass
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
|
|
class MemCpyOptLegacyPass : public FunctionPass {
|
|
MemCpyOptPass Impl;
|
|
|
|
public:
|
|
static char ID; // Pass identification, replacement for typeid
|
|
|
|
MemCpyOptLegacyPass() : FunctionPass(ID) {
|
|
initializeMemCpyOptLegacyPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool runOnFunction(Function &F) override;
|
|
|
|
private:
|
|
// This transformation requires dominator postdominator info
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.setPreservesCFG();
|
|
AU.addRequired<AssumptionCacheTracker>();
|
|
AU.addRequired<DominatorTreeWrapperPass>();
|
|
AU.addPreserved<DominatorTreeWrapperPass>();
|
|
AU.addPreserved<GlobalsAAWrapperPass>();
|
|
AU.addRequired<TargetLibraryInfoWrapperPass>();
|
|
AU.addRequired<AAResultsWrapperPass>();
|
|
AU.addPreserved<AAResultsWrapperPass>();
|
|
AU.addRequired<MemorySSAWrapperPass>();
|
|
AU.addPreserved<MemorySSAWrapperPass>();
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
char MemCpyOptLegacyPass::ID = 0;
|
|
|
|
/// The public interface to this file...
|
|
FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOptLegacyPass(); }
|
|
|
|
INITIALIZE_PASS_BEGIN(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization",
|
|
false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
|
|
INITIALIZE_PASS_END(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization",
|
|
false, false)
|
|
|
|
// Check that V is either not accessible by the caller, or unwinding cannot
|
|
// occur between Start and End.
|
|
static bool mayBeVisibleThroughUnwinding(Value *V, Instruction *Start,
|
|
Instruction *End) {
|
|
assert(Start->getParent() == End->getParent() && "Must be in same block");
|
|
// Function can't unwind, so it also can't be visible through unwinding.
|
|
if (Start->getFunction()->doesNotThrow())
|
|
return false;
|
|
|
|
// Object is not visible on unwind.
|
|
// TODO: Support RequiresNoCaptureBeforeUnwind case.
|
|
bool RequiresNoCaptureBeforeUnwind;
|
|
if (isNotVisibleOnUnwind(getUnderlyingObject(V),
|
|
RequiresNoCaptureBeforeUnwind) &&
|
|
!RequiresNoCaptureBeforeUnwind)
|
|
return false;
|
|
|
|
// Check whether there are any unwinding instructions in the range.
|
|
return any_of(make_range(Start->getIterator(), End->getIterator()),
|
|
[](const Instruction &I) { return I.mayThrow(); });
|
|
}
|
|
|
|
void MemCpyOptPass::eraseInstruction(Instruction *I) {
|
|
MSSAU->removeMemoryAccess(I);
|
|
I->eraseFromParent();
|
|
}
|
|
|
|
// Check for mod or ref of Loc between Start and End, excluding both boundaries.
|
|
// Start and End must be in the same block.
|
|
// If SkippedLifetimeStart is provided, skip over one clobbering lifetime.start
|
|
// intrinsic and store it inside SkippedLifetimeStart.
|
|
static bool accessedBetween(AliasAnalysis &AA, MemoryLocation Loc,
|
|
const MemoryUseOrDef *Start,
|
|
const MemoryUseOrDef *End,
|
|
Instruction **SkippedLifetimeStart = nullptr) {
|
|
assert(Start->getBlock() == End->getBlock() && "Only local supported");
|
|
for (const MemoryAccess &MA :
|
|
make_range(++Start->getIterator(), End->getIterator())) {
|
|
Instruction *I = cast<MemoryUseOrDef>(MA).getMemoryInst();
|
|
if (isModOrRefSet(AA.getModRefInfo(I, Loc))) {
|
|
auto *II = dyn_cast<IntrinsicInst>(I);
|
|
if (II && II->getIntrinsicID() == Intrinsic::lifetime_start &&
|
|
SkippedLifetimeStart && !*SkippedLifetimeStart) {
|
|
*SkippedLifetimeStart = I;
|
|
continue;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Check for mod of Loc between Start and End, excluding both boundaries.
|
|
// Start and End can be in different blocks.
|
|
static bool writtenBetween(MemorySSA *MSSA, AliasAnalysis &AA,
|
|
MemoryLocation Loc, const MemoryUseOrDef *Start,
|
|
const MemoryUseOrDef *End) {
|
|
if (isa<MemoryUse>(End)) {
|
|
// For MemoryUses, getClobberingMemoryAccess may skip non-clobbering writes.
|
|
// Manually check read accesses between Start and End, if they are in the
|
|
// same block, for clobbers. Otherwise assume Loc is clobbered.
|
|
return Start->getBlock() != End->getBlock() ||
|
|
any_of(
|
|
make_range(std::next(Start->getIterator()), End->getIterator()),
|
|
[&AA, Loc](const MemoryAccess &Acc) {
|
|
if (isa<MemoryUse>(&Acc))
|
|
return false;
|
|
Instruction *AccInst =
|
|
cast<MemoryUseOrDef>(&Acc)->getMemoryInst();
|
|
return isModSet(AA.getModRefInfo(AccInst, Loc));
|
|
});
|
|
}
|
|
|
|
// TODO: Only walk until we hit Start.
|
|
MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess(
|
|
End->getDefiningAccess(), Loc);
|
|
return !MSSA->dominates(Clobber, Start);
|
|
}
|
|
|
|
/// When scanning forward over instructions, we look for some other patterns to
|
|
/// fold away. In particular, this looks for stores to neighboring locations of
|
|
/// memory. If it sees enough consecutive ones, it attempts to merge them
|
|
/// together into a memcpy/memset.
|
|
Instruction *MemCpyOptPass::tryMergingIntoMemset(Instruction *StartInst,
|
|
Value *StartPtr,
|
|
Value *ByteVal) {
|
|
const DataLayout &DL = StartInst->getModule()->getDataLayout();
|
|
|
|
// We can't track scalable types
|
|
if (auto *SI = dyn_cast<StoreInst>(StartInst))
|
|
if (DL.getTypeStoreSize(SI->getOperand(0)->getType()).isScalable())
|
|
return nullptr;
|
|
|
|
// Okay, so we now have a single store that can be splatable. Scan to find
|
|
// all subsequent stores of the same value to offset from the same pointer.
|
|
// Join these together into ranges, so we can decide whether contiguous blocks
|
|
// are stored.
|
|
MemsetRanges Ranges(DL);
|
|
|
|
BasicBlock::iterator BI(StartInst);
|
|
|
|
// Keeps track of the last memory use or def before the insertion point for
|
|
// the new memset. The new MemoryDef for the inserted memsets will be inserted
|
|
// after MemInsertPoint. It points to either LastMemDef or to the last user
|
|
// before the insertion point of the memset, if there are any such users.
|
|
MemoryUseOrDef *MemInsertPoint = nullptr;
|
|
// Keeps track of the last MemoryDef between StartInst and the insertion point
|
|
// for the new memset. This will become the defining access of the inserted
|
|
// memsets.
|
|
MemoryDef *LastMemDef = nullptr;
|
|
for (++BI; !BI->isTerminator(); ++BI) {
|
|
auto *CurrentAcc = cast_or_null<MemoryUseOrDef>(
|
|
MSSAU->getMemorySSA()->getMemoryAccess(&*BI));
|
|
if (CurrentAcc) {
|
|
MemInsertPoint = CurrentAcc;
|
|
if (auto *CurrentDef = dyn_cast<MemoryDef>(CurrentAcc))
|
|
LastMemDef = CurrentDef;
|
|
}
|
|
|
|
// Calls that only access inaccessible memory do not block merging
|
|
// accessible stores.
|
|
if (auto *CB = dyn_cast<CallBase>(BI)) {
|
|
if (CB->onlyAccessesInaccessibleMemory())
|
|
continue;
|
|
}
|
|
|
|
if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) {
|
|
// If the instruction is readnone, ignore it, otherwise bail out. We
|
|
// don't even allow readonly here because we don't want something like:
|
|
// A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
|
|
if (BI->mayWriteToMemory() || BI->mayReadFromMemory())
|
|
break;
|
|
continue;
|
|
}
|
|
|
|
if (auto *NextStore = dyn_cast<StoreInst>(BI)) {
|
|
// If this is a store, see if we can merge it in.
|
|
if (!NextStore->isSimple()) break;
|
|
|
|
Value *StoredVal = NextStore->getValueOperand();
|
|
|
|
// Don't convert stores of non-integral pointer types to memsets (which
|
|
// stores integers).
|
|
if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType()))
|
|
break;
|
|
|
|
// We can't track ranges involving scalable types.
|
|
if (DL.getTypeStoreSize(StoredVal->getType()).isScalable())
|
|
break;
|
|
|
|
// Check to see if this stored value is of the same byte-splattable value.
|
|
Value *StoredByte = isBytewiseValue(StoredVal, DL);
|
|
if (isa<UndefValue>(ByteVal) && StoredByte)
|
|
ByteVal = StoredByte;
|
|
if (ByteVal != StoredByte)
|
|
break;
|
|
|
|
// Check to see if this store is to a constant offset from the start ptr.
|
|
Optional<int64_t> Offset =
|
|
isPointerOffset(StartPtr, NextStore->getPointerOperand(), DL);
|
|
if (!Offset)
|
|
break;
|
|
|
|
Ranges.addStore(*Offset, NextStore);
|
|
} else {
|
|
auto *MSI = cast<MemSetInst>(BI);
|
|
|
|
if (MSI->isVolatile() || ByteVal != MSI->getValue() ||
|
|
!isa<ConstantInt>(MSI->getLength()))
|
|
break;
|
|
|
|
// Check to see if this store is to a constant offset from the start ptr.
|
|
Optional<int64_t> Offset = isPointerOffset(StartPtr, MSI->getDest(), DL);
|
|
if (!Offset)
|
|
break;
|
|
|
|
Ranges.addMemSet(*Offset, MSI);
|
|
}
|
|
}
|
|
|
|
// If we have no ranges, then we just had a single store with nothing that
|
|
// could be merged in. This is a very common case of course.
|
|
if (Ranges.empty())
|
|
return nullptr;
|
|
|
|
// If we had at least one store that could be merged in, add the starting
|
|
// store as well. We try to avoid this unless there is at least something
|
|
// interesting as a small compile-time optimization.
|
|
Ranges.addInst(0, StartInst);
|
|
|
|
// If we create any memsets, we put it right before the first instruction that
|
|
// isn't part of the memset block. This ensure that the memset is dominated
|
|
// by any addressing instruction needed by the start of the block.
|
|
IRBuilder<> Builder(&*BI);
|
|
|
|
// Now that we have full information about ranges, loop over the ranges and
|
|
// emit memset's for anything big enough to be worthwhile.
|
|
Instruction *AMemSet = nullptr;
|
|
for (const MemsetRange &Range : Ranges) {
|
|
if (Range.TheStores.size() == 1) continue;
|
|
|
|
// If it is profitable to lower this range to memset, do so now.
|
|
if (!Range.isProfitableToUseMemset(DL))
|
|
continue;
|
|
|
|
// Otherwise, we do want to transform this! Create a new memset.
|
|
// Get the starting pointer of the block.
|
|
StartPtr = Range.StartPtr;
|
|
|
|
AMemSet = Builder.CreateMemSet(StartPtr, ByteVal, Range.End - Range.Start,
|
|
Range.Alignment);
|
|
LLVM_DEBUG(dbgs() << "Replace stores:\n"; for (Instruction *SI
|
|
: Range.TheStores) dbgs()
|
|
<< *SI << '\n';
|
|
dbgs() << "With: " << *AMemSet << '\n');
|
|
if (!Range.TheStores.empty())
|
|
AMemSet->setDebugLoc(Range.TheStores[0]->getDebugLoc());
|
|
|
|
assert(LastMemDef && MemInsertPoint &&
|
|
"Both LastMemDef and MemInsertPoint need to be set");
|
|
auto *NewDef =
|
|
cast<MemoryDef>(MemInsertPoint->getMemoryInst() == &*BI
|
|
? MSSAU->createMemoryAccessBefore(
|
|
AMemSet, LastMemDef, MemInsertPoint)
|
|
: MSSAU->createMemoryAccessAfter(
|
|
AMemSet, LastMemDef, MemInsertPoint));
|
|
MSSAU->insertDef(NewDef, /*RenameUses=*/true);
|
|
LastMemDef = NewDef;
|
|
MemInsertPoint = NewDef;
|
|
|
|
// Zap all the stores.
|
|
for (Instruction *SI : Range.TheStores)
|
|
eraseInstruction(SI);
|
|
|
|
++NumMemSetInfer;
|
|
}
|
|
|
|
return AMemSet;
|
|
}
|
|
|
|
// This method try to lift a store instruction before position P.
|
|
// It will lift the store and its argument + that anything that
|
|
// may alias with these.
|
|
// The method returns true if it was successful.
|
|
bool MemCpyOptPass::moveUp(StoreInst *SI, Instruction *P, const LoadInst *LI) {
|
|
// If the store alias this position, early bail out.
|
|
MemoryLocation StoreLoc = MemoryLocation::get(SI);
|
|
if (isModOrRefSet(AA->getModRefInfo(P, StoreLoc)))
|
|
return false;
|
|
|
|
// Keep track of the arguments of all instruction we plan to lift
|
|
// so we can make sure to lift them as well if appropriate.
|
|
DenseSet<Instruction*> Args;
|
|
auto AddArg = [&](Value *Arg) {
|
|
auto *I = dyn_cast<Instruction>(Arg);
|
|
if (I && I->getParent() == SI->getParent()) {
|
|
// Cannot hoist user of P above P
|
|
if (I == P) return false;
|
|
Args.insert(I);
|
|
}
|
|
return true;
|
|
};
|
|
if (!AddArg(SI->getPointerOperand()))
|
|
return false;
|
|
|
|
// Instruction to lift before P.
|
|
SmallVector<Instruction *, 8> ToLift{SI};
|
|
|
|
// Memory locations of lifted instructions.
|
|
SmallVector<MemoryLocation, 8> MemLocs{StoreLoc};
|
|
|
|
// Lifted calls.
|
|
SmallVector<const CallBase *, 8> Calls;
|
|
|
|
const MemoryLocation LoadLoc = MemoryLocation::get(LI);
|
|
|
|
for (auto I = --SI->getIterator(), E = P->getIterator(); I != E; --I) {
|
|
auto *C = &*I;
|
|
|
|
// Make sure hoisting does not perform a store that was not guaranteed to
|
|
// happen.
|
|
if (!isGuaranteedToTransferExecutionToSuccessor(C))
|
|
return false;
|
|
|
|
bool MayAlias = isModOrRefSet(AA->getModRefInfo(C, None));
|
|
|
|
bool NeedLift = false;
|
|
if (Args.erase(C))
|
|
NeedLift = true;
|
|
else if (MayAlias) {
|
|
NeedLift = llvm::any_of(MemLocs, [C, this](const MemoryLocation &ML) {
|
|
return isModOrRefSet(AA->getModRefInfo(C, ML));
|
|
});
|
|
|
|
if (!NeedLift)
|
|
NeedLift = llvm::any_of(Calls, [C, this](const CallBase *Call) {
|
|
return isModOrRefSet(AA->getModRefInfo(C, Call));
|
|
});
|
|
}
|
|
|
|
if (!NeedLift)
|
|
continue;
|
|
|
|
if (MayAlias) {
|
|
// Since LI is implicitly moved downwards past the lifted instructions,
|
|
// none of them may modify its source.
|
|
if (isModSet(AA->getModRefInfo(C, LoadLoc)))
|
|
return false;
|
|
else if (const auto *Call = dyn_cast<CallBase>(C)) {
|
|
// If we can't lift this before P, it's game over.
|
|
if (isModOrRefSet(AA->getModRefInfo(P, Call)))
|
|
return false;
|
|
|
|
Calls.push_back(Call);
|
|
} else if (isa<LoadInst>(C) || isa<StoreInst>(C) || isa<VAArgInst>(C)) {
|
|
// If we can't lift this before P, it's game over.
|
|
auto ML = MemoryLocation::get(C);
|
|
if (isModOrRefSet(AA->getModRefInfo(P, ML)))
|
|
return false;
|
|
|
|
MemLocs.push_back(ML);
|
|
} else
|
|
// We don't know how to lift this instruction.
|
|
return false;
|
|
}
|
|
|
|
ToLift.push_back(C);
|
|
for (Value *Op : C->operands())
|
|
if (!AddArg(Op))
|
|
return false;
|
|
}
|
|
|
|
// Find MSSA insertion point. Normally P will always have a corresponding
|
|
// memory access before which we can insert. However, with non-standard AA
|
|
// pipelines, there may be a mismatch between AA and MSSA, in which case we
|
|
// will scan for a memory access before P. In either case, we know for sure
|
|
// that at least the load will have a memory access.
|
|
// TODO: Simplify this once P will be determined by MSSA, in which case the
|
|
// discrepancy can no longer occur.
|
|
MemoryUseOrDef *MemInsertPoint = nullptr;
|
|
if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(P)) {
|
|
MemInsertPoint = cast<MemoryUseOrDef>(--MA->getIterator());
|
|
} else {
|
|
const Instruction *ConstP = P;
|
|
for (const Instruction &I : make_range(++ConstP->getReverseIterator(),
|
|
++LI->getReverseIterator())) {
|
|
if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(&I)) {
|
|
MemInsertPoint = MA;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// We made it, we need to lift.
|
|
for (auto *I : llvm::reverse(ToLift)) {
|
|
LLVM_DEBUG(dbgs() << "Lifting " << *I << " before " << *P << "\n");
|
|
I->moveBefore(P);
|
|
assert(MemInsertPoint && "Must have found insert point");
|
|
if (MemoryUseOrDef *MA = MSSAU->getMemorySSA()->getMemoryAccess(I)) {
|
|
MSSAU->moveAfter(MA, MemInsertPoint);
|
|
MemInsertPoint = MA;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool MemCpyOptPass::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
|
|
if (!SI->isSimple()) return false;
|
|
|
|
// Avoid merging nontemporal stores since the resulting
|
|
// memcpy/memset would not be able to preserve the nontemporal hint.
|
|
// In theory we could teach how to propagate the !nontemporal metadata to
|
|
// memset calls. However, that change would force the backend to
|
|
// conservatively expand !nontemporal memset calls back to sequences of
|
|
// store instructions (effectively undoing the merging).
|
|
if (SI->getMetadata(LLVMContext::MD_nontemporal))
|
|
return false;
|
|
|
|
const DataLayout &DL = SI->getModule()->getDataLayout();
|
|
|
|
Value *StoredVal = SI->getValueOperand();
|
|
|
|
// Not all the transforms below are correct for non-integral pointers, bail
|
|
// until we've audited the individual pieces.
|
|
if (DL.isNonIntegralPointerType(StoredVal->getType()->getScalarType()))
|
|
return false;
|
|
|
|
// Load to store forwarding can be interpreted as memcpy.
|
|
if (auto *LI = dyn_cast<LoadInst>(StoredVal)) {
|
|
if (LI->isSimple() && LI->hasOneUse() &&
|
|
LI->getParent() == SI->getParent()) {
|
|
|
|
auto *T = LI->getType();
|
|
// Don't introduce calls to memcpy/memmove intrinsics out of thin air if
|
|
// the corresponding libcalls are not available.
|
|
// TODO: We should really distinguish between libcall availability and
|
|
// our ability to introduce intrinsics.
|
|
if (T->isAggregateType() &&
|
|
(EnableMemCpyOptWithoutLibcalls ||
|
|
(TLI->has(LibFunc_memcpy) && TLI->has(LibFunc_memmove)))) {
|
|
MemoryLocation LoadLoc = MemoryLocation::get(LI);
|
|
|
|
// We use alias analysis to check if an instruction may store to
|
|
// the memory we load from in between the load and the store. If
|
|
// such an instruction is found, we try to promote there instead
|
|
// of at the store position.
|
|
// TODO: Can use MSSA for this.
|
|
Instruction *P = SI;
|
|
for (auto &I : make_range(++LI->getIterator(), SI->getIterator())) {
|
|
if (isModSet(AA->getModRefInfo(&I, LoadLoc))) {
|
|
P = &I;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// We found an instruction that may write to the loaded memory.
|
|
// We can try to promote at this position instead of the store
|
|
// position if nothing aliases the store memory after this and the store
|
|
// destination is not in the range.
|
|
if (P && P != SI) {
|
|
if (!moveUp(SI, P, LI))
|
|
P = nullptr;
|
|
}
|
|
|
|
// If a valid insertion position is found, then we can promote
|
|
// the load/store pair to a memcpy.
|
|
if (P) {
|
|
// If we load from memory that may alias the memory we store to,
|
|
// memmove must be used to preserve semantic. If not, memcpy can
|
|
// be used. Also, if we load from constant memory, memcpy can be used
|
|
// as the constant memory won't be modified.
|
|
bool UseMemMove = false;
|
|
if (isModSet(AA->getModRefInfo(SI, LoadLoc)))
|
|
UseMemMove = true;
|
|
|
|
uint64_t Size = DL.getTypeStoreSize(T);
|
|
|
|
IRBuilder<> Builder(P);
|
|
Instruction *M;
|
|
if (UseMemMove)
|
|
M = Builder.CreateMemMove(
|
|
SI->getPointerOperand(), SI->getAlign(),
|
|
LI->getPointerOperand(), LI->getAlign(), Size);
|
|
else
|
|
M = Builder.CreateMemCpy(
|
|
SI->getPointerOperand(), SI->getAlign(),
|
|
LI->getPointerOperand(), LI->getAlign(), Size);
|
|
|
|
LLVM_DEBUG(dbgs() << "Promoting " << *LI << " to " << *SI << " => "
|
|
<< *M << "\n");
|
|
|
|
auto *LastDef =
|
|
cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(SI));
|
|
auto *NewAccess = MSSAU->createMemoryAccessAfter(M, LastDef, LastDef);
|
|
MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
|
|
|
|
eraseInstruction(SI);
|
|
eraseInstruction(LI);
|
|
++NumMemCpyInstr;
|
|
|
|
// Make sure we do not invalidate the iterator.
|
|
BBI = M->getIterator();
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Detect cases where we're performing call slot forwarding, but
|
|
// happen to be using a load-store pair to implement it, rather than
|
|
// a memcpy.
|
|
auto GetCall = [&]() -> CallInst * {
|
|
// We defer this expensive clobber walk until the cheap checks
|
|
// have been done on the source inside performCallSlotOptzn.
|
|
if (auto *LoadClobber = dyn_cast<MemoryUseOrDef>(
|
|
MSSA->getWalker()->getClobberingMemoryAccess(LI)))
|
|
return dyn_cast_or_null<CallInst>(LoadClobber->getMemoryInst());
|
|
return nullptr;
|
|
};
|
|
|
|
bool changed = performCallSlotOptzn(
|
|
LI, SI, SI->getPointerOperand()->stripPointerCasts(),
|
|
LI->getPointerOperand()->stripPointerCasts(),
|
|
DL.getTypeStoreSize(SI->getOperand(0)->getType()),
|
|
std::min(SI->getAlign(), LI->getAlign()), GetCall);
|
|
if (changed) {
|
|
eraseInstruction(SI);
|
|
eraseInstruction(LI);
|
|
++NumMemCpyInstr;
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// The following code creates memset intrinsics out of thin air. Don't do
|
|
// this if the corresponding libfunc is not available.
|
|
// TODO: We should really distinguish between libcall availability and
|
|
// our ability to introduce intrinsics.
|
|
if (!(TLI->has(LibFunc_memset) || EnableMemCpyOptWithoutLibcalls))
|
|
return false;
|
|
|
|
// There are two cases that are interesting for this code to handle: memcpy
|
|
// and memset. Right now we only handle memset.
|
|
|
|
// Ensure that the value being stored is something that can be memset'able a
|
|
// byte at a time like "0" or "-1" or any width, as well as things like
|
|
// 0xA0A0A0A0 and 0.0.
|
|
auto *V = SI->getOperand(0);
|
|
if (Value *ByteVal = isBytewiseValue(V, DL)) {
|
|
if (Instruction *I = tryMergingIntoMemset(SI, SI->getPointerOperand(),
|
|
ByteVal)) {
|
|
BBI = I->getIterator(); // Don't invalidate iterator.
|
|
return true;
|
|
}
|
|
|
|
// If we have an aggregate, we try to promote it to memset regardless
|
|
// of opportunity for merging as it can expose optimization opportunities
|
|
// in subsequent passes.
|
|
auto *T = V->getType();
|
|
if (T->isAggregateType()) {
|
|
uint64_t Size = DL.getTypeStoreSize(T);
|
|
IRBuilder<> Builder(SI);
|
|
auto *M = Builder.CreateMemSet(SI->getPointerOperand(), ByteVal, Size,
|
|
SI->getAlign());
|
|
|
|
LLVM_DEBUG(dbgs() << "Promoting " << *SI << " to " << *M << "\n");
|
|
|
|
// The newly inserted memset is immediately overwritten by the original
|
|
// store, so we do not need to rename uses.
|
|
auto *StoreDef = cast<MemoryDef>(MSSA->getMemoryAccess(SI));
|
|
auto *NewAccess = MSSAU->createMemoryAccessBefore(
|
|
M, StoreDef->getDefiningAccess(), StoreDef);
|
|
MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/false);
|
|
|
|
eraseInstruction(SI);
|
|
NumMemSetInfer++;
|
|
|
|
// Make sure we do not invalidate the iterator.
|
|
BBI = M->getIterator();
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool MemCpyOptPass::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) {
|
|
// See if there is another memset or store neighboring this memset which
|
|
// allows us to widen out the memset to do a single larger store.
|
|
if (isa<ConstantInt>(MSI->getLength()) && !MSI->isVolatile())
|
|
if (Instruction *I = tryMergingIntoMemset(MSI, MSI->getDest(),
|
|
MSI->getValue())) {
|
|
BBI = I->getIterator(); // Don't invalidate iterator.
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Takes a memcpy and a call that it depends on,
|
|
/// and checks for the possibility of a call slot optimization by having
|
|
/// the call write its result directly into the destination of the memcpy.
|
|
bool MemCpyOptPass::performCallSlotOptzn(Instruction *cpyLoad,
|
|
Instruction *cpyStore, Value *cpyDest,
|
|
Value *cpySrc, TypeSize cpySize,
|
|
Align cpyAlign,
|
|
std::function<CallInst *()> GetC) {
|
|
// The general transformation to keep in mind is
|
|
//
|
|
// call @func(..., src, ...)
|
|
// memcpy(dest, src, ...)
|
|
//
|
|
// ->
|
|
//
|
|
// memcpy(dest, src, ...)
|
|
// call @func(..., dest, ...)
|
|
//
|
|
// Since moving the memcpy is technically awkward, we additionally check that
|
|
// src only holds uninitialized values at the moment of the call, meaning that
|
|
// the memcpy can be discarded rather than moved.
|
|
|
|
// We can't optimize scalable types.
|
|
if (cpySize.isScalable())
|
|
return false;
|
|
|
|
// Require that src be an alloca. This simplifies the reasoning considerably.
|
|
auto *srcAlloca = dyn_cast<AllocaInst>(cpySrc);
|
|
if (!srcAlloca)
|
|
return false;
|
|
|
|
ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize());
|
|
if (!srcArraySize)
|
|
return false;
|
|
|
|
const DataLayout &DL = cpyLoad->getModule()->getDataLayout();
|
|
uint64_t srcSize = DL.getTypeAllocSize(srcAlloca->getAllocatedType()) *
|
|
srcArraySize->getZExtValue();
|
|
|
|
if (cpySize < srcSize)
|
|
return false;
|
|
|
|
CallInst *C = GetC();
|
|
if (!C)
|
|
return false;
|
|
|
|
// Lifetime marks shouldn't be operated on.
|
|
if (Function *F = C->getCalledFunction())
|
|
if (F->isIntrinsic() && F->getIntrinsicID() == Intrinsic::lifetime_start)
|
|
return false;
|
|
|
|
|
|
if (C->getParent() != cpyStore->getParent()) {
|
|
LLVM_DEBUG(dbgs() << "Call Slot: block local restriction\n");
|
|
return false;
|
|
}
|
|
|
|
MemoryLocation DestLoc = isa<StoreInst>(cpyStore) ?
|
|
MemoryLocation::get(cpyStore) :
|
|
MemoryLocation::getForDest(cast<MemCpyInst>(cpyStore));
|
|
|
|
// Check that nothing touches the dest of the copy between
|
|
// the call and the store/memcpy.
|
|
Instruction *SkippedLifetimeStart = nullptr;
|
|
if (accessedBetween(*AA, DestLoc, MSSA->getMemoryAccess(C),
|
|
MSSA->getMemoryAccess(cpyStore), &SkippedLifetimeStart)) {
|
|
LLVM_DEBUG(dbgs() << "Call Slot: Dest pointer modified after call\n");
|
|
return false;
|
|
}
|
|
|
|
// Check that accessing the first srcSize bytes of dest will not cause a
|
|
// trap. Otherwise the transform is invalid since it might cause a trap
|
|
// to occur earlier than it otherwise would.
|
|
if (!isDereferenceableAndAlignedPointer(cpyDest, Align(1), APInt(64, cpySize),
|
|
DL, C, AC, DT)) {
|
|
LLVM_DEBUG(dbgs() << "Call Slot: Dest pointer not dereferenceable\n");
|
|
return false;
|
|
}
|
|
|
|
// Make sure that nothing can observe cpyDest being written early. There are
|
|
// a number of cases to consider:
|
|
// 1. cpyDest cannot be accessed between C and cpyStore as a precondition of
|
|
// the transform.
|
|
// 2. C itself may not access cpyDest (prior to the transform). This is
|
|
// checked further below.
|
|
// 3. If cpyDest is accessible to the caller of this function (potentially
|
|
// captured and not based on an alloca), we need to ensure that we cannot
|
|
// unwind between C and cpyStore. This is checked here.
|
|
// 4. If cpyDest is potentially captured, there may be accesses to it from
|
|
// another thread. In this case, we need to check that cpyStore is
|
|
// guaranteed to be executed if C is. As it is a non-atomic access, it
|
|
// renders accesses from other threads undefined.
|
|
// TODO: This is currently not checked.
|
|
if (mayBeVisibleThroughUnwinding(cpyDest, C, cpyStore)) {
|
|
LLVM_DEBUG(dbgs() << "Call Slot: Dest may be visible through unwinding\n");
|
|
return false;
|
|
}
|
|
|
|
// Check that dest points to memory that is at least as aligned as src.
|
|
Align srcAlign = srcAlloca->getAlign();
|
|
bool isDestSufficientlyAligned = srcAlign <= cpyAlign;
|
|
// If dest is not aligned enough and we can't increase its alignment then
|
|
// bail out.
|
|
if (!isDestSufficientlyAligned && !isa<AllocaInst>(cpyDest)) {
|
|
LLVM_DEBUG(dbgs() << "Call Slot: Dest not sufficiently aligned\n");
|
|
return false;
|
|
}
|
|
|
|
// Check that src is not accessed except via the call and the memcpy. This
|
|
// guarantees that it holds only undefined values when passed in (so the final
|
|
// memcpy can be dropped), that it is not read or written between the call and
|
|
// the memcpy, and that writing beyond the end of it is undefined.
|
|
SmallVector<User *, 8> srcUseList(srcAlloca->users());
|
|
while (!srcUseList.empty()) {
|
|
User *U = srcUseList.pop_back_val();
|
|
|
|
if (isa<BitCastInst>(U) || isa<AddrSpaceCastInst>(U)) {
|
|
append_range(srcUseList, U->users());
|
|
continue;
|
|
}
|
|
if (const auto *G = dyn_cast<GetElementPtrInst>(U)) {
|
|
if (!G->hasAllZeroIndices())
|
|
return false;
|
|
|
|
append_range(srcUseList, U->users());
|
|
continue;
|
|
}
|
|
if (const auto *IT = dyn_cast<IntrinsicInst>(U))
|
|
if (IT->isLifetimeStartOrEnd())
|
|
continue;
|
|
|
|
if (U != C && U != cpyLoad)
|
|
return false;
|
|
}
|
|
|
|
// Check whether src is captured by the called function, in which case there
|
|
// may be further indirect uses of src.
|
|
bool SrcIsCaptured = any_of(C->args(), [&](Use &U) {
|
|
return U->stripPointerCasts() == cpySrc &&
|
|
!C->doesNotCapture(C->getArgOperandNo(&U));
|
|
});
|
|
|
|
// If src is captured, then check whether there are any potential uses of
|
|
// src through the captured pointer before the lifetime of src ends, either
|
|
// due to a lifetime.end or a return from the function.
|
|
if (SrcIsCaptured) {
|
|
// Check that dest is not captured before/at the call. We have already
|
|
// checked that src is not captured before it. If either had been captured,
|
|
// then the call might be comparing the argument against the captured dest
|
|
// or src pointer.
|
|
Value *DestObj = getUnderlyingObject(cpyDest);
|
|
if (!isIdentifiedFunctionLocal(DestObj) ||
|
|
PointerMayBeCapturedBefore(DestObj, /* ReturnCaptures */ true,
|
|
/* StoreCaptures */ true, C, DT,
|
|
/* IncludeI */ true))
|
|
return false;
|
|
|
|
MemoryLocation SrcLoc =
|
|
MemoryLocation(srcAlloca, LocationSize::precise(srcSize));
|
|
for (Instruction &I :
|
|
make_range(++C->getIterator(), C->getParent()->end())) {
|
|
// Lifetime of srcAlloca ends at lifetime.end.
|
|
if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
|
|
if (II->getIntrinsicID() == Intrinsic::lifetime_end &&
|
|
II->getArgOperand(1)->stripPointerCasts() == srcAlloca &&
|
|
cast<ConstantInt>(II->getArgOperand(0))->uge(srcSize))
|
|
break;
|
|
}
|
|
|
|
// Lifetime of srcAlloca ends at return.
|
|
if (isa<ReturnInst>(&I))
|
|
break;
|
|
|
|
// Ignore the direct read of src in the load.
|
|
if (&I == cpyLoad)
|
|
continue;
|
|
|
|
// Check whether this instruction may mod/ref src through the captured
|
|
// pointer (we have already any direct mod/refs in the loop above).
|
|
// Also bail if we hit a terminator, as we don't want to scan into other
|
|
// blocks.
|
|
if (isModOrRefSet(AA->getModRefInfo(&I, SrcLoc)) || I.isTerminator())
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Since we're changing the parameter to the callsite, we need to make sure
|
|
// that what would be the new parameter dominates the callsite.
|
|
if (!DT->dominates(cpyDest, C)) {
|
|
// Support moving a constant index GEP before the call.
|
|
auto *GEP = dyn_cast<GetElementPtrInst>(cpyDest);
|
|
if (GEP && GEP->hasAllConstantIndices() &&
|
|
DT->dominates(GEP->getPointerOperand(), C))
|
|
GEP->moveBefore(C);
|
|
else
|
|
return false;
|
|
}
|
|
|
|
// In addition to knowing that the call does not access src in some
|
|
// unexpected manner, for example via a global, which we deduce from
|
|
// the use analysis, we also need to know that it does not sneakily
|
|
// access dest. We rely on AA to figure this out for us.
|
|
ModRefInfo MR = AA->getModRefInfo(C, cpyDest, LocationSize::precise(srcSize));
|
|
// If necessary, perform additional analysis.
|
|
if (isModOrRefSet(MR))
|
|
MR = AA->callCapturesBefore(C, cpyDest, LocationSize::precise(srcSize), DT);
|
|
if (isModOrRefSet(MR))
|
|
return false;
|
|
|
|
// We can't create address space casts here because we don't know if they're
|
|
// safe for the target.
|
|
if (cpySrc->getType()->getPointerAddressSpace() !=
|
|
cpyDest->getType()->getPointerAddressSpace())
|
|
return false;
|
|
for (unsigned ArgI = 0; ArgI < C->arg_size(); ++ArgI)
|
|
if (C->getArgOperand(ArgI)->stripPointerCasts() == cpySrc &&
|
|
cpySrc->getType()->getPointerAddressSpace() !=
|
|
C->getArgOperand(ArgI)->getType()->getPointerAddressSpace())
|
|
return false;
|
|
|
|
// All the checks have passed, so do the transformation.
|
|
bool changedArgument = false;
|
|
for (unsigned ArgI = 0; ArgI < C->arg_size(); ++ArgI)
|
|
if (C->getArgOperand(ArgI)->stripPointerCasts() == cpySrc) {
|
|
Value *Dest = cpySrc->getType() == cpyDest->getType() ? cpyDest
|
|
: CastInst::CreatePointerCast(cpyDest, cpySrc->getType(),
|
|
cpyDest->getName(), C);
|
|
changedArgument = true;
|
|
if (C->getArgOperand(ArgI)->getType() == Dest->getType())
|
|
C->setArgOperand(ArgI, Dest);
|
|
else
|
|
C->setArgOperand(ArgI, CastInst::CreatePointerCast(
|
|
Dest, C->getArgOperand(ArgI)->getType(),
|
|
Dest->getName(), C));
|
|
}
|
|
|
|
if (!changedArgument)
|
|
return false;
|
|
|
|
// If the destination wasn't sufficiently aligned then increase its alignment.
|
|
if (!isDestSufficientlyAligned) {
|
|
assert(isa<AllocaInst>(cpyDest) && "Can only increase alloca alignment!");
|
|
cast<AllocaInst>(cpyDest)->setAlignment(srcAlign);
|
|
}
|
|
|
|
if (SkippedLifetimeStart) {
|
|
SkippedLifetimeStart->moveBefore(C);
|
|
MSSAU->moveBefore(MSSA->getMemoryAccess(SkippedLifetimeStart),
|
|
MSSA->getMemoryAccess(C));
|
|
}
|
|
|
|
// Update AA metadata
|
|
// FIXME: MD_tbaa_struct and MD_mem_parallel_loop_access should also be
|
|
// handled here, but combineMetadata doesn't support them yet
|
|
unsigned KnownIDs[] = {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
|
|
LLVMContext::MD_noalias,
|
|
LLVMContext::MD_invariant_group,
|
|
LLVMContext::MD_access_group};
|
|
combineMetadata(C, cpyLoad, KnownIDs, true);
|
|
if (cpyLoad != cpyStore)
|
|
combineMetadata(C, cpyStore, KnownIDs, true);
|
|
|
|
++NumCallSlot;
|
|
return true;
|
|
}
|
|
|
|
/// We've found that the (upward scanning) memory dependence of memcpy 'M' is
|
|
/// the memcpy 'MDep'. Try to simplify M to copy from MDep's input if we can.
|
|
bool MemCpyOptPass::processMemCpyMemCpyDependence(MemCpyInst *M,
|
|
MemCpyInst *MDep) {
|
|
// We can only transforms memcpy's where the dest of one is the source of the
|
|
// other.
|
|
if (M->getSource() != MDep->getDest() || MDep->isVolatile())
|
|
return false;
|
|
|
|
// If dep instruction is reading from our current input, then it is a noop
|
|
// transfer and substituting the input won't change this instruction. Just
|
|
// ignore the input and let someone else zap MDep. This handles cases like:
|
|
// memcpy(a <- a)
|
|
// memcpy(b <- a)
|
|
if (M->getSource() == MDep->getSource())
|
|
return false;
|
|
|
|
// Second, the length of the memcpy's must be the same, or the preceding one
|
|
// must be larger than the following one.
|
|
if (MDep->getLength() != M->getLength()) {
|
|
auto *MDepLen = dyn_cast<ConstantInt>(MDep->getLength());
|
|
auto *MLen = dyn_cast<ConstantInt>(M->getLength());
|
|
if (!MDepLen || !MLen || MDepLen->getZExtValue() < MLen->getZExtValue())
|
|
return false;
|
|
}
|
|
|
|
// Verify that the copied-from memory doesn't change in between the two
|
|
// transfers. For example, in:
|
|
// memcpy(a <- b)
|
|
// *b = 42;
|
|
// memcpy(c <- a)
|
|
// It would be invalid to transform the second memcpy into memcpy(c <- b).
|
|
//
|
|
// TODO: If the code between M and MDep is transparent to the destination "c",
|
|
// then we could still perform the xform by moving M up to the first memcpy.
|
|
// TODO: It would be sufficient to check the MDep source up to the memcpy
|
|
// size of M, rather than MDep.
|
|
if (writtenBetween(MSSA, *AA, MemoryLocation::getForSource(MDep),
|
|
MSSA->getMemoryAccess(MDep), MSSA->getMemoryAccess(M)))
|
|
return false;
|
|
|
|
// If the dest of the second might alias the source of the first, then the
|
|
// source and dest might overlap. In addition, if the source of the first
|
|
// points to constant memory, they won't overlap by definition. Otherwise, we
|
|
// still want to eliminate the intermediate value, but we have to generate a
|
|
// memmove instead of memcpy.
|
|
bool UseMemMove = false;
|
|
if (isModSet(AA->getModRefInfo(M, MemoryLocation::getForSource(MDep))))
|
|
UseMemMove = true;
|
|
|
|
// If all checks passed, then we can transform M.
|
|
LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy->memcpy src:\n"
|
|
<< *MDep << '\n' << *M << '\n');
|
|
|
|
// TODO: Is this worth it if we're creating a less aligned memcpy? For
|
|
// example we could be moving from movaps -> movq on x86.
|
|
IRBuilder<> Builder(M);
|
|
Instruction *NewM;
|
|
if (UseMemMove)
|
|
NewM = Builder.CreateMemMove(M->getRawDest(), M->getDestAlign(),
|
|
MDep->getRawSource(), MDep->getSourceAlign(),
|
|
M->getLength(), M->isVolatile());
|
|
else if (isa<MemCpyInlineInst>(M)) {
|
|
// llvm.memcpy may be promoted to llvm.memcpy.inline, but the converse is
|
|
// never allowed since that would allow the latter to be lowered as a call
|
|
// to an external function.
|
|
NewM = Builder.CreateMemCpyInline(
|
|
M->getRawDest(), M->getDestAlign(), MDep->getRawSource(),
|
|
MDep->getSourceAlign(), M->getLength(), M->isVolatile());
|
|
} else
|
|
NewM = Builder.CreateMemCpy(M->getRawDest(), M->getDestAlign(),
|
|
MDep->getRawSource(), MDep->getSourceAlign(),
|
|
M->getLength(), M->isVolatile());
|
|
|
|
assert(isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M)));
|
|
auto *LastDef = cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M));
|
|
auto *NewAccess = MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef);
|
|
MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
|
|
|
|
// Remove the instruction we're replacing.
|
|
eraseInstruction(M);
|
|
++NumMemCpyInstr;
|
|
return true;
|
|
}
|
|
|
|
/// We've found that the (upward scanning) memory dependence of \p MemCpy is
|
|
/// \p MemSet. Try to simplify \p MemSet to only set the trailing bytes that
|
|
/// weren't copied over by \p MemCpy.
|
|
///
|
|
/// In other words, transform:
|
|
/// \code
|
|
/// memset(dst, c, dst_size);
|
|
/// memcpy(dst, src, src_size);
|
|
/// \endcode
|
|
/// into:
|
|
/// \code
|
|
/// memcpy(dst, src, src_size);
|
|
/// memset(dst + src_size, c, dst_size <= src_size ? 0 : dst_size - src_size);
|
|
/// \endcode
|
|
bool MemCpyOptPass::processMemSetMemCpyDependence(MemCpyInst *MemCpy,
|
|
MemSetInst *MemSet) {
|
|
// We can only transform memset/memcpy with the same destination.
|
|
if (!AA->isMustAlias(MemSet->getDest(), MemCpy->getDest()))
|
|
return false;
|
|
|
|
// Check that src and dst of the memcpy aren't the same. While memcpy
|
|
// operands cannot partially overlap, exact equality is allowed.
|
|
if (isModSet(AA->getModRefInfo(MemCpy, MemoryLocation::getForSource(MemCpy))))
|
|
return false;
|
|
|
|
// We know that dst up to src_size is not written. We now need to make sure
|
|
// that dst up to dst_size is not accessed. (If we did not move the memset,
|
|
// checking for reads would be sufficient.)
|
|
if (accessedBetween(*AA, MemoryLocation::getForDest(MemSet),
|
|
MSSA->getMemoryAccess(MemSet),
|
|
MSSA->getMemoryAccess(MemCpy)))
|
|
return false;
|
|
|
|
// Use the same i8* dest as the memcpy, killing the memset dest if different.
|
|
Value *Dest = MemCpy->getRawDest();
|
|
Value *DestSize = MemSet->getLength();
|
|
Value *SrcSize = MemCpy->getLength();
|
|
|
|
if (mayBeVisibleThroughUnwinding(Dest, MemSet, MemCpy))
|
|
return false;
|
|
|
|
// If the sizes are the same, simply drop the memset instead of generating
|
|
// a replacement with zero size.
|
|
if (DestSize == SrcSize) {
|
|
eraseInstruction(MemSet);
|
|
return true;
|
|
}
|
|
|
|
// By default, create an unaligned memset.
|
|
Align Alignment = Align(1);
|
|
// If Dest is aligned, and SrcSize is constant, use the minimum alignment
|
|
// of the sum.
|
|
const Align DestAlign = std::max(MemSet->getDestAlign().valueOrOne(),
|
|
MemCpy->getDestAlign().valueOrOne());
|
|
if (DestAlign > 1)
|
|
if (auto *SrcSizeC = dyn_cast<ConstantInt>(SrcSize))
|
|
Alignment = commonAlignment(DestAlign, SrcSizeC->getZExtValue());
|
|
|
|
IRBuilder<> Builder(MemCpy);
|
|
|
|
// If the sizes have different types, zext the smaller one.
|
|
if (DestSize->getType() != SrcSize->getType()) {
|
|
if (DestSize->getType()->getIntegerBitWidth() >
|
|
SrcSize->getType()->getIntegerBitWidth())
|
|
SrcSize = Builder.CreateZExt(SrcSize, DestSize->getType());
|
|
else
|
|
DestSize = Builder.CreateZExt(DestSize, SrcSize->getType());
|
|
}
|
|
|
|
Value *Ule = Builder.CreateICmpULE(DestSize, SrcSize);
|
|
Value *SizeDiff = Builder.CreateSub(DestSize, SrcSize);
|
|
Value *MemsetLen = Builder.CreateSelect(
|
|
Ule, ConstantInt::getNullValue(DestSize->getType()), SizeDiff);
|
|
unsigned DestAS = Dest->getType()->getPointerAddressSpace();
|
|
Instruction *NewMemSet = Builder.CreateMemSet(
|
|
Builder.CreateGEP(
|
|
Builder.getInt8Ty(),
|
|
Builder.CreatePointerCast(Dest, Builder.getInt8PtrTy(DestAS)),
|
|
SrcSize),
|
|
MemSet->getOperand(1), MemsetLen, Alignment);
|
|
|
|
assert(isa<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy)) &&
|
|
"MemCpy must be a MemoryDef");
|
|
// The new memset is inserted after the memcpy, but it is known that its
|
|
// defining access is the memset about to be removed which immediately
|
|
// precedes the memcpy.
|
|
auto *LastDef =
|
|
cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy));
|
|
auto *NewAccess = MSSAU->createMemoryAccessBefore(
|
|
NewMemSet, LastDef->getDefiningAccess(), LastDef);
|
|
MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
|
|
|
|
eraseInstruction(MemSet);
|
|
return true;
|
|
}
|
|
|
|
/// Determine whether the instruction has undefined content for the given Size,
|
|
/// either because it was freshly alloca'd or started its lifetime.
|
|
static bool hasUndefContents(MemorySSA *MSSA, AliasAnalysis *AA, Value *V,
|
|
MemoryDef *Def, Value *Size) {
|
|
if (MSSA->isLiveOnEntryDef(Def))
|
|
return isa<AllocaInst>(getUnderlyingObject(V));
|
|
|
|
if (auto *II = dyn_cast_or_null<IntrinsicInst>(Def->getMemoryInst())) {
|
|
if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
|
|
auto *LTSize = cast<ConstantInt>(II->getArgOperand(0));
|
|
|
|
if (auto *CSize = dyn_cast<ConstantInt>(Size)) {
|
|
if (AA->isMustAlias(V, II->getArgOperand(1)) &&
|
|
LTSize->getZExtValue() >= CSize->getZExtValue())
|
|
return true;
|
|
}
|
|
|
|
// If the lifetime.start covers a whole alloca (as it almost always
|
|
// does) and we're querying a pointer based on that alloca, then we know
|
|
// the memory is definitely undef, regardless of how exactly we alias.
|
|
// The size also doesn't matter, as an out-of-bounds access would be UB.
|
|
if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(V))) {
|
|
if (getUnderlyingObject(II->getArgOperand(1)) == Alloca) {
|
|
const DataLayout &DL = Alloca->getModule()->getDataLayout();
|
|
if (Optional<TypeSize> AllocaSize =
|
|
Alloca->getAllocationSizeInBits(DL))
|
|
if (*AllocaSize == LTSize->getValue() * 8)
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Transform memcpy to memset when its source was just memset.
|
|
/// In other words, turn:
|
|
/// \code
|
|
/// memset(dst1, c, dst1_size);
|
|
/// memcpy(dst2, dst1, dst2_size);
|
|
/// \endcode
|
|
/// into:
|
|
/// \code
|
|
/// memset(dst1, c, dst1_size);
|
|
/// memset(dst2, c, dst2_size);
|
|
/// \endcode
|
|
/// When dst2_size <= dst1_size.
|
|
bool MemCpyOptPass::performMemCpyToMemSetOptzn(MemCpyInst *MemCpy,
|
|
MemSetInst *MemSet) {
|
|
// Make sure that memcpy(..., memset(...), ...), that is we are memsetting and
|
|
// memcpying from the same address. Otherwise it is hard to reason about.
|
|
if (!AA->isMustAlias(MemSet->getRawDest(), MemCpy->getRawSource()))
|
|
return false;
|
|
|
|
Value *MemSetSize = MemSet->getLength();
|
|
Value *CopySize = MemCpy->getLength();
|
|
|
|
if (MemSetSize != CopySize) {
|
|
// Make sure the memcpy doesn't read any more than what the memset wrote.
|
|
// Don't worry about sizes larger than i64.
|
|
|
|
// A known memset size is required.
|
|
auto *CMemSetSize = dyn_cast<ConstantInt>(MemSetSize);
|
|
if (!CMemSetSize)
|
|
return false;
|
|
|
|
// A known memcpy size is also required.
|
|
auto *CCopySize = dyn_cast<ConstantInt>(CopySize);
|
|
if (!CCopySize)
|
|
return false;
|
|
if (CCopySize->getZExtValue() > CMemSetSize->getZExtValue()) {
|
|
// If the memcpy is larger than the memset, but the memory was undef prior
|
|
// to the memset, we can just ignore the tail. Technically we're only
|
|
// interested in the bytes from MemSetSize..CopySize here, but as we can't
|
|
// easily represent this location, we use the full 0..CopySize range.
|
|
MemoryLocation MemCpyLoc = MemoryLocation::getForSource(MemCpy);
|
|
bool CanReduceSize = false;
|
|
MemoryUseOrDef *MemSetAccess = MSSA->getMemoryAccess(MemSet);
|
|
MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess(
|
|
MemSetAccess->getDefiningAccess(), MemCpyLoc);
|
|
if (auto *MD = dyn_cast<MemoryDef>(Clobber))
|
|
if (hasUndefContents(MSSA, AA, MemCpy->getSource(), MD, CopySize))
|
|
CanReduceSize = true;
|
|
|
|
if (!CanReduceSize)
|
|
return false;
|
|
CopySize = MemSetSize;
|
|
}
|
|
}
|
|
|
|
IRBuilder<> Builder(MemCpy);
|
|
Instruction *NewM =
|
|
Builder.CreateMemSet(MemCpy->getRawDest(), MemSet->getOperand(1),
|
|
CopySize, MaybeAlign(MemCpy->getDestAlignment()));
|
|
auto *LastDef =
|
|
cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(MemCpy));
|
|
auto *NewAccess = MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef);
|
|
MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Perform simplification of memcpy's. If we have memcpy A
|
|
/// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite
|
|
/// B to be a memcpy from X to Z (or potentially a memmove, depending on
|
|
/// circumstances). This allows later passes to remove the first memcpy
|
|
/// altogether.
|
|
bool MemCpyOptPass::processMemCpy(MemCpyInst *M, BasicBlock::iterator &BBI) {
|
|
// We can only optimize non-volatile memcpy's.
|
|
if (M->isVolatile()) return false;
|
|
|
|
// If the source and destination of the memcpy are the same, then zap it.
|
|
if (M->getSource() == M->getDest()) {
|
|
++BBI;
|
|
eraseInstruction(M);
|
|
return true;
|
|
}
|
|
|
|
// If copying from a constant, try to turn the memcpy into a memset.
|
|
if (auto *GV = dyn_cast<GlobalVariable>(M->getSource()))
|
|
if (GV->isConstant() && GV->hasDefinitiveInitializer())
|
|
if (Value *ByteVal = isBytewiseValue(GV->getInitializer(),
|
|
M->getModule()->getDataLayout())) {
|
|
IRBuilder<> Builder(M);
|
|
Instruction *NewM =
|
|
Builder.CreateMemSet(M->getRawDest(), ByteVal, M->getLength(),
|
|
MaybeAlign(M->getDestAlignment()), false);
|
|
auto *LastDef =
|
|
cast<MemoryDef>(MSSAU->getMemorySSA()->getMemoryAccess(M));
|
|
auto *NewAccess =
|
|
MSSAU->createMemoryAccessAfter(NewM, LastDef, LastDef);
|
|
MSSAU->insertDef(cast<MemoryDef>(NewAccess), /*RenameUses=*/true);
|
|
|
|
eraseInstruction(M);
|
|
++NumCpyToSet;
|
|
return true;
|
|
}
|
|
|
|
MemoryUseOrDef *MA = MSSA->getMemoryAccess(M);
|
|
// FIXME: Not using getClobberingMemoryAccess() here due to PR54682.
|
|
MemoryAccess *AnyClobber = MA->getDefiningAccess();
|
|
MemoryLocation DestLoc = MemoryLocation::getForDest(M);
|
|
const MemoryAccess *DestClobber =
|
|
MSSA->getWalker()->getClobberingMemoryAccess(AnyClobber, DestLoc);
|
|
|
|
// Try to turn a partially redundant memset + memcpy into
|
|
// memcpy + smaller memset. We don't need the memcpy size for this.
|
|
// The memcpy most post-dom the memset, so limit this to the same basic
|
|
// block. A non-local generalization is likely not worthwhile.
|
|
if (auto *MD = dyn_cast<MemoryDef>(DestClobber))
|
|
if (auto *MDep = dyn_cast_or_null<MemSetInst>(MD->getMemoryInst()))
|
|
if (DestClobber->getBlock() == M->getParent())
|
|
if (processMemSetMemCpyDependence(M, MDep))
|
|
return true;
|
|
|
|
MemoryAccess *SrcClobber = MSSA->getWalker()->getClobberingMemoryAccess(
|
|
AnyClobber, MemoryLocation::getForSource(M));
|
|
|
|
// There are four possible optimizations we can do for memcpy:
|
|
// a) memcpy-memcpy xform which exposes redundance for DSE.
|
|
// b) call-memcpy xform for return slot optimization.
|
|
// c) memcpy from freshly alloca'd space or space that has just started
|
|
// its lifetime copies undefined data, and we can therefore eliminate
|
|
// the memcpy in favor of the data that was already at the destination.
|
|
// d) memcpy from a just-memset'd source can be turned into memset.
|
|
if (auto *MD = dyn_cast<MemoryDef>(SrcClobber)) {
|
|
if (Instruction *MI = MD->getMemoryInst()) {
|
|
if (auto *CopySize = dyn_cast<ConstantInt>(M->getLength())) {
|
|
if (auto *C = dyn_cast<CallInst>(MI)) {
|
|
// FIXME: Can we pass in either of dest/src alignment here instead
|
|
// of conservatively taking the minimum?
|
|
Align Alignment = std::min(M->getDestAlign().valueOrOne(),
|
|
M->getSourceAlign().valueOrOne());
|
|
if (performCallSlotOptzn(
|
|
M, M, M->getDest(), M->getSource(),
|
|
TypeSize::getFixed(CopySize->getZExtValue()), Alignment,
|
|
[C]() -> CallInst * { return C; })) {
|
|
LLVM_DEBUG(dbgs() << "Performed call slot optimization:\n"
|
|
<< " call: " << *C << "\n"
|
|
<< " memcpy: " << *M << "\n");
|
|
eraseInstruction(M);
|
|
++NumMemCpyInstr;
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
if (auto *MDep = dyn_cast<MemCpyInst>(MI))
|
|
return processMemCpyMemCpyDependence(M, MDep);
|
|
if (auto *MDep = dyn_cast<MemSetInst>(MI)) {
|
|
if (performMemCpyToMemSetOptzn(M, MDep)) {
|
|
LLVM_DEBUG(dbgs() << "Converted memcpy to memset\n");
|
|
eraseInstruction(M);
|
|
++NumCpyToSet;
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (hasUndefContents(MSSA, AA, M->getSource(), MD, M->getLength())) {
|
|
LLVM_DEBUG(dbgs() << "Removed memcpy from undef\n");
|
|
eraseInstruction(M);
|
|
++NumMemCpyInstr;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Transforms memmove calls to memcpy calls when the src/dst are guaranteed
|
|
/// not to alias.
|
|
bool MemCpyOptPass::processMemMove(MemMoveInst *M) {
|
|
// See if the source could be modified by this memmove potentially.
|
|
if (isModSet(AA->getModRefInfo(M, MemoryLocation::getForSource(M))))
|
|
return false;
|
|
|
|
LLVM_DEBUG(dbgs() << "MemCpyOptPass: Optimizing memmove -> memcpy: " << *M
|
|
<< "\n");
|
|
|
|
// If not, then we know we can transform this.
|
|
Type *ArgTys[3] = { M->getRawDest()->getType(),
|
|
M->getRawSource()->getType(),
|
|
M->getLength()->getType() };
|
|
M->setCalledFunction(Intrinsic::getDeclaration(M->getModule(),
|
|
Intrinsic::memcpy, ArgTys));
|
|
|
|
// For MemorySSA nothing really changes (except that memcpy may imply stricter
|
|
// aliasing guarantees).
|
|
|
|
++NumMoveToCpy;
|
|
return true;
|
|
}
|
|
|
|
/// This is called on every byval argument in call sites.
|
|
bool MemCpyOptPass::processByValArgument(CallBase &CB, unsigned ArgNo) {
|
|
const DataLayout &DL = CB.getCaller()->getParent()->getDataLayout();
|
|
// Find out what feeds this byval argument.
|
|
Value *ByValArg = CB.getArgOperand(ArgNo);
|
|
Type *ByValTy = CB.getParamByValType(ArgNo);
|
|
TypeSize ByValSize = DL.getTypeAllocSize(ByValTy);
|
|
MemoryLocation Loc(ByValArg, LocationSize::precise(ByValSize));
|
|
MemoryUseOrDef *CallAccess = MSSA->getMemoryAccess(&CB);
|
|
if (!CallAccess)
|
|
return false;
|
|
MemCpyInst *MDep = nullptr;
|
|
MemoryAccess *Clobber = MSSA->getWalker()->getClobberingMemoryAccess(
|
|
CallAccess->getDefiningAccess(), Loc);
|
|
if (auto *MD = dyn_cast<MemoryDef>(Clobber))
|
|
MDep = dyn_cast_or_null<MemCpyInst>(MD->getMemoryInst());
|
|
|
|
// If the byval argument isn't fed by a memcpy, ignore it. If it is fed by
|
|
// a memcpy, see if we can byval from the source of the memcpy instead of the
|
|
// result.
|
|
if (!MDep || MDep->isVolatile() ||
|
|
ByValArg->stripPointerCasts() != MDep->getDest())
|
|
return false;
|
|
|
|
// The length of the memcpy must be larger or equal to the size of the byval.
|
|
auto *C1 = dyn_cast<ConstantInt>(MDep->getLength());
|
|
if (!C1 || !TypeSize::isKnownGE(
|
|
TypeSize::getFixed(C1->getValue().getZExtValue()), ByValSize))
|
|
return false;
|
|
|
|
// Get the alignment of the byval. If the call doesn't specify the alignment,
|
|
// then it is some target specific value that we can't know.
|
|
MaybeAlign ByValAlign = CB.getParamAlign(ArgNo);
|
|
if (!ByValAlign) return false;
|
|
|
|
// If it is greater than the memcpy, then we check to see if we can force the
|
|
// source of the memcpy to the alignment we need. If we fail, we bail out.
|
|
MaybeAlign MemDepAlign = MDep->getSourceAlign();
|
|
if ((!MemDepAlign || *MemDepAlign < *ByValAlign) &&
|
|
getOrEnforceKnownAlignment(MDep->getSource(), ByValAlign, DL, &CB, AC,
|
|
DT) < *ByValAlign)
|
|
return false;
|
|
|
|
// The address space of the memcpy source must match the byval argument
|
|
if (MDep->getSource()->getType()->getPointerAddressSpace() !=
|
|
ByValArg->getType()->getPointerAddressSpace())
|
|
return false;
|
|
|
|
// Verify that the copied-from memory doesn't change in between the memcpy and
|
|
// the byval call.
|
|
// memcpy(a <- b)
|
|
// *b = 42;
|
|
// foo(*a)
|
|
// It would be invalid to transform the second memcpy into foo(*b).
|
|
if (writtenBetween(MSSA, *AA, MemoryLocation::getForSource(MDep),
|
|
MSSA->getMemoryAccess(MDep), MSSA->getMemoryAccess(&CB)))
|
|
return false;
|
|
|
|
Value *TmpCast = MDep->getSource();
|
|
if (MDep->getSource()->getType() != ByValArg->getType()) {
|
|
BitCastInst *TmpBitCast = new BitCastInst(MDep->getSource(), ByValArg->getType(),
|
|
"tmpcast", &CB);
|
|
// Set the tmpcast's DebugLoc to MDep's
|
|
TmpBitCast->setDebugLoc(MDep->getDebugLoc());
|
|
TmpCast = TmpBitCast;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy to byval:\n"
|
|
<< " " << *MDep << "\n"
|
|
<< " " << CB << "\n");
|
|
|
|
// Otherwise we're good! Update the byval argument.
|
|
CB.setArgOperand(ArgNo, TmpCast);
|
|
++NumMemCpyInstr;
|
|
return true;
|
|
}
|
|
|
|
/// Executes one iteration of MemCpyOptPass.
|
|
bool MemCpyOptPass::iterateOnFunction(Function &F) {
|
|
bool MadeChange = false;
|
|
|
|
// Walk all instruction in the function.
|
|
for (BasicBlock &BB : F) {
|
|
// Skip unreachable blocks. For example processStore assumes that an
|
|
// instruction in a BB can't be dominated by a later instruction in the
|
|
// same BB (which is a scenario that can happen for an unreachable BB that
|
|
// has itself as a predecessor).
|
|
if (!DT->isReachableFromEntry(&BB))
|
|
continue;
|
|
|
|
for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) {
|
|
// Avoid invalidating the iterator.
|
|
Instruction *I = &*BI++;
|
|
|
|
bool RepeatInstruction = false;
|
|
|
|
if (auto *SI = dyn_cast<StoreInst>(I))
|
|
MadeChange |= processStore(SI, BI);
|
|
else if (auto *M = dyn_cast<MemSetInst>(I))
|
|
RepeatInstruction = processMemSet(M, BI);
|
|
else if (auto *M = dyn_cast<MemCpyInst>(I))
|
|
RepeatInstruction = processMemCpy(M, BI);
|
|
else if (auto *M = dyn_cast<MemMoveInst>(I))
|
|
RepeatInstruction = processMemMove(M);
|
|
else if (auto *CB = dyn_cast<CallBase>(I)) {
|
|
for (unsigned i = 0, e = CB->arg_size(); i != e; ++i)
|
|
if (CB->isByValArgument(i))
|
|
MadeChange |= processByValArgument(*CB, i);
|
|
}
|
|
|
|
// Reprocess the instruction if desired.
|
|
if (RepeatInstruction) {
|
|
if (BI != BB.begin())
|
|
--BI;
|
|
MadeChange = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return MadeChange;
|
|
}
|
|
|
|
PreservedAnalyses MemCpyOptPass::run(Function &F, FunctionAnalysisManager &AM) {
|
|
auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
|
|
auto *AA = &AM.getResult<AAManager>(F);
|
|
auto *AC = &AM.getResult<AssumptionAnalysis>(F);
|
|
auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
|
|
auto *MSSA = &AM.getResult<MemorySSAAnalysis>(F);
|
|
|
|
bool MadeChange = runImpl(F, &TLI, AA, AC, DT, &MSSA->getMSSA());
|
|
if (!MadeChange)
|
|
return PreservedAnalyses::all();
|
|
|
|
PreservedAnalyses PA;
|
|
PA.preserveSet<CFGAnalyses>();
|
|
PA.preserve<MemorySSAAnalysis>();
|
|
return PA;
|
|
}
|
|
|
|
bool MemCpyOptPass::runImpl(Function &F, TargetLibraryInfo *TLI_,
|
|
AliasAnalysis *AA_, AssumptionCache *AC_,
|
|
DominatorTree *DT_, MemorySSA *MSSA_) {
|
|
bool MadeChange = false;
|
|
TLI = TLI_;
|
|
AA = AA_;
|
|
AC = AC_;
|
|
DT = DT_;
|
|
MSSA = MSSA_;
|
|
MemorySSAUpdater MSSAU_(MSSA_);
|
|
MSSAU = &MSSAU_;
|
|
|
|
while (true) {
|
|
if (!iterateOnFunction(F))
|
|
break;
|
|
MadeChange = true;
|
|
}
|
|
|
|
if (VerifyMemorySSA)
|
|
MSSA_->verifyMemorySSA();
|
|
|
|
return MadeChange;
|
|
}
|
|
|
|
/// This is the main transformation entry point for a function.
|
|
bool MemCpyOptLegacyPass::runOnFunction(Function &F) {
|
|
if (skipFunction(F))
|
|
return false;
|
|
|
|
auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
|
|
auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
|
|
auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
|
|
auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
|
auto *MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA();
|
|
|
|
return Impl.runImpl(F, TLI, AA, AC, DT, MSSA);
|
|
}
|