llvm-project/clang/lib/Sema/SemaOpenACCClause.cpp
erichkeane 9a698a67e2 [OpenACC] Implement new OpenACC device_type restriction
The OpenACC standard is going to change to clarify that init, shutdown,
    and set should only have a single architecture in each 'device_type'
    clause.  This patch implements that restriction.

    See: https://github.com/OpenACC/openacc-spec/pull/550
2025-08-13 07:47:39 -07:00

2331 lines
95 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//===--- SemaOpenACCClause.cpp - Semantic Analysis for OpenACC clause -----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements semantic analysis for OpenACC clauses.
///
//===----------------------------------------------------------------------===//
#include "clang/AST/DeclCXX.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/OpenACCClause.h"
#include "clang/Basic/DiagnosticSema.h"
#include "clang/Basic/OpenACCKinds.h"
#include "clang/Sema/SemaOpenACC.h"
using namespace clang;
namespace {
bool checkValidAfterDeviceType(
SemaOpenACC &S, const OpenACCDeviceTypeClause &DeviceTypeClause,
const SemaOpenACC::OpenACCParsedClause &NewClause) {
// OpenACC3.3: Section 2.4: Clauses that precede any device_type clause are
// default clauses. Clauses that follow a device_type clause up to the end of
// the directive or up to the next device_type clause are device-specific
// clauses for the device types specified in the device_type argument.
//
// The above implies that despite what the individual text says, these are
// valid.
if (NewClause.getClauseKind() == OpenACCClauseKind::DType ||
NewClause.getClauseKind() == OpenACCClauseKind::DeviceType)
return false;
// Implement check from OpenACC3.3: section 2.5.4:
// Only the async, wait, num_gangs, num_workers, and vector_length clauses may
// follow a device_type clause.
if (isOpenACCComputeDirectiveKind(NewClause.getDirectiveKind())) {
switch (NewClause.getClauseKind()) {
case OpenACCClauseKind::Async:
case OpenACCClauseKind::Wait:
case OpenACCClauseKind::NumGangs:
case OpenACCClauseKind::NumWorkers:
case OpenACCClauseKind::VectorLength:
return false;
default:
break;
}
} else if (NewClause.getDirectiveKind() == OpenACCDirectiveKind::Loop) {
// Implement check from OpenACC3.3: section 2.9:
// Only the collapse, gang, worker, vector, seq, independent, auto, and tile
// clauses may follow a device_type clause.
switch (NewClause.getClauseKind()) {
case OpenACCClauseKind::Collapse:
case OpenACCClauseKind::Gang:
case OpenACCClauseKind::Worker:
case OpenACCClauseKind::Vector:
case OpenACCClauseKind::Seq:
case OpenACCClauseKind::Independent:
case OpenACCClauseKind::Auto:
case OpenACCClauseKind::Tile:
return false;
default:
break;
}
} else if (isOpenACCCombinedDirectiveKind(NewClause.getDirectiveKind())) {
// This seems like it should be the union of 2.9 and 2.5.4 from above.
switch (NewClause.getClauseKind()) {
case OpenACCClauseKind::Async:
case OpenACCClauseKind::Wait:
case OpenACCClauseKind::NumGangs:
case OpenACCClauseKind::NumWorkers:
case OpenACCClauseKind::VectorLength:
case OpenACCClauseKind::Collapse:
case OpenACCClauseKind::Gang:
case OpenACCClauseKind::Worker:
case OpenACCClauseKind::Vector:
case OpenACCClauseKind::Seq:
case OpenACCClauseKind::Independent:
case OpenACCClauseKind::Auto:
case OpenACCClauseKind::Tile:
return false;
default:
break;
}
} else if (NewClause.getDirectiveKind() == OpenACCDirectiveKind::Data) {
// OpenACC3.3 section 2.6.5: Only the async and wait clauses may follow a
// device_type clause.
switch (NewClause.getClauseKind()) {
case OpenACCClauseKind::Async:
case OpenACCClauseKind::Wait:
return false;
default:
break;
}
} else if (NewClause.getDirectiveKind() == OpenACCDirectiveKind::Set ||
NewClause.getDirectiveKind() == OpenACCDirectiveKind::Init ||
NewClause.getDirectiveKind() == OpenACCDirectiveKind::Shutdown) {
// There are no restrictions on 'set', 'init', or 'shutdown'.
return false;
} else if (NewClause.getDirectiveKind() == OpenACCDirectiveKind::Update) {
// OpenACC3.3 section 2.14.4: Only the async and wait clauses may follow a
// device_type clause.
switch (NewClause.getClauseKind()) {
case OpenACCClauseKind::Async:
case OpenACCClauseKind::Wait:
return false;
default:
break;
}
} else if (NewClause.getDirectiveKind() == OpenACCDirectiveKind::Routine) {
// OpenACC 3.3 section 2.15: Only the 'gang', 'worker', 'vector', 'seq', and
// 'bind' clauses may follow a device_type clause.
switch (NewClause.getClauseKind()) {
case OpenACCClauseKind::Gang:
case OpenACCClauseKind::Worker:
case OpenACCClauseKind::Vector:
case OpenACCClauseKind::Seq:
case OpenACCClauseKind::Bind:
return false;
default:
break;
}
}
S.Diag(NewClause.getBeginLoc(), diag::err_acc_clause_after_device_type)
<< NewClause.getClauseKind() << DeviceTypeClause.getClauseKind()
<< NewClause.getDirectiveKind();
S.Diag(DeviceTypeClause.getBeginLoc(),
diag::note_acc_active_applies_clause_here)
<< diag::ACCDeviceTypeApp::Active << DeviceTypeClause.getClauseKind();
return true;
}
// GCC looks through linkage specs, but not the other transparent declaration
// contexts for 'declare' restrictions, so this helper function helps get us
// through that.
const DeclContext *removeLinkageSpecDC(const DeclContext *DC) {
while (isa<LinkageSpecDecl>(DC))
DC = DC->getParent();
return DC;
}
class SemaOpenACCClauseVisitor {
SemaOpenACC &SemaRef;
ASTContext &Ctx;
ArrayRef<const OpenACCClause *> ExistingClauses;
// OpenACC 3.3 2.9:
// A 'gang', 'worker', or 'vector' clause may not appear if a 'seq' clause
// appears.
bool
DiagGangWorkerVectorSeqConflict(SemaOpenACC::OpenACCParsedClause &Clause) {
if (Clause.getDirectiveKind() != OpenACCDirectiveKind::Loop &&
!isOpenACCCombinedDirectiveKind(Clause.getDirectiveKind()))
return false;
assert(Clause.getClauseKind() == OpenACCClauseKind::Gang ||
Clause.getClauseKind() == OpenACCClauseKind::Worker ||
Clause.getClauseKind() == OpenACCClauseKind::Vector);
const auto *Itr =
llvm::find_if(ExistingClauses, llvm::IsaPred<OpenACCSeqClause>);
if (Itr != ExistingClauses.end()) {
SemaRef.Diag(Clause.getBeginLoc(), diag::err_acc_clause_cannot_combine)
<< Clause.getClauseKind() << (*Itr)->getClauseKind()
<< Clause.getDirectiveKind();
SemaRef.Diag((*Itr)->getBeginLoc(), diag::note_acc_previous_clause_here)
<< (*Itr)->getClauseKind();
return true;
}
return false;
}
OpenACCModifierKind
CheckModifierList(SemaOpenACC::OpenACCParsedClause &Clause,
OpenACCModifierKind Mods) {
auto CheckSingle = [=](OpenACCModifierKind CurMods,
OpenACCModifierKind ValidKinds,
OpenACCModifierKind Bit) {
if (!isOpenACCModifierBitSet(CurMods, Bit) ||
isOpenACCModifierBitSet(ValidKinds, Bit))
return CurMods;
SemaRef.Diag(Clause.getLParenLoc(), diag::err_acc_invalid_modifier)
<< Bit << Clause.getClauseKind();
return CurMods ^ Bit;
};
auto Check = [&](OpenACCModifierKind ValidKinds) {
if ((Mods | ValidKinds) == ValidKinds)
return Mods;
Mods = CheckSingle(Mods, ValidKinds, OpenACCModifierKind::Always);
Mods = CheckSingle(Mods, ValidKinds, OpenACCModifierKind::AlwaysIn);
Mods = CheckSingle(Mods, ValidKinds, OpenACCModifierKind::AlwaysOut);
Mods = CheckSingle(Mods, ValidKinds, OpenACCModifierKind::Readonly);
Mods = CheckSingle(Mods, ValidKinds, OpenACCModifierKind::Zero);
Mods = CheckSingle(Mods, ValidKinds, OpenACCModifierKind::Capture);
return Mods;
};
// The 'capture' modifier is only valid on copyin, copyout, and create on
// structured data or compute constructs (which also includes combined).
bool IsStructuredDataOrCompute =
Clause.getDirectiveKind() == OpenACCDirectiveKind::Data ||
isOpenACCComputeDirectiveKind(Clause.getDirectiveKind()) ||
isOpenACCCombinedDirectiveKind(Clause.getDirectiveKind());
switch (Clause.getClauseKind()) {
default:
llvm_unreachable("Only for copy, copyin, copyout, create");
case OpenACCClauseKind::Copy:
case OpenACCClauseKind::PCopy:
case OpenACCClauseKind::PresentOrCopy:
// COPY: Capture always
return Check(OpenACCModifierKind::Always | OpenACCModifierKind::AlwaysIn |
OpenACCModifierKind::AlwaysOut |
OpenACCModifierKind::Capture);
case OpenACCClauseKind::CopyIn:
case OpenACCClauseKind::PCopyIn:
case OpenACCClauseKind::PresentOrCopyIn:
// COPYIN: Capture only struct.data & compute
return Check(OpenACCModifierKind::Always | OpenACCModifierKind::AlwaysIn |
OpenACCModifierKind::Readonly |
(IsStructuredDataOrCompute ? OpenACCModifierKind::Capture
: OpenACCModifierKind::Invalid));
case OpenACCClauseKind::CopyOut:
case OpenACCClauseKind::PCopyOut:
case OpenACCClauseKind::PresentOrCopyOut:
// COPYOUT: Capture only struct.data & compute
return Check(OpenACCModifierKind::Always |
OpenACCModifierKind::AlwaysOut | OpenACCModifierKind::Zero |
(IsStructuredDataOrCompute ? OpenACCModifierKind::Capture
: OpenACCModifierKind::Invalid));
case OpenACCClauseKind::Create:
case OpenACCClauseKind::PCreate:
case OpenACCClauseKind::PresentOrCreate:
// CREATE: Capture only struct.data & compute
return Check(OpenACCModifierKind::Zero |
(IsStructuredDataOrCompute ? OpenACCModifierKind::Capture
: OpenACCModifierKind::Invalid));
}
llvm_unreachable("didn't return from switch above?");
}
// Helper for the 'routine' checks during 'new' clause addition. Precondition
// is that we already know the new clause is one of the prohbiited ones.
template <typename Pred>
bool
CheckValidRoutineNewClauseHelper(Pred HasPredicate,
SemaOpenACC::OpenACCParsedClause &Clause) {
if (Clause.getDirectiveKind() != OpenACCDirectiveKind::Routine)
return false;
auto *FirstDeviceType =
llvm::find_if(ExistingClauses, llvm::IsaPred<OpenACCDeviceTypeClause>);
if (FirstDeviceType == ExistingClauses.end()) {
// If there isn't a device type yet, ANY duplicate is wrong.
auto *ExistingProhibitedClause =
llvm::find_if(ExistingClauses, HasPredicate);
if (ExistingProhibitedClause == ExistingClauses.end())
return false;
SemaRef.Diag(Clause.getBeginLoc(), diag::err_acc_clause_cannot_combine)
<< Clause.getClauseKind()
<< (*ExistingProhibitedClause)->getClauseKind()
<< Clause.getDirectiveKind();
SemaRef.Diag((*ExistingProhibitedClause)->getBeginLoc(),
diag::note_acc_previous_clause_here)
<< (*ExistingProhibitedClause)->getClauseKind();
return true;
}
// At this point we know that this is 'after' a device type. So this is an
// error if: 1- there is one BEFORE the 'device_type' 2- there is one
// between this and the previous 'device_type'.
auto *BeforeDeviceType =
std::find_if(ExistingClauses.begin(), FirstDeviceType, HasPredicate);
// If there is one before the device_type (and we know we are after a
// device_type), than this is ill-formed.
if (BeforeDeviceType != FirstDeviceType) {
SemaRef.Diag(
Clause.getBeginLoc(),
diag::err_acc_clause_routine_cannot_combine_before_device_type)
<< Clause.getClauseKind() << (*BeforeDeviceType)->getClauseKind();
SemaRef.Diag((*BeforeDeviceType)->getBeginLoc(),
diag::note_acc_previous_clause_here)
<< (*BeforeDeviceType)->getClauseKind();
SemaRef.Diag((*FirstDeviceType)->getBeginLoc(),
diag::note_acc_active_applies_clause_here)
<< diag::ACCDeviceTypeApp::Active
<< (*FirstDeviceType)->getClauseKind();
return true;
}
auto LastDeviceTypeItr =
std::find_if(ExistingClauses.rbegin(), ExistingClauses.rend(),
llvm::IsaPred<OpenACCDeviceTypeClause>);
// We already know there is one in the list, so it is nonsensical to not
// have one.
assert(LastDeviceTypeItr != ExistingClauses.rend());
// Get the device-type from-the-front (not reverse) iterator from the
// reverse iterator.
auto *LastDeviceType = LastDeviceTypeItr.base() - 1;
auto *ExistingProhibitedSinceLastDevice =
std::find_if(LastDeviceType, ExistingClauses.end(), HasPredicate);
// No prohibited ones since the last device-type.
if (ExistingProhibitedSinceLastDevice == ExistingClauses.end())
return false;
SemaRef.Diag(Clause.getBeginLoc(),
diag::err_acc_clause_routine_cannot_combine_same_device_type)
<< Clause.getClauseKind()
<< (*ExistingProhibitedSinceLastDevice)->getClauseKind();
SemaRef.Diag((*ExistingProhibitedSinceLastDevice)->getBeginLoc(),
diag::note_acc_previous_clause_here)
<< (*ExistingProhibitedSinceLastDevice)->getClauseKind();
SemaRef.Diag((*LastDeviceType)->getBeginLoc(),
diag::note_acc_active_applies_clause_here)
<< diag::ACCDeviceTypeApp::Active << (*LastDeviceType)->getClauseKind();
return true;
}
// Routine has a pretty complicated set of rules for how device_type and the
// gang, worker, vector, and seq clauses work. So diagnose some of it here.
bool CheckValidRoutineGangWorkerVectorSeqNewClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
if (Clause.getClauseKind() != OpenACCClauseKind::Gang &&
Clause.getClauseKind() != OpenACCClauseKind::Vector &&
Clause.getClauseKind() != OpenACCClauseKind::Worker &&
Clause.getClauseKind() != OpenACCClauseKind::Seq)
return false;
auto ProhibitedPred = llvm::IsaPred<OpenACCGangClause, OpenACCWorkerClause,
OpenACCVectorClause, OpenACCSeqClause>;
return CheckValidRoutineNewClauseHelper(ProhibitedPred, Clause);
}
// Bind should have similar rules on a routine as gang/worker/vector/seq,
// except there is no 'must have 1' rule, so we can get all the checking done
// here.
bool
CheckValidRoutineBindNewClause(SemaOpenACC::OpenACCParsedClause &Clause) {
if (Clause.getClauseKind() != OpenACCClauseKind::Bind)
return false;
auto HasBindPred = llvm::IsaPred<OpenACCBindClause>;
return CheckValidRoutineNewClauseHelper(HasBindPred, Clause);
}
// For 'tile' and 'collapse', only allow 1 per 'device_type'.
// Also applies to num_worker, num_gangs, vector_length, and async.
// This does introspection into the actual device-types to prevent duplicates
// across device types as well.
template <typename TheClauseTy>
bool DisallowSinceLastDeviceType(SemaOpenACC::OpenACCParsedClause &Clause) {
auto LastDeviceTypeItr =
std::find_if(ExistingClauses.rbegin(), ExistingClauses.rend(),
llvm::IsaPred<OpenACCDeviceTypeClause>);
auto LastSinceDevTy =
std::find_if(ExistingClauses.rbegin(), LastDeviceTypeItr,
llvm::IsaPred<TheClauseTy>);
// In this case there is a duplicate since the last device_type/lack of a
// device_type. Diagnose these as duplicates.
if (LastSinceDevTy != LastDeviceTypeItr) {
SemaRef.Diag(Clause.getBeginLoc(),
diag::err_acc_clause_since_last_device_type)
<< Clause.getClauseKind() << Clause.getDirectiveKind()
<< (LastDeviceTypeItr != ExistingClauses.rend());
SemaRef.Diag((*LastSinceDevTy)->getBeginLoc(),
diag::note_acc_previous_clause_here)
<< (*LastSinceDevTy)->getClauseKind();
// Mention the last device_type as well.
if (LastDeviceTypeItr != ExistingClauses.rend())
SemaRef.Diag((*LastDeviceTypeItr)->getBeginLoc(),
diag::note_acc_active_applies_clause_here)
<< diag::ACCDeviceTypeApp::Active
<< (*LastDeviceTypeItr)->getClauseKind();
return true;
}
// If this isn't in a device_type, and we didn't diagnose that there are
// dupes above, just give up, no sense in searching for previous device_type
// regions as they don't exist.
if (LastDeviceTypeItr == ExistingClauses.rend())
return false;
// The device-type that is active for us, so we can compare to the previous
// ones.
const auto &ActiveDeviceTypeClause =
cast<OpenACCDeviceTypeClause>(**LastDeviceTypeItr);
auto PrevDeviceTypeItr = LastDeviceTypeItr;
auto CurDevTypeItr = LastDeviceTypeItr;
while ((CurDevTypeItr = std::find_if(
std::next(PrevDeviceTypeItr), ExistingClauses.rend(),
llvm::IsaPred<OpenACCDeviceTypeClause>)) !=
ExistingClauses.rend()) {
// At this point, we know that we have a region between two device_types,
// as specified by CurDevTypeItr and PrevDeviceTypeItr.
auto CurClauseKindItr = std::find_if(PrevDeviceTypeItr, CurDevTypeItr,
llvm::IsaPred<TheClauseTy>);
// There are no clauses of the current kind between these device_types, so
// continue.
if (CurClauseKindItr == CurDevTypeItr) {
PrevDeviceTypeItr = CurDevTypeItr;
continue;
}
// At this point, we know that this device_type region has a collapse. So
// diagnose if the two device_types have any overlap in their
// architectures.
const auto &CurDeviceTypeClause =
cast<OpenACCDeviceTypeClause>(**CurDevTypeItr);
for (const DeviceTypeArgument &arg :
ActiveDeviceTypeClause.getArchitectures()) {
for (const DeviceTypeArgument &prevArg :
CurDeviceTypeClause.getArchitectures()) {
// This should catch duplicates * regions, duplicate same-text (thanks
// to identifier equiv.) and case insensitive dupes.
if (arg.getIdentifierInfo() == prevArg.getIdentifierInfo() ||
(arg.getIdentifierInfo() && prevArg.getIdentifierInfo() &&
StringRef{arg.getIdentifierInfo()->getName()}.equals_insensitive(
prevArg.getIdentifierInfo()->getName()))) {
SemaRef.Diag(Clause.getBeginLoc(),
diag::err_acc_clause_conflicts_prev_dev_type)
<< Clause.getClauseKind()
<< (arg.getIdentifierInfo() ? arg.getIdentifierInfo()->getName()
: "*");
// mention the active device type.
SemaRef.Diag(ActiveDeviceTypeClause.getBeginLoc(),
diag::note_acc_active_applies_clause_here)
<< diag::ACCDeviceTypeApp::Active
<< ActiveDeviceTypeClause.getClauseKind();
// mention the previous clause.
SemaRef.Diag((*CurClauseKindItr)->getBeginLoc(),
diag::note_acc_previous_clause_here)
<< (*CurClauseKindItr)->getClauseKind();
// mention the previous device type.
SemaRef.Diag(CurDeviceTypeClause.getBeginLoc(),
diag::note_acc_active_applies_clause_here)
<< diag::ACCDeviceTypeApp::Applies
<< CurDeviceTypeClause.getClauseKind();
return true;
}
}
}
PrevDeviceTypeItr = CurDevTypeItr;
}
return false;
}
public:
SemaOpenACCClauseVisitor(SemaOpenACC &S,
ArrayRef<const OpenACCClause *> ExistingClauses)
: SemaRef(S), Ctx(S.getASTContext()), ExistingClauses(ExistingClauses) {}
OpenACCClause *Visit(SemaOpenACC::OpenACCParsedClause &Clause) {
if (SemaRef.DiagnoseAllowedOnceClauses(
Clause.getDirectiveKind(), Clause.getClauseKind(),
Clause.getBeginLoc(), ExistingClauses) ||
SemaRef.DiagnoseExclusiveClauses(Clause.getDirectiveKind(),
Clause.getClauseKind(),
Clause.getBeginLoc(), ExistingClauses))
return nullptr;
if (CheckValidRoutineGangWorkerVectorSeqNewClause(Clause) ||
CheckValidRoutineBindNewClause(Clause))
return nullptr;
switch (Clause.getClauseKind()) {
case OpenACCClauseKind::Shortloop:
llvm_unreachable("Shortloop shouldn't be generated in clang");
case OpenACCClauseKind::Invalid:
return nullptr;
#define VISIT_CLAUSE(CLAUSE_NAME) \
case OpenACCClauseKind::CLAUSE_NAME: \
return Visit##CLAUSE_NAME##Clause(Clause);
#define CLAUSE_ALIAS(ALIAS, CLAUSE_NAME, DEPRECATED) \
case OpenACCClauseKind::ALIAS: \
if (DEPRECATED) \
SemaRef.Diag(Clause.getBeginLoc(), diag::warn_acc_deprecated_alias_name) \
<< Clause.getClauseKind() << OpenACCClauseKind::CLAUSE_NAME; \
return Visit##CLAUSE_NAME##Clause(Clause);
#include "clang/Basic/OpenACCClauses.def"
}
llvm_unreachable("Invalid clause kind");
}
#define VISIT_CLAUSE(CLAUSE_NAME) \
OpenACCClause *Visit##CLAUSE_NAME##Clause( \
SemaOpenACC::OpenACCParsedClause &Clause);
#include "clang/Basic/OpenACCClauses.def"
};
OpenACCClause *SemaOpenACCClauseVisitor::VisitDefaultClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
// Don't add an invalid clause to the AST.
if (Clause.getDefaultClauseKind() == OpenACCDefaultClauseKind::Invalid)
return nullptr;
return OpenACCDefaultClause::Create(
Ctx, Clause.getDefaultClauseKind(), Clause.getBeginLoc(),
Clause.getLParenLoc(), Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitTileClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
if (DisallowSinceLastDeviceType<OpenACCTileClause>(Clause))
return nullptr;
llvm::SmallVector<Expr *> NewSizeExprs;
// Make sure these are all positive constant expressions or *.
for (Expr *E : Clause.getIntExprs()) {
ExprResult Res = SemaRef.CheckTileSizeExpr(E);
if (!Res.isUsable())
return nullptr;
NewSizeExprs.push_back(Res.get());
}
return OpenACCTileClause::Create(Ctx, Clause.getBeginLoc(),
Clause.getLParenLoc(), NewSizeExprs,
Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitIfClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
// The parser has ensured that we have a proper condition expr, so there
// isn't really much to do here.
// If the 'if' clause is true, it makes the 'self' clause have no effect,
// diagnose that here. This only applies on compute/combined constructs.
if (Clause.getDirectiveKind() != OpenACCDirectiveKind::Update) {
const auto *Itr =
llvm::find_if(ExistingClauses, llvm::IsaPred<OpenACCSelfClause>);
if (Itr != ExistingClauses.end()) {
SemaRef.Diag(Clause.getBeginLoc(), diag::warn_acc_if_self_conflict);
SemaRef.Diag((*Itr)->getBeginLoc(), diag::note_acc_previous_clause_here)
<< (*Itr)->getClauseKind();
}
}
return OpenACCIfClause::Create(Ctx, Clause.getBeginLoc(),
Clause.getLParenLoc(),
Clause.getConditionExpr(), Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitSelfClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
// If the 'if' clause is true, it makes the 'self' clause have no effect,
// diagnose that here. This only applies on compute/combined constructs.
if (Clause.getDirectiveKind() == OpenACCDirectiveKind::Update)
return OpenACCSelfClause::Create(Ctx, Clause.getBeginLoc(),
Clause.getLParenLoc(), Clause.getVarList(),
Clause.getEndLoc());
const auto *Itr =
llvm::find_if(ExistingClauses, llvm::IsaPred<OpenACCIfClause>);
if (Itr != ExistingClauses.end()) {
SemaRef.Diag(Clause.getBeginLoc(), diag::warn_acc_if_self_conflict);
SemaRef.Diag((*Itr)->getBeginLoc(), diag::note_acc_previous_clause_here)
<< (*Itr)->getClauseKind();
}
return OpenACCSelfClause::Create(
Ctx, Clause.getBeginLoc(), Clause.getLParenLoc(),
Clause.getConditionExpr(), Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitNumGangsClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
if (DisallowSinceLastDeviceType<OpenACCNumGangsClause>(Clause))
return nullptr;
// num_gangs requires at least 1 int expr in all forms. Diagnose here, but
// allow us to continue, an empty clause might be useful for future
// diagnostics.
if (Clause.getIntExprs().empty())
SemaRef.Diag(Clause.getBeginLoc(), diag::err_acc_num_gangs_num_args)
<< /*NoArgs=*/0;
unsigned MaxArgs =
(Clause.getDirectiveKind() == OpenACCDirectiveKind::Parallel ||
Clause.getDirectiveKind() == OpenACCDirectiveKind::ParallelLoop)
? 3
: 1;
// The max number of args differs between parallel and other constructs.
// Again, allow us to continue for the purposes of future diagnostics.
if (Clause.getIntExprs().size() > MaxArgs)
SemaRef.Diag(Clause.getBeginLoc(), diag::err_acc_num_gangs_num_args)
<< /*NoArgs=*/1 << Clause.getDirectiveKind() << MaxArgs
<< Clause.getIntExprs().size();
// OpenACC 3.3 Section 2.9.11: A reduction clause may not appear on a loop
// directive that has a gang clause and is within a compute construct that has
// a num_gangs clause with more than one explicit argument.
if (Clause.getIntExprs().size() > 1 &&
isOpenACCCombinedDirectiveKind(Clause.getDirectiveKind())) {
auto *GangClauseItr =
llvm::find_if(ExistingClauses, llvm::IsaPred<OpenACCGangClause>);
auto *ReductionClauseItr =
llvm::find_if(ExistingClauses, llvm::IsaPred<OpenACCReductionClause>);
if (GangClauseItr != ExistingClauses.end() &&
ReductionClauseItr != ExistingClauses.end()) {
SemaRef.Diag(Clause.getBeginLoc(),
diag::err_acc_gang_reduction_numgangs_conflict)
<< OpenACCClauseKind::Reduction << OpenACCClauseKind::Gang
<< Clause.getDirectiveKind() << /*is on combined directive=*/1;
SemaRef.Diag((*ReductionClauseItr)->getBeginLoc(),
diag::note_acc_previous_clause_here)
<< (*ReductionClauseItr)->getClauseKind();
SemaRef.Diag((*GangClauseItr)->getBeginLoc(),
diag::note_acc_previous_clause_here)
<< (*GangClauseItr)->getClauseKind();
return nullptr;
}
}
// OpenACC 3.3 Section 2.5.4:
// A reduction clause may not appear on a parallel construct with a
// num_gangs clause that has more than one argument.
if ((Clause.getDirectiveKind() == OpenACCDirectiveKind::Parallel ||
Clause.getDirectiveKind() == OpenACCDirectiveKind::ParallelLoop) &&
Clause.getIntExprs().size() > 1) {
auto *Parallel =
llvm::find_if(ExistingClauses, llvm::IsaPred<OpenACCReductionClause>);
if (Parallel != ExistingClauses.end()) {
SemaRef.Diag(Clause.getBeginLoc(),
diag::err_acc_reduction_num_gangs_conflict)
<< /*>1 arg in first loc=*/1 << Clause.getClauseKind()
<< Clause.getDirectiveKind() << OpenACCClauseKind::Reduction;
SemaRef.Diag((*Parallel)->getBeginLoc(),
diag::note_acc_previous_clause_here)
<< (*Parallel)->getClauseKind();
return nullptr;
}
}
// OpenACC 3.3 Section 2.9.2:
// An argument with no keyword or with the 'num' keyword is allowed only when
// the 'num_gangs' does not appear on the 'kernel' construct.
if (Clause.getDirectiveKind() == OpenACCDirectiveKind::KernelsLoop) {
auto GangClauses = llvm::make_filter_range(
ExistingClauses, llvm::IsaPred<OpenACCGangClause>);
for (auto *GC : GangClauses) {
if (cast<OpenACCGangClause>(GC)->hasExprOfKind(OpenACCGangKind::Num)) {
SemaRef.Diag(Clause.getBeginLoc(),
diag::err_acc_num_arg_conflict_reverse)
<< OpenACCClauseKind::NumGangs << OpenACCClauseKind::Gang
<< /*Num argument*/ 1;
SemaRef.Diag(GC->getBeginLoc(), diag::note_acc_previous_clause_here)
<< GC->getClauseKind();
return nullptr;
}
}
}
return OpenACCNumGangsClause::Create(
Ctx, Clause.getBeginLoc(), Clause.getLParenLoc(), Clause.getIntExprs(),
Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitNumWorkersClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
if (DisallowSinceLastDeviceType<OpenACCNumWorkersClause>(Clause))
return nullptr;
// OpenACC 3.3 Section 2.9.2:
// An argument is allowed only when the 'num_workers' does not appear on the
// kernels construct.
if (Clause.getDirectiveKind() == OpenACCDirectiveKind::KernelsLoop) {
auto WorkerClauses = llvm::make_filter_range(
ExistingClauses, llvm::IsaPred<OpenACCWorkerClause>);
for (auto *WC : WorkerClauses) {
if (cast<OpenACCWorkerClause>(WC)->hasIntExpr()) {
SemaRef.Diag(Clause.getBeginLoc(),
diag::err_acc_num_arg_conflict_reverse)
<< OpenACCClauseKind::NumWorkers << OpenACCClauseKind::Worker
<< /*num argument*/ 0;
SemaRef.Diag(WC->getBeginLoc(), diag::note_acc_previous_clause_here)
<< WC->getClauseKind();
return nullptr;
}
}
}
assert(Clause.getIntExprs().size() == 1 &&
"Invalid number of expressions for NumWorkers");
return OpenACCNumWorkersClause::Create(
Ctx, Clause.getBeginLoc(), Clause.getLParenLoc(), Clause.getIntExprs()[0],
Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitVectorLengthClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
if (DisallowSinceLastDeviceType<OpenACCVectorLengthClause>(Clause))
return nullptr;
// OpenACC 3.3 Section 2.9.4:
// An argument is allowed only when the 'vector_length' does not appear on the
// 'kernels' construct.
if (Clause.getDirectiveKind() == OpenACCDirectiveKind::KernelsLoop) {
auto VectorClauses = llvm::make_filter_range(
ExistingClauses, llvm::IsaPred<OpenACCVectorClause>);
for (auto *VC : VectorClauses) {
if (cast<OpenACCVectorClause>(VC)->hasIntExpr()) {
SemaRef.Diag(Clause.getBeginLoc(),
diag::err_acc_num_arg_conflict_reverse)
<< OpenACCClauseKind::VectorLength << OpenACCClauseKind::Vector
<< /*num argument*/ 0;
SemaRef.Diag(VC->getBeginLoc(), diag::note_acc_previous_clause_here)
<< VC->getClauseKind();
return nullptr;
}
}
}
assert(Clause.getIntExprs().size() == 1 &&
"Invalid number of expressions for NumWorkers");
return OpenACCVectorLengthClause::Create(
Ctx, Clause.getBeginLoc(), Clause.getLParenLoc(), Clause.getIntExprs()[0],
Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitAsyncClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
if (DisallowSinceLastDeviceType<OpenACCAsyncClause>(Clause))
return nullptr;
assert(Clause.getNumIntExprs() < 2 &&
"Invalid number of expressions for Async");
return OpenACCAsyncClause::Create(
Ctx, Clause.getBeginLoc(), Clause.getLParenLoc(),
Clause.getNumIntExprs() != 0 ? Clause.getIntExprs()[0] : nullptr,
Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitDeviceNumClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
assert(Clause.getNumIntExprs() == 1 &&
"Invalid number of expressions for device_num");
return OpenACCDeviceNumClause::Create(
Ctx, Clause.getBeginLoc(), Clause.getLParenLoc(), Clause.getIntExprs()[0],
Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitDefaultAsyncClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
assert(Clause.getNumIntExprs() == 1 &&
"Invalid number of expressions for default_async");
return OpenACCDefaultAsyncClause::Create(
Ctx, Clause.getBeginLoc(), Clause.getLParenLoc(), Clause.getIntExprs()[0],
Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitPrivateClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
// ActOnVar ensured that everything is a valid variable reference, so there
// really isn't anything to do here. GCC does some duplicate-finding, though
// it isn't apparent in the standard where this is justified.
llvm::SmallVector<VarDecl *> InitRecipes;
// Assemble the recipes list.
for (const Expr *VarExpr : Clause.getVarList())
InitRecipes.push_back(
SemaRef.CreateInitRecipe(OpenACCClauseKind::Private, VarExpr).first);
return OpenACCPrivateClause::Create(
Ctx, Clause.getBeginLoc(), Clause.getLParenLoc(), Clause.getVarList(),
InitRecipes, Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitFirstPrivateClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
// ActOnVar ensured that everything is a valid variable reference, so there
// really isn't anything to do here. GCC does some duplicate-finding, though
// it isn't apparent in the standard where this is justified.
llvm::SmallVector<OpenACCFirstPrivateRecipe> InitRecipes;
// Assemble the recipes list.
for (const Expr *VarExpr : Clause.getVarList())
InitRecipes.push_back(
SemaRef.CreateInitRecipe(OpenACCClauseKind::FirstPrivate, VarExpr));
return OpenACCFirstPrivateClause::Create(
Ctx, Clause.getBeginLoc(), Clause.getLParenLoc(), Clause.getVarList(),
InitRecipes, Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitNoCreateClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
// ActOnVar ensured that everything is a valid variable reference, so there
// really isn't anything to do here. GCC does some duplicate-finding, though
// it isn't apparent in the standard where this is justified.
return OpenACCNoCreateClause::Create(Ctx, Clause.getBeginLoc(),
Clause.getLParenLoc(),
Clause.getVarList(), Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitPresentClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
// ActOnVar ensured that everything is a valid variable reference, so there
// really isn't anything to do here. GCC does some duplicate-finding, though
// it isn't apparent in the standard where this is justified.
// 'declare' has some restrictions that need to be enforced separately, so
// check it here.
if (SemaRef.CheckDeclareClause(Clause, OpenACCModifierKind::Invalid))
return nullptr;
return OpenACCPresentClause::Create(Ctx, Clause.getBeginLoc(),
Clause.getLParenLoc(),
Clause.getVarList(), Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitHostClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
// ActOnVar ensured that everything is a valid variable reference, so there
// really isn't anything to do here. GCC does some duplicate-finding, though
// it isn't apparent in the standard where this is justified.
return OpenACCHostClause::Create(Ctx, Clause.getBeginLoc(),
Clause.getLParenLoc(), Clause.getVarList(),
Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitDeviceClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
// ActOnVar ensured that everything is a valid variable reference, so there
// really isn't anything to do here. GCC does some duplicate-finding, though
// it isn't apparent in the standard where this is justified.
return OpenACCDeviceClause::Create(Ctx, Clause.getBeginLoc(),
Clause.getLParenLoc(), Clause.getVarList(),
Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitCopyClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
// ActOnVar ensured that everything is a valid variable reference, so there
// really isn't anything to do here. GCC does some duplicate-finding, though
// it isn't apparent in the standard where this is justified.
OpenACCModifierKind NewMods =
CheckModifierList(Clause, Clause.getModifierList());
// 'declare' has some restrictions that need to be enforced separately, so
// check it here.
if (SemaRef.CheckDeclareClause(Clause, NewMods))
return nullptr;
return OpenACCCopyClause::Create(
Ctx, Clause.getClauseKind(), Clause.getBeginLoc(), Clause.getLParenLoc(),
Clause.getModifierList(), Clause.getVarList(), Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitLinkClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
// 'declare' has some restrictions that need to be enforced separately, so
// check it here.
if (SemaRef.CheckDeclareClause(Clause, OpenACCModifierKind::Invalid))
return nullptr;
Clause.setVarListDetails(SemaRef.CheckLinkClauseVarList(Clause.getVarList()),
OpenACCModifierKind::Invalid);
return OpenACCLinkClause::Create(Ctx, Clause.getBeginLoc(),
Clause.getLParenLoc(), Clause.getVarList(),
Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitDeviceResidentClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
// 'declare' has some restrictions that need to be enforced separately, so
// check it here.
if (SemaRef.CheckDeclareClause(Clause, OpenACCModifierKind::Invalid))
return nullptr;
return OpenACCDeviceResidentClause::Create(
Ctx, Clause.getBeginLoc(), Clause.getLParenLoc(), Clause.getVarList(),
Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitCopyInClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
// ActOnVar ensured that everything is a valid variable reference, so there
// really isn't anything to do here. GCC does some duplicate-finding, though
// it isn't apparent in the standard where this is justified.
OpenACCModifierKind NewMods =
CheckModifierList(Clause, Clause.getModifierList());
// 'declare' has some restrictions that need to be enforced separately, so
// check it here.
if (SemaRef.CheckDeclareClause(Clause, NewMods))
return nullptr;
return OpenACCCopyInClause::Create(
Ctx, Clause.getClauseKind(), Clause.getBeginLoc(), Clause.getLParenLoc(),
Clause.getModifierList(), Clause.getVarList(), Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitCopyOutClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
// ActOnVar ensured that everything is a valid variable reference, so there
// really isn't anything to do here. GCC does some duplicate-finding, though
// it isn't apparent in the standard where this is justified.
OpenACCModifierKind NewMods =
CheckModifierList(Clause, Clause.getModifierList());
// 'declare' has some restrictions that need to be enforced separately, so
// check it here.
if (SemaRef.CheckDeclareClause(Clause, NewMods))
return nullptr;
return OpenACCCopyOutClause::Create(
Ctx, Clause.getClauseKind(), Clause.getBeginLoc(), Clause.getLParenLoc(),
Clause.getModifierList(), Clause.getVarList(), Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitCreateClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
// ActOnVar ensured that everything is a valid variable reference, so there
// really isn't anything to do here. GCC does some duplicate-finding, though
// it isn't apparent in the standard where this is justified.
OpenACCModifierKind NewMods =
CheckModifierList(Clause, Clause.getModifierList());
// 'declare' has some restrictions that need to be enforced separately, so
// check it here.
if (SemaRef.CheckDeclareClause(Clause, NewMods))
return nullptr;
return OpenACCCreateClause::Create(
Ctx, Clause.getClauseKind(), Clause.getBeginLoc(), Clause.getLParenLoc(),
Clause.getModifierList(), Clause.getVarList(), Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitAttachClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
// ActOnVar ensured that everything is a valid variable reference, but we
// still have to make sure it is a pointer type.
llvm::SmallVector<Expr *> VarList{Clause.getVarList()};
llvm::erase_if(VarList, [&](Expr *E) {
return SemaRef.CheckVarIsPointerType(OpenACCClauseKind::Attach, E);
});
Clause.setVarListDetails(VarList, OpenACCModifierKind::Invalid);
return OpenACCAttachClause::Create(Ctx, Clause.getBeginLoc(),
Clause.getLParenLoc(), Clause.getVarList(),
Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitDetachClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
// ActOnVar ensured that everything is a valid variable reference, but we
// still have to make sure it is a pointer type.
llvm::SmallVector<Expr *> VarList{Clause.getVarList()};
llvm::erase_if(VarList, [&](Expr *E) {
return SemaRef.CheckVarIsPointerType(OpenACCClauseKind::Detach, E);
});
Clause.setVarListDetails(VarList, OpenACCModifierKind::Invalid);
return OpenACCDetachClause::Create(Ctx, Clause.getBeginLoc(),
Clause.getLParenLoc(), Clause.getVarList(),
Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitDeleteClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
// ActOnVar ensured that everything is a valid variable reference, so there
// really isn't anything to do here. GCC does some duplicate-finding, though
// it isn't apparent in the standard where this is justified.
return OpenACCDeleteClause::Create(Ctx, Clause.getBeginLoc(),
Clause.getLParenLoc(), Clause.getVarList(),
Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitUseDeviceClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
// ActOnVar ensured that everything is a valid variable or array, so nothing
// left to do here.
return OpenACCUseDeviceClause::Create(
Ctx, Clause.getBeginLoc(), Clause.getLParenLoc(), Clause.getVarList(),
Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitDevicePtrClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
// ActOnVar ensured that everything is a valid variable reference, but we
// still have to make sure it is a pointer type.
llvm::SmallVector<Expr *> VarList{Clause.getVarList()};
llvm::erase_if(VarList, [&](Expr *E) {
return SemaRef.CheckVarIsPointerType(OpenACCClauseKind::DevicePtr, E);
});
Clause.setVarListDetails(VarList, OpenACCModifierKind::Invalid);
// 'declare' has some restrictions that need to be enforced separately, so
// check it here.
if (SemaRef.CheckDeclareClause(Clause, OpenACCModifierKind::Invalid))
return nullptr;
return OpenACCDevicePtrClause::Create(
Ctx, Clause.getBeginLoc(), Clause.getLParenLoc(), Clause.getVarList(),
Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitWaitClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
return OpenACCWaitClause::Create(
Ctx, Clause.getBeginLoc(), Clause.getLParenLoc(), Clause.getDevNumExpr(),
Clause.getQueuesLoc(), Clause.getQueueIdExprs(), Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitDeviceTypeClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
// OpenACC Pull #550 (https://github.com/OpenACC/openacc-spec/pull/550)
// clarified that Init, Shutdown, and Set only support a single architecture.
// Though the dialect only requires it for 'set' as far as we know, we'll just
// implement all 3 here.
if ((Clause.getDirectiveKind() == OpenACCDirectiveKind::Init ||
Clause.getDirectiveKind() == OpenACCDirectiveKind::Shutdown ||
Clause.getDirectiveKind() == OpenACCDirectiveKind::Set) &&
Clause.getDeviceTypeArchitectures().size() > 1) {
SemaRef.Diag(Clause.getDeviceTypeArchitectures()[1].getLoc(),
diag::err_acc_device_type_multiple_archs)
<< Clause.getDirectiveKind();
return nullptr;
}
// The list of valid device_type values. Flang also has these hardcoded in
// openacc_parsers.cpp, as there does not seem to be a reliable backend
// source. The list below is sourced from Flang, though NVC++ supports only
// 'nvidia', 'host', 'multicore', and 'default'.
const std::array<llvm::StringLiteral, 6> ValidValues{
"default", "nvidia", "acc_device_nvidia", "radeon", "host", "multicore"};
// As an optimization, we have a manually maintained list of valid values
// below, rather than trying to calculate from above. These should be kept in
// sync if/when the above list ever changes.
std::string ValidValuesString =
"'default', 'nvidia', 'acc_device_nvidia', 'radeon', 'host', 'multicore'";
llvm::SmallVector<DeviceTypeArgument> Architectures{
Clause.getDeviceTypeArchitectures()};
// The parser has ensured that we either have a single entry of just '*'
// (represented by a nullptr IdentifierInfo), or a list.
bool Diagnosed = false;
auto FilterPred = [&](const DeviceTypeArgument &Arch) {
// The '*' case.
if (!Arch.getIdentifierInfo())
return false;
return llvm::find_if(ValidValues, [&](StringRef RHS) {
return Arch.getIdentifierInfo()->getName().equals_insensitive(RHS);
}) == ValidValues.end();
};
auto Diagnose = [&](const DeviceTypeArgument &Arch) {
Diagnosed = SemaRef.Diag(Arch.getLoc(), diag::err_acc_invalid_default_type)
<< Arch.getIdentifierInfo() << Clause.getClauseKind()
<< ValidValuesString;
};
// There aren't stable enumertor versions of 'for-each-then-erase', so do it
// here. We DO keep track of whether we diagnosed something to make sure we
// don't do the 'erase_if' in the event that the first list didn't find
// anything.
llvm::for_each(llvm::make_filter_range(Architectures, FilterPred), Diagnose);
if (Diagnosed)
llvm::erase_if(Architectures, FilterPred);
return OpenACCDeviceTypeClause::Create(
Ctx, Clause.getClauseKind(), Clause.getBeginLoc(), Clause.getLParenLoc(),
Architectures, Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitAutoClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
return OpenACCAutoClause::Create(Ctx, Clause.getBeginLoc(),
Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitNoHostClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
return OpenACCNoHostClause::Create(Ctx, Clause.getBeginLoc(),
Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitIndependentClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
return OpenACCIndependentClause::Create(Ctx, Clause.getBeginLoc(),
Clause.getEndLoc());
}
ExprResult CheckGangStaticExpr(SemaOpenACC &S, Expr *E) {
if (isa<OpenACCAsteriskSizeExpr>(E))
return E;
return S.ActOnIntExpr(OpenACCDirectiveKind::Invalid, OpenACCClauseKind::Gang,
E->getBeginLoc(), E);
}
bool IsOrphanLoop(OpenACCDirectiveKind DK, OpenACCDirectiveKind AssocKind) {
return DK == OpenACCDirectiveKind::Loop &&
AssocKind == OpenACCDirectiveKind::Invalid;
}
bool HasAssocKind(OpenACCDirectiveKind DK, OpenACCDirectiveKind AssocKind) {
return DK == OpenACCDirectiveKind::Loop &&
AssocKind != OpenACCDirectiveKind::Invalid;
}
ExprResult DiagIntArgInvalid(SemaOpenACC &S, Expr *E, OpenACCGangKind GK,
OpenACCClauseKind CK, OpenACCDirectiveKind DK,
OpenACCDirectiveKind AssocKind) {
S.Diag(E->getBeginLoc(), diag::err_acc_int_arg_invalid)
<< GK << CK << IsOrphanLoop(DK, AssocKind) << DK
<< HasAssocKind(DK, AssocKind) << AssocKind;
return ExprError();
}
ExprResult DiagIntArgInvalid(SemaOpenACC &S, Expr *E, StringRef TagKind,
OpenACCClauseKind CK, OpenACCDirectiveKind DK,
OpenACCDirectiveKind AssocKind) {
S.Diag(E->getBeginLoc(), diag::err_acc_int_arg_invalid)
<< TagKind << CK << IsOrphanLoop(DK, AssocKind) << DK
<< HasAssocKind(DK, AssocKind) << AssocKind;
return ExprError();
}
ExprResult CheckGangDimExpr(SemaOpenACC &S, Expr *E) {
// OpenACC 3.3 2.9.2: When the parent compute construct is a parallel
// construct, or an orphaned loop construct, the gang clause behaves as
// follows. ... The dim argument must be a constant positive integer value
// 1, 2, or 3.
// -also-
// OpenACC 3.3 2.15: The 'dim' argument must be a constant positive integer
// with value 1, 2, or 3.
if (!E)
return ExprError();
ExprResult Res = S.ActOnIntExpr(OpenACCDirectiveKind::Invalid,
OpenACCClauseKind::Gang, E->getBeginLoc(), E);
if (!Res.isUsable())
return Res;
if (Res.get()->isInstantiationDependent())
return Res;
std::optional<llvm::APSInt> ICE =
Res.get()->getIntegerConstantExpr(S.getASTContext());
if (!ICE || *ICE <= 0 || ICE > 3) {
S.Diag(Res.get()->getBeginLoc(), diag::err_acc_gang_dim_value)
<< ICE.has_value() << ICE.value_or(llvm::APSInt{}).getExtValue();
return ExprError();
}
return ExprResult{
ConstantExpr::Create(S.getASTContext(), Res.get(), APValue{*ICE})};
}
ExprResult CheckGangParallelExpr(SemaOpenACC &S, OpenACCDirectiveKind DK,
OpenACCDirectiveKind AssocKind,
OpenACCGangKind GK, Expr *E) {
switch (GK) {
case OpenACCGangKind::Static:
return CheckGangStaticExpr(S, E);
case OpenACCGangKind::Num:
// OpenACC 3.3 2.9.2: When the parent compute construct is a parallel
// construct, or an orphaned loop construct, the gang clause behaves as
// follows. ... The num argument is not allowed.
return DiagIntArgInvalid(S, E, GK, OpenACCClauseKind::Gang, DK, AssocKind);
case OpenACCGangKind::Dim:
return CheckGangDimExpr(S, E);
}
llvm_unreachable("Unknown gang kind in gang parallel check");
}
ExprResult CheckGangKernelsExpr(SemaOpenACC &S,
ArrayRef<const OpenACCClause *> ExistingClauses,
OpenACCDirectiveKind DK,
OpenACCDirectiveKind AssocKind,
OpenACCGangKind GK, Expr *E) {
switch (GK) {
// OpenACC 3.3 2.9.2: When the parent compute construct is a kernels
// construct, the gang clause behaves as follows. ... The dim argument is
// not allowed.
case OpenACCGangKind::Dim:
return DiagIntArgInvalid(S, E, GK, OpenACCClauseKind::Gang, DK, AssocKind);
case OpenACCGangKind::Num: {
// OpenACC 3.3 2.9.2: When the parent compute construct is a kernels
// construct, the gang clause behaves as follows. ... An argument with no
// keyword or with num keyword is only allowed when num_gangs does not
// appear on the kernels construct. ... The region of a loop with the gang
// clause may not contain another loop with a gang clause unless within a
// nested compute region.
// If this is a 'combined' construct, search the list of existing clauses.
// Else we need to search the containing 'kernel'.
auto Collection = isOpenACCCombinedDirectiveKind(DK)
? ExistingClauses
: S.getActiveComputeConstructInfo().Clauses;
const auto *Itr =
llvm::find_if(Collection, llvm::IsaPred<OpenACCNumGangsClause>);
if (Itr != Collection.end()) {
S.Diag(E->getBeginLoc(), diag::err_acc_num_arg_conflict)
<< "num" << OpenACCClauseKind::Gang << DK
<< HasAssocKind(DK, AssocKind) << AssocKind
<< OpenACCClauseKind::NumGangs;
S.Diag((*Itr)->getBeginLoc(), diag::note_acc_previous_clause_here)
<< (*Itr)->getClauseKind();
return ExprError();
}
return ExprResult{E};
}
case OpenACCGangKind::Static:
return CheckGangStaticExpr(S, E);
}
llvm_unreachable("Unknown gang kind in gang kernels check");
}
ExprResult CheckGangSerialExpr(SemaOpenACC &S, OpenACCDirectiveKind DK,
OpenACCDirectiveKind AssocKind,
OpenACCGangKind GK, Expr *E) {
switch (GK) {
// 'dim' and 'num' don't really make sense on serial, and GCC rejects them
// too, so we disallow them too.
case OpenACCGangKind::Dim:
case OpenACCGangKind::Num:
return DiagIntArgInvalid(S, E, GK, OpenACCClauseKind::Gang, DK, AssocKind);
case OpenACCGangKind::Static:
return CheckGangStaticExpr(S, E);
}
llvm_unreachable("Unknown gang kind in gang serial check");
}
ExprResult CheckGangRoutineExpr(SemaOpenACC &S, OpenACCDirectiveKind DK,
OpenACCDirectiveKind AssocKind,
OpenACCGangKind GK, Expr *E) {
switch (GK) {
// Only 'dim' is allowed on a routine, so diallow num and static.
case OpenACCGangKind::Num:
case OpenACCGangKind::Static:
return DiagIntArgInvalid(S, E, GK, OpenACCClauseKind::Gang, DK, AssocKind);
case OpenACCGangKind::Dim:
return CheckGangDimExpr(S, E);
}
llvm_unreachable("Unknown gang kind in gang serial check");
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitVectorClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
if (DiagGangWorkerVectorSeqConflict(Clause))
return nullptr;
Expr *IntExpr =
Clause.getNumIntExprs() != 0 ? Clause.getIntExprs()[0] : nullptr;
if (IntExpr) {
switch (Clause.getDirectiveKind()) {
default:
llvm_unreachable("Invalid directive kind for this clause");
case OpenACCDirectiveKind::Loop:
switch (SemaRef.getActiveComputeConstructInfo().Kind) {
case OpenACCDirectiveKind::Invalid:
case OpenACCDirectiveKind::Parallel:
case OpenACCDirectiveKind::ParallelLoop:
// No restriction on when 'parallel' can contain an argument.
break;
case OpenACCDirectiveKind::Serial:
case OpenACCDirectiveKind::SerialLoop:
// GCC disallows this, and there is no real good reason for us to permit
// it, so disallow until we come up with a use case that makes sense.
DiagIntArgInvalid(SemaRef, IntExpr, "length", OpenACCClauseKind::Vector,
Clause.getDirectiveKind(),
SemaRef.getActiveComputeConstructInfo().Kind);
IntExpr = nullptr;
break;
case OpenACCDirectiveKind::Kernels:
case OpenACCDirectiveKind::KernelsLoop: {
const auto *Itr =
llvm::find_if(SemaRef.getActiveComputeConstructInfo().Clauses,
llvm::IsaPred<OpenACCVectorLengthClause>);
if (Itr != SemaRef.getActiveComputeConstructInfo().Clauses.end()) {
SemaRef.Diag(IntExpr->getBeginLoc(), diag::err_acc_num_arg_conflict)
<< "length" << OpenACCClauseKind::Vector
<< Clause.getDirectiveKind()
<< HasAssocKind(Clause.getDirectiveKind(),
SemaRef.getActiveComputeConstructInfo().Kind)
<< SemaRef.getActiveComputeConstructInfo().Kind
<< OpenACCClauseKind::VectorLength;
SemaRef.Diag((*Itr)->getBeginLoc(),
diag::note_acc_previous_clause_here)
<< (*Itr)->getClauseKind();
IntExpr = nullptr;
}
break;
}
default:
llvm_unreachable("Non compute construct in active compute construct");
}
break;
case OpenACCDirectiveKind::KernelsLoop: {
const auto *Itr = llvm::find_if(ExistingClauses,
llvm::IsaPred<OpenACCVectorLengthClause>);
if (Itr != ExistingClauses.end()) {
SemaRef.Diag(IntExpr->getBeginLoc(), diag::err_acc_num_arg_conflict)
<< "length" << OpenACCClauseKind::Vector
<< Clause.getDirectiveKind()
<< HasAssocKind(Clause.getDirectiveKind(),
SemaRef.getActiveComputeConstructInfo().Kind)
<< SemaRef.getActiveComputeConstructInfo().Kind
<< OpenACCClauseKind::VectorLength;
SemaRef.Diag((*Itr)->getBeginLoc(), diag::note_acc_previous_clause_here)
<< (*Itr)->getClauseKind();
IntExpr = nullptr;
}
break;
}
case OpenACCDirectiveKind::SerialLoop:
case OpenACCDirectiveKind::Routine:
DiagIntArgInvalid(SemaRef, IntExpr, "length", OpenACCClauseKind::Vector,
Clause.getDirectiveKind(),
SemaRef.getActiveComputeConstructInfo().Kind);
IntExpr = nullptr;
break;
case OpenACCDirectiveKind::ParallelLoop:
break;
case OpenACCDirectiveKind::Invalid:
// This can happen when the directive was not recognized, but we continued
// anyway. Since there is a lot of stuff that can happen (including
// 'allow anything' in the parallel loop case), just skip all checking and
// continue.
break;
}
}
if (Clause.getDirectiveKind() == OpenACCDirectiveKind::Loop) {
// OpenACC 3.3 2.9.4: The region of a loop with a 'vector' clause may not
// contain a loop with a gang, worker, or vector clause unless within a
// nested compute region.
if (SemaRef.LoopVectorClauseLoc.isValid()) {
// This handles the 'inner loop' diagnostic, but we cannot set that we're
// on one of these until we get to the end of the construct.
SemaRef.Diag(Clause.getBeginLoc(), diag::err_acc_clause_in_clause_region)
<< OpenACCClauseKind::Vector << OpenACCClauseKind::Vector
<< /*skip kernels construct info*/ 0;
SemaRef.Diag(SemaRef.LoopVectorClauseLoc,
diag::note_acc_previous_clause_here)
<< "vector";
return nullptr;
}
}
return OpenACCVectorClause::Create(Ctx, Clause.getBeginLoc(),
Clause.getLParenLoc(), IntExpr,
Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitWorkerClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
if (DiagGangWorkerVectorSeqConflict(Clause))
return nullptr;
Expr *IntExpr =
Clause.getNumIntExprs() != 0 ? Clause.getIntExprs()[0] : nullptr;
if (IntExpr) {
switch (Clause.getDirectiveKind()) {
default:
llvm_unreachable("Invalid directive kind for this clause");
case OpenACCDirectiveKind::Invalid:
// This can happen in cases where the directive was not recognized but we
// continued anyway. Kernels allows kind of any integer argument, so we
// can assume it is that (rather than marking the argument invalid like
// with parallel/serial/routine), and just continue as if nothing
// happened. We'll skip the 'kernels' checking vs num-workers, since this
// MIGHT be something else.
break;
case OpenACCDirectiveKind::Loop:
switch (SemaRef.getActiveComputeConstructInfo().Kind) {
case OpenACCDirectiveKind::Invalid:
case OpenACCDirectiveKind::ParallelLoop:
case OpenACCDirectiveKind::SerialLoop:
case OpenACCDirectiveKind::Parallel:
case OpenACCDirectiveKind::Serial:
DiagIntArgInvalid(SemaRef, IntExpr, OpenACCGangKind::Num,
OpenACCClauseKind::Worker, Clause.getDirectiveKind(),
SemaRef.getActiveComputeConstructInfo().Kind);
IntExpr = nullptr;
break;
case OpenACCDirectiveKind::KernelsLoop:
case OpenACCDirectiveKind::Kernels: {
const auto *Itr =
llvm::find_if(SemaRef.getActiveComputeConstructInfo().Clauses,
llvm::IsaPred<OpenACCNumWorkersClause>);
if (Itr != SemaRef.getActiveComputeConstructInfo().Clauses.end()) {
SemaRef.Diag(IntExpr->getBeginLoc(), diag::err_acc_num_arg_conflict)
<< "num" << OpenACCClauseKind::Worker << Clause.getDirectiveKind()
<< HasAssocKind(Clause.getDirectiveKind(),
SemaRef.getActiveComputeConstructInfo().Kind)
<< SemaRef.getActiveComputeConstructInfo().Kind
<< OpenACCClauseKind::NumWorkers;
SemaRef.Diag((*Itr)->getBeginLoc(),
diag::note_acc_previous_clause_here)
<< (*Itr)->getClauseKind();
IntExpr = nullptr;
}
break;
}
default:
llvm_unreachable("Non compute construct in active compute construct");
}
break;
case OpenACCDirectiveKind::ParallelLoop:
case OpenACCDirectiveKind::SerialLoop:
case OpenACCDirectiveKind::Routine:
DiagIntArgInvalid(SemaRef, IntExpr, OpenACCGangKind::Num,
OpenACCClauseKind::Worker, Clause.getDirectiveKind(),
SemaRef.getActiveComputeConstructInfo().Kind);
IntExpr = nullptr;
break;
case OpenACCDirectiveKind::KernelsLoop: {
const auto *Itr = llvm::find_if(ExistingClauses,
llvm::IsaPred<OpenACCNumWorkersClause>);
if (Itr != ExistingClauses.end()) {
SemaRef.Diag(IntExpr->getBeginLoc(), diag::err_acc_num_arg_conflict)
<< "num" << OpenACCClauseKind::Worker << Clause.getDirectiveKind()
<< HasAssocKind(Clause.getDirectiveKind(),
SemaRef.getActiveComputeConstructInfo().Kind)
<< SemaRef.getActiveComputeConstructInfo().Kind
<< OpenACCClauseKind::NumWorkers;
SemaRef.Diag((*Itr)->getBeginLoc(), diag::note_acc_previous_clause_here)
<< (*Itr)->getClauseKind();
IntExpr = nullptr;
}
}
}
}
if (Clause.getDirectiveKind() == OpenACCDirectiveKind::Loop) {
// OpenACC 3.3 2.9.3: The region of a loop with a 'worker' clause may not
// contain a loop with a gang or worker clause unless within a nested
// compute region.
if (SemaRef.LoopWorkerClauseLoc.isValid()) {
// This handles the 'inner loop' diagnostic, but we cannot set that we're
// on one of these until we get to the end of the construct.
SemaRef.Diag(Clause.getBeginLoc(), diag::err_acc_clause_in_clause_region)
<< OpenACCClauseKind::Worker << OpenACCClauseKind::Worker
<< /*skip kernels construct info*/ 0;
SemaRef.Diag(SemaRef.LoopWorkerClauseLoc,
diag::note_acc_previous_clause_here)
<< "worker";
return nullptr;
}
// OpenACC 3.3 2.9.4: The region of a loop with a 'vector' clause may not
// contain a loop with a gang, worker, or vector clause unless within a
// nested compute region.
if (SemaRef.LoopVectorClauseLoc.isValid()) {
// This handles the 'inner loop' diagnostic, but we cannot set that we're
// on one of these until we get to the end of the construct.
SemaRef.Diag(Clause.getBeginLoc(), diag::err_acc_clause_in_clause_region)
<< OpenACCClauseKind::Worker << OpenACCClauseKind::Vector
<< /*skip kernels construct info*/ 0;
SemaRef.Diag(SemaRef.LoopVectorClauseLoc,
diag::note_acc_previous_clause_here)
<< "vector";
return nullptr;
}
}
return OpenACCWorkerClause::Create(Ctx, Clause.getBeginLoc(),
Clause.getLParenLoc(), IntExpr,
Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitGangClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
if (DiagGangWorkerVectorSeqConflict(Clause))
return nullptr;
// OpenACC 3.3 Section 2.9.11: A reduction clause may not appear on a loop
// directive that has a gang clause and is within a compute construct that has
// a num_gangs clause with more than one explicit argument.
if ((Clause.getDirectiveKind() == OpenACCDirectiveKind::Loop &&
SemaRef.getActiveComputeConstructInfo().Kind !=
OpenACCDirectiveKind::Invalid) ||
isOpenACCCombinedDirectiveKind(Clause.getDirectiveKind())) {
// num_gangs clause on the active compute construct.
auto ActiveComputeConstructContainer =
isOpenACCCombinedDirectiveKind(Clause.getDirectiveKind())
? ExistingClauses
: SemaRef.getActiveComputeConstructInfo().Clauses;
auto *NumGangsClauseItr = llvm::find_if(
ActiveComputeConstructContainer, llvm::IsaPred<OpenACCNumGangsClause>);
if (NumGangsClauseItr != ActiveComputeConstructContainer.end() &&
cast<OpenACCNumGangsClause>(*NumGangsClauseItr)->getIntExprs().size() >
1) {
auto *ReductionClauseItr =
llvm::find_if(ExistingClauses, llvm::IsaPred<OpenACCReductionClause>);
if (ReductionClauseItr != ExistingClauses.end()) {
SemaRef.Diag(Clause.getBeginLoc(),
diag::err_acc_gang_reduction_numgangs_conflict)
<< OpenACCClauseKind::Gang << OpenACCClauseKind::Reduction
<< Clause.getDirectiveKind()
<< isOpenACCCombinedDirectiveKind(Clause.getDirectiveKind());
SemaRef.Diag((*ReductionClauseItr)->getBeginLoc(),
diag::note_acc_previous_clause_here)
<< (*ReductionClauseItr)->getClauseKind();
SemaRef.Diag((*NumGangsClauseItr)->getBeginLoc(),
diag::note_acc_previous_clause_here)
<< (*NumGangsClauseItr)->getClauseKind();
return nullptr;
}
}
}
llvm::SmallVector<OpenACCGangKind> GangKinds;
llvm::SmallVector<Expr *> IntExprs;
// Store the existing locations, so we can do duplicate checking. Index is
// the int-value of the OpenACCGangKind enum.
SourceLocation ExistingElemLoc[3];
for (unsigned I = 0; I < Clause.getIntExprs().size(); ++I) {
OpenACCGangKind GK = Clause.getGangKinds()[I];
ExprResult ER =
SemaRef.CheckGangExpr(ExistingClauses, Clause.getDirectiveKind(), GK,
Clause.getIntExprs()[I]);
if (!ER.isUsable())
continue;
// OpenACC 3.3 2.9: 'gang-arg-list' may have at most one num, one dim, and
// one static argument.
if (ExistingElemLoc[static_cast<unsigned>(GK)].isValid()) {
SemaRef.Diag(ER.get()->getBeginLoc(), diag::err_acc_gang_multiple_elt)
<< static_cast<unsigned>(GK);
SemaRef.Diag(ExistingElemLoc[static_cast<unsigned>(GK)],
diag::note_acc_previous_expr_here);
continue;
}
ExistingElemLoc[static_cast<unsigned>(GK)] = ER.get()->getBeginLoc();
GangKinds.push_back(GK);
IntExprs.push_back(ER.get());
}
if (Clause.getDirectiveKind() == OpenACCDirectiveKind::Loop) {
// OpenACC 3.3 2.9.2: When the parent compute construct is a kernels
// construct, the gang clause behaves as follows. ... The region of a loop
// with a gang clause may not contain another loop with a gang clause unless
// within a nested compute region.
if (SemaRef.LoopGangClauseOnKernel.Loc.isValid()) {
// This handles the 'inner loop' diagnostic, but we cannot set that we're
// on one of these until we get to the end of the construct.
SemaRef.Diag(Clause.getBeginLoc(), diag::err_acc_clause_in_clause_region)
<< OpenACCClauseKind::Gang << OpenACCClauseKind::Gang
<< /*kernels construct info*/ 1
<< SemaRef.LoopGangClauseOnKernel.DirKind;
SemaRef.Diag(SemaRef.LoopGangClauseOnKernel.Loc,
diag::note_acc_previous_clause_here)
<< "gang";
return nullptr;
}
// OpenACC 3.3 2.9.3: The region of a loop with a 'worker' clause may not
// contain a loop with a gang or worker clause unless within a nested
// compute region.
if (SemaRef.LoopWorkerClauseLoc.isValid()) {
// This handles the 'inner loop' diagnostic, but we cannot set that we're
// on one of these until we get to the end of the construct.
SemaRef.Diag(Clause.getBeginLoc(), diag::err_acc_clause_in_clause_region)
<< OpenACCClauseKind::Gang << OpenACCClauseKind::Worker
<< /*!kernels construct info*/ 0;
SemaRef.Diag(SemaRef.LoopWorkerClauseLoc,
diag::note_acc_previous_clause_here)
<< "worker";
return nullptr;
}
// OpenACC 3.3 2.9.4: The region of a loop with a 'vector' clause may not
// contain a loop with a gang, worker, or vector clause unless within a
// nested compute region.
if (SemaRef.LoopVectorClauseLoc.isValid()) {
// This handles the 'inner loop' diagnostic, but we cannot set that we're
// on one of these until we get to the end of the construct.
SemaRef.Diag(Clause.getBeginLoc(), diag::err_acc_clause_in_clause_region)
<< OpenACCClauseKind::Gang << OpenACCClauseKind::Vector
<< /*!kernels construct info*/ 0;
SemaRef.Diag(SemaRef.LoopVectorClauseLoc,
diag::note_acc_previous_clause_here)
<< "vector";
return nullptr;
}
}
return SemaRef.CheckGangClause(Clause.getDirectiveKind(), ExistingClauses,
Clause.getBeginLoc(), Clause.getLParenLoc(),
GangKinds, IntExprs, Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitFinalizeClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
// There isn't anything to do here, this is only valid on one construct, and
// has no associated rules.
return OpenACCFinalizeClause::Create(Ctx, Clause.getBeginLoc(),
Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitIfPresentClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
// There isn't anything to do here, this is only valid on one construct, and
// has no associated rules.
return OpenACCIfPresentClause::Create(Ctx, Clause.getBeginLoc(),
Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitSeqClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
// OpenACC 3.3 2.9:
// A 'gang', 'worker', or 'vector' clause may not appear if a 'seq' clause
// appears.
if (Clause.getDirectiveKind() == OpenACCDirectiveKind::Loop ||
isOpenACCCombinedDirectiveKind(Clause.getDirectiveKind())) {
const auto *Itr = llvm::find_if(
ExistingClauses, llvm::IsaPred<OpenACCGangClause, OpenACCVectorClause,
OpenACCWorkerClause>);
if (Itr != ExistingClauses.end()) {
SemaRef.Diag(Clause.getBeginLoc(), diag::err_acc_clause_cannot_combine)
<< Clause.getClauseKind() << (*Itr)->getClauseKind()
<< Clause.getDirectiveKind();
SemaRef.Diag((*Itr)->getBeginLoc(), diag::note_acc_previous_clause_here)
<< (*Itr)->getClauseKind();
return nullptr;
}
}
return OpenACCSeqClause::Create(Ctx, Clause.getBeginLoc(),
Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitReductionClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
// OpenACC 3.3 Section 2.9.11: A reduction clause may not appear on a loop
// directive that has a gang clause and is within a compute construct that has
// a num_gangs clause with more than one explicit argument.
if ((Clause.getDirectiveKind() == OpenACCDirectiveKind::Loop &&
SemaRef.getActiveComputeConstructInfo().Kind !=
OpenACCDirectiveKind::Invalid) ||
isOpenACCCombinedDirectiveKind(Clause.getDirectiveKind())) {
// num_gangs clause on the active compute construct.
auto ActiveComputeConstructContainer =
isOpenACCCombinedDirectiveKind(Clause.getDirectiveKind())
? ExistingClauses
: SemaRef.getActiveComputeConstructInfo().Clauses;
auto *NumGangsClauseItr = llvm::find_if(
ActiveComputeConstructContainer, llvm::IsaPred<OpenACCNumGangsClause>);
if (NumGangsClauseItr != ActiveComputeConstructContainer.end() &&
cast<OpenACCNumGangsClause>(*NumGangsClauseItr)->getIntExprs().size() >
1) {
auto *GangClauseItr =
llvm::find_if(ExistingClauses, llvm::IsaPred<OpenACCGangClause>);
if (GangClauseItr != ExistingClauses.end()) {
SemaRef.Diag(Clause.getBeginLoc(),
diag::err_acc_gang_reduction_numgangs_conflict)
<< OpenACCClauseKind::Reduction << OpenACCClauseKind::Gang
<< Clause.getDirectiveKind()
<< isOpenACCCombinedDirectiveKind(Clause.getDirectiveKind());
SemaRef.Diag((*GangClauseItr)->getBeginLoc(),
diag::note_acc_previous_clause_here)
<< (*GangClauseItr)->getClauseKind();
SemaRef.Diag((*NumGangsClauseItr)->getBeginLoc(),
diag::note_acc_previous_clause_here)
<< (*NumGangsClauseItr)->getClauseKind();
return nullptr;
}
}
}
// OpenACC3.3 Section 2.9.11: If a variable is involved in a reduction that
// spans multiple nested loops where two or more of those loops have
// associated loop directives, a reduction clause containing that variable
// must appear on each of those loop directives.
//
// This can't really be implemented in the CFE, as this requires a level of
// rechability/useage analysis that we're not really wanting to get into.
// Additionally, I'm alerted that this restriction is one that the middle-end
// can just 'figure out' as an extension and isn't really necessary.
//
// OpenACC3.3 Section 2.9.11: Every 'var' in a reduction clause appearing on
// an orphaned loop construct must be private.
//
// This again is something we cannot really diagnose, as it requires we see
// all the uses/scopes of all variables referenced. The middle end/MLIR might
// be able to diagnose this.
// OpenACC 3.3 Section 2.5.4:
// A reduction clause may not appear on a parallel construct with a
// num_gangs clause that has more than one argument.
if (Clause.getDirectiveKind() == OpenACCDirectiveKind::Parallel ||
Clause.getDirectiveKind() == OpenACCDirectiveKind::ParallelLoop) {
auto NumGangsClauses = llvm::make_filter_range(
ExistingClauses, llvm::IsaPred<OpenACCNumGangsClause>);
for (auto *NGC : NumGangsClauses) {
unsigned NumExprs =
cast<OpenACCNumGangsClause>(NGC)->getIntExprs().size();
if (NumExprs > 1) {
SemaRef.Diag(Clause.getBeginLoc(),
diag::err_acc_reduction_num_gangs_conflict)
<< /*>1 arg in first loc=*/0 << Clause.getClauseKind()
<< Clause.getDirectiveKind() << OpenACCClauseKind::NumGangs;
SemaRef.Diag(NGC->getBeginLoc(), diag::note_acc_previous_clause_here)
<< NGC->getClauseKind();
return nullptr;
}
}
}
SmallVector<Expr *> ValidVars;
for (Expr *Var : Clause.getVarList()) {
ExprResult Res = SemaRef.CheckReductionVar(Clause.getDirectiveKind(),
Clause.getReductionOp(), Var);
if (Res.isUsable())
ValidVars.push_back(Res.get());
}
return SemaRef.CheckReductionClause(
ExistingClauses, Clause.getDirectiveKind(), Clause.getBeginLoc(),
Clause.getLParenLoc(), Clause.getReductionOp(), ValidVars,
Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitCollapseClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
if (DisallowSinceLastDeviceType<OpenACCCollapseClause>(Clause))
return nullptr;
ExprResult LoopCount = SemaRef.CheckCollapseLoopCount(Clause.getLoopCount());
if (!LoopCount.isUsable())
return nullptr;
return OpenACCCollapseClause::Create(Ctx, Clause.getBeginLoc(),
Clause.getLParenLoc(), Clause.isForce(),
LoopCount.get(), Clause.getEndLoc());
}
OpenACCClause *SemaOpenACCClauseVisitor::VisitBindClause(
SemaOpenACC::OpenACCParsedClause &Clause) {
if (std::holds_alternative<StringLiteral *>(Clause.getBindDetails()))
return OpenACCBindClause::Create(
Ctx, Clause.getBeginLoc(), Clause.getLParenLoc(),
std::get<StringLiteral *>(Clause.getBindDetails()), Clause.getEndLoc());
return OpenACCBindClause::Create(
Ctx, Clause.getBeginLoc(), Clause.getLParenLoc(),
std::get<IdentifierInfo *>(Clause.getBindDetails()), Clause.getEndLoc());
}
// Return true if the two vars refer to the same variable, for the purposes of
// equality checking.
bool areVarsEqual(Expr *VarExpr1, Expr *VarExpr2) {
if (VarExpr1->isInstantiationDependent() ||
VarExpr2->isInstantiationDependent())
return false;
VarExpr1 = VarExpr1->IgnoreParenCasts();
VarExpr2 = VarExpr2->IgnoreParenCasts();
// Legal expressions can be: Scalar variable reference, sub-array, array
// element, or composite variable member.
// Sub-array.
if (isa<ArraySectionExpr>(VarExpr1)) {
auto *Expr2AS = dyn_cast<ArraySectionExpr>(VarExpr2);
if (!Expr2AS)
return false;
auto *Expr1AS = cast<ArraySectionExpr>(VarExpr1);
if (!areVarsEqual(Expr1AS->getBase(), Expr2AS->getBase()))
return false;
// We could possibly check to see if the ranges aren't overlapping, but it
// isn't clear that the rules allow this.
return true;
}
// Array-element.
if (isa<ArraySubscriptExpr>(VarExpr1)) {
auto *Expr2AS = dyn_cast<ArraySubscriptExpr>(VarExpr2);
if (!Expr2AS)
return false;
auto *Expr1AS = cast<ArraySubscriptExpr>(VarExpr1);
if (!areVarsEqual(Expr1AS->getBase(), Expr2AS->getBase()))
return false;
// We could possibly check to see if the elements referenced aren't the
// same, but it isn't clear by reading of the standard that this is allowed
// (and that the 'var' refered to isn't the array).
return true;
}
// Scalar variable reference, or composite variable.
if (isa<DeclRefExpr>(VarExpr1)) {
auto *Expr2DRE = dyn_cast<DeclRefExpr>(VarExpr2);
if (!Expr2DRE)
return false;
auto *Expr1DRE = cast<DeclRefExpr>(VarExpr1);
return Expr1DRE->getDecl()->getMostRecentDecl() ==
Expr2DRE->getDecl()->getMostRecentDecl();
}
llvm_unreachable("Unknown variable type encountered");
}
} // namespace
OpenACCClause *
SemaOpenACC::ActOnClause(ArrayRef<const OpenACCClause *> ExistingClauses,
OpenACCParsedClause &Clause) {
if (Clause.getClauseKind() == OpenACCClauseKind::Invalid)
return nullptr;
if (DiagnoseAllowedClauses(Clause.getDirectiveKind(), Clause.getClauseKind(),
Clause.getBeginLoc()))
return nullptr;
//// Diagnose that we don't support this clause on this directive.
// if (!doesClauseApplyToDirective(Clause.getDirectiveKind(),
// Clause.getClauseKind())) {
// Diag(Clause.getBeginLoc(), diag::err_acc_clause_appertainment)
// << Clause.getDirectiveKind() << Clause.getClauseKind();
// return nullptr;
// }
if (const auto *DevTypeClause = llvm::find_if(
ExistingClauses, llvm::IsaPred<OpenACCDeviceTypeClause>);
DevTypeClause != ExistingClauses.end()) {
if (checkValidAfterDeviceType(
*this, *cast<OpenACCDeviceTypeClause>(*DevTypeClause), Clause))
return nullptr;
}
SemaOpenACCClauseVisitor Visitor{*this, ExistingClauses};
OpenACCClause *Result = Visitor.Visit(Clause);
assert((!Result || Result->getClauseKind() == Clause.getClauseKind()) &&
"Created wrong clause?");
return Result;
}
/// OpenACC 3.3 section 2.5.15:
/// At a mininmum, the supported data types include ... the numerical data types
/// in C, C++, and Fortran.
///
/// If the reduction var is a composite variable, each
/// member of the composite variable must be a supported datatype for the
/// reduction operation.
ExprResult SemaOpenACC::CheckReductionVar(OpenACCDirectiveKind DirectiveKind,
OpenACCReductionOperator ReductionOp,
Expr *VarExpr) {
VarExpr = VarExpr->IgnoreParenCasts();
auto TypeIsValid = [](QualType Ty) {
return Ty->isDependentType() || Ty->isScalarType();
};
if (isa<ArraySectionExpr>(VarExpr)) {
Expr *ASExpr = VarExpr;
QualType BaseTy = ArraySectionExpr::getBaseOriginalType(ASExpr);
QualType EltTy = getASTContext().getBaseElementType(BaseTy);
if (!TypeIsValid(EltTy)) {
Diag(VarExpr->getExprLoc(), diag::err_acc_reduction_type)
<< EltTy << /*Sub array base type*/ 1;
return ExprError();
}
} else if (VarExpr->getType()->isArrayType()) {
// Arrays are considered an 'aggregate variable' explicitly, so are OK, no
// additional checking required.
//
// Glossary: Aggregate variables a variable of any non-scalar datatype,
// including array or composite variables.
//
// The next branch (record decl) checks for composite variables.
} else if (auto *RD = VarExpr->getType()->getAsRecordDecl()) {
if (!RD->isStruct() && !RD->isClass()) {
Diag(VarExpr->getExprLoc(), diag::err_acc_reduction_composite_type)
<< /*not class or struct*/ 0 << VarExpr->getType();
return ExprError();
}
if (!RD->isCompleteDefinition()) {
Diag(VarExpr->getExprLoc(), diag::err_acc_reduction_composite_type)
<< /*incomplete*/ 1 << VarExpr->getType();
return ExprError();
}
if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
CXXRD && !CXXRD->isAggregate()) {
Diag(VarExpr->getExprLoc(), diag::err_acc_reduction_composite_type)
<< /*aggregate*/ 2 << VarExpr->getType();
return ExprError();
}
for (FieldDecl *FD : RD->fields()) {
if (!TypeIsValid(FD->getType())) {
Diag(VarExpr->getExprLoc(),
diag::err_acc_reduction_composite_member_type);
Diag(FD->getLocation(), diag::note_acc_reduction_composite_member_loc);
return ExprError();
}
}
} else if (!TypeIsValid(VarExpr->getType())) {
Diag(VarExpr->getExprLoc(), diag::err_acc_reduction_type)
<< VarExpr->getType() << /*Sub array base type*/ 0;
return ExprError();
}
// OpenACC3.3: 2.9.11: Reduction clauses on nested constructs for the same
// reduction 'var' must have the same reduction operator.
if (!VarExpr->isInstantiationDependent()) {
for (const OpenACCReductionClause *RClause : ActiveReductionClauses) {
if (RClause->getReductionOp() == ReductionOp)
break;
for (Expr *OldVarExpr : RClause->getVarList()) {
if (OldVarExpr->isInstantiationDependent())
continue;
if (areVarsEqual(VarExpr, OldVarExpr)) {
Diag(VarExpr->getExprLoc(), diag::err_reduction_op_mismatch)
<< ReductionOp << RClause->getReductionOp();
Diag(OldVarExpr->getExprLoc(), diag::note_acc_previous_clause_here)
<< RClause->getClauseKind();
return ExprError();
}
}
}
}
return VarExpr;
}
ExprResult SemaOpenACC::CheckTileSizeExpr(Expr *SizeExpr) {
if (!SizeExpr)
return ExprError();
assert((SizeExpr->isInstantiationDependent() ||
SizeExpr->getType()->isIntegerType()) &&
"size argument non integer?");
// If dependent, or an asterisk, the expression is fine.
if (SizeExpr->isInstantiationDependent() ||
isa<OpenACCAsteriskSizeExpr>(SizeExpr))
return ExprResult{SizeExpr};
std::optional<llvm::APSInt> ICE =
SizeExpr->getIntegerConstantExpr(getASTContext());
// OpenACC 3.3 2.9.8
// where each tile size is a constant positive integer expression or asterisk.
if (!ICE || *ICE <= 0) {
Diag(SizeExpr->getBeginLoc(), diag::err_acc_size_expr_value)
<< ICE.has_value() << ICE.value_or(llvm::APSInt{}).getExtValue();
return ExprError();
}
return ExprResult{
ConstantExpr::Create(getASTContext(), SizeExpr, APValue{*ICE})};
}
ExprResult SemaOpenACC::CheckCollapseLoopCount(Expr *LoopCount) {
if (!LoopCount)
return ExprError();
assert((LoopCount->isInstantiationDependent() ||
LoopCount->getType()->isIntegerType()) &&
"Loop argument non integer?");
// If this is dependent, there really isn't anything we can check.
if (LoopCount->isInstantiationDependent())
return ExprResult{LoopCount};
std::optional<llvm::APSInt> ICE =
LoopCount->getIntegerConstantExpr(getASTContext());
// OpenACC 3.3: 2.9.1
// The argument to the collapse clause must be a constant positive integer
// expression.
if (!ICE || *ICE <= 0) {
Diag(LoopCount->getBeginLoc(), diag::err_acc_collapse_loop_count)
<< ICE.has_value() << ICE.value_or(llvm::APSInt{}).getExtValue();
return ExprError();
}
return ExprResult{
ConstantExpr::Create(getASTContext(), LoopCount, APValue{*ICE})};
}
ExprResult
SemaOpenACC::CheckGangExpr(ArrayRef<const OpenACCClause *> ExistingClauses,
OpenACCDirectiveKind DK, OpenACCGangKind GK,
Expr *E) {
// There are two cases for the enforcement here: the 'current' directive is a
// 'loop', where we need to check the active compute construct kind, or the
// current directive is a 'combined' construct, where we have to check the
// current one.
switch (DK) {
case OpenACCDirectiveKind::ParallelLoop:
return CheckGangParallelExpr(*this, DK, ActiveComputeConstructInfo.Kind, GK,
E);
case OpenACCDirectiveKind::SerialLoop:
return CheckGangSerialExpr(*this, DK, ActiveComputeConstructInfo.Kind, GK,
E);
case OpenACCDirectiveKind::KernelsLoop:
return CheckGangKernelsExpr(*this, ExistingClauses, DK,
ActiveComputeConstructInfo.Kind, GK, E);
case OpenACCDirectiveKind::Routine:
return CheckGangRoutineExpr(*this, DK, ActiveComputeConstructInfo.Kind, GK,
E);
case OpenACCDirectiveKind::Loop:
switch (ActiveComputeConstructInfo.Kind) {
case OpenACCDirectiveKind::Invalid:
case OpenACCDirectiveKind::Parallel:
case OpenACCDirectiveKind::ParallelLoop:
return CheckGangParallelExpr(*this, DK, ActiveComputeConstructInfo.Kind,
GK, E);
case OpenACCDirectiveKind::SerialLoop:
case OpenACCDirectiveKind::Serial:
return CheckGangSerialExpr(*this, DK, ActiveComputeConstructInfo.Kind, GK,
E);
case OpenACCDirectiveKind::KernelsLoop:
case OpenACCDirectiveKind::Kernels:
return CheckGangKernelsExpr(*this, ExistingClauses, DK,
ActiveComputeConstructInfo.Kind, GK, E);
default:
llvm_unreachable("Non compute construct in active compute construct?");
}
case OpenACCDirectiveKind::Invalid:
// This can happen in cases where the the directive was not recognized but
// we continued anyway. Since the validity checking is all-over the place
// (it can be a star/integer, or a constant expr depending on the tag), we
// just give up and return an ExprError here.
return ExprError();
default:
llvm_unreachable("Invalid directive kind for a Gang clause");
}
llvm_unreachable("Compute construct directive not handled?");
}
OpenACCClause *
SemaOpenACC::CheckGangClause(OpenACCDirectiveKind DirKind,
ArrayRef<const OpenACCClause *> ExistingClauses,
SourceLocation BeginLoc, SourceLocation LParenLoc,
ArrayRef<OpenACCGangKind> GangKinds,
ArrayRef<Expr *> IntExprs, SourceLocation EndLoc) {
// Reduction isn't possible on 'routine' so we don't bother checking it here.
if (DirKind != OpenACCDirectiveKind::Routine) {
// OpenACC 3.3 2.9.11: A reduction clause may not appear on a loop directive
// that has a gang clause with a dim: argument whose value is greater
// than 1.
const auto *ReductionItr =
llvm::find_if(ExistingClauses, llvm::IsaPred<OpenACCReductionClause>);
if (ReductionItr != ExistingClauses.end()) {
const auto GangZip = llvm::zip_equal(GangKinds, IntExprs);
const auto GangItr = llvm::find_if(GangZip, [](const auto &Tuple) {
return std::get<0>(Tuple) == OpenACCGangKind::Dim;
});
if (GangItr != GangZip.end()) {
const Expr *DimExpr = std::get<1>(*GangItr);
assert((DimExpr->isInstantiationDependent() ||
isa<ConstantExpr>(DimExpr)) &&
"Improperly formed gang argument");
if (const auto *DimVal = dyn_cast<ConstantExpr>(DimExpr);
DimVal && DimVal->getResultAsAPSInt() > 1) {
Diag(DimVal->getBeginLoc(), diag::err_acc_gang_reduction_conflict)
<< /*gang/reduction=*/0 << DirKind;
Diag((*ReductionItr)->getBeginLoc(),
diag::note_acc_previous_clause_here)
<< (*ReductionItr)->getClauseKind();
return nullptr;
}
}
}
}
return OpenACCGangClause::Create(getASTContext(), BeginLoc, LParenLoc,
GangKinds, IntExprs, EndLoc);
}
OpenACCClause *SemaOpenACC::CheckReductionClause(
ArrayRef<const OpenACCClause *> ExistingClauses,
OpenACCDirectiveKind DirectiveKind, SourceLocation BeginLoc,
SourceLocation LParenLoc, OpenACCReductionOperator ReductionOp,
ArrayRef<Expr *> Vars, SourceLocation EndLoc) {
if (DirectiveKind == OpenACCDirectiveKind::Loop ||
isOpenACCCombinedDirectiveKind(DirectiveKind)) {
// OpenACC 3.3 2.9.11: A reduction clause may not appear on a loop directive
// that has a gang clause with a dim: argument whose value is greater
// than 1.
const auto GangClauses = llvm::make_filter_range(
ExistingClauses, llvm::IsaPred<OpenACCGangClause>);
for (auto *GC : GangClauses) {
const auto *GangClause = cast<OpenACCGangClause>(GC);
for (unsigned I = 0; I < GangClause->getNumExprs(); ++I) {
std::pair<OpenACCGangKind, const Expr *> EPair = GangClause->getExpr(I);
if (EPair.first != OpenACCGangKind::Dim)
continue;
if (const auto *DimVal = dyn_cast<ConstantExpr>(EPair.second);
DimVal && DimVal->getResultAsAPSInt() > 1) {
Diag(BeginLoc, diag::err_acc_gang_reduction_conflict)
<< /*reduction/gang=*/1 << DirectiveKind;
Diag(GangClause->getBeginLoc(), diag::note_acc_previous_clause_here)
<< GangClause->getClauseKind();
return nullptr;
}
}
}
}
auto *Ret = OpenACCReductionClause::Create(
getASTContext(), BeginLoc, LParenLoc, ReductionOp, Vars, EndLoc);
return Ret;
}
llvm::SmallVector<Expr *>
SemaOpenACC::CheckLinkClauseVarList(ArrayRef<Expr *> VarExprs) {
const DeclContext *DC = removeLinkageSpecDC(getCurContext());
// Link has no special restrictions on its var list unless it is not at NS/TU
// scope.
if (isa<NamespaceDecl, TranslationUnitDecl>(DC))
return llvm::SmallVector<Expr *>(VarExprs);
llvm::SmallVector<Expr *> NewVarList;
for (Expr *VarExpr : VarExprs) {
if (isa<DependentScopeDeclRefExpr, CXXDependentScopeMemberExpr>(VarExpr)) {
NewVarList.push_back(VarExpr);
continue;
}
// Field decls can't be global, nor extern, and declare can't refer to
// non-static fields in class-scope, so this always fails the scope check.
// BUT for now we add this so it gets diagnosed by the general 'declare'
// rules.
if (isa<MemberExpr>(VarExpr)) {
NewVarList.push_back(VarExpr);
continue;
}
const auto *DRE = cast<DeclRefExpr>(VarExpr);
const VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl());
if (!Var || !Var->hasExternalStorage())
Diag(VarExpr->getBeginLoc(), diag::err_acc_link_not_extern);
else
NewVarList.push_back(VarExpr);
}
return NewVarList;
}
bool SemaOpenACC::CheckDeclareClause(SemaOpenACC::OpenACCParsedClause &Clause,
OpenACCModifierKind Mods) {
if (Clause.getDirectiveKind() != OpenACCDirectiveKind::Declare)
return false;
const DeclContext *DC = removeLinkageSpecDC(getCurContext());
// Whether this is 'create', 'copyin', 'deviceptr', 'device_resident', or
// 'link', which have 2 special rules.
bool IsSpecialClause =
Clause.getClauseKind() == OpenACCClauseKind::Create ||
Clause.getClauseKind() == OpenACCClauseKind::CopyIn ||
Clause.getClauseKind() == OpenACCClauseKind::DevicePtr ||
Clause.getClauseKind() == OpenACCClauseKind::DeviceResident ||
Clause.getClauseKind() == OpenACCClauseKind::Link;
// OpenACC 3.3 2.13:
// In C or C++ global or namespace scope, only 'create',
// 'copyin', 'deviceptr', 'device_resident', or 'link' clauses are
// allowed.
if (!IsSpecialClause && isa<NamespaceDecl, TranslationUnitDecl>(DC)) {
return Diag(Clause.getBeginLoc(), diag::err_acc_declare_clause_at_global)
<< Clause.getClauseKind();
}
llvm::SmallVector<Expr *> FilteredVarList;
const DeclaratorDecl *CurDecl = nullptr;
for (Expr *VarExpr : Clause.getVarList()) {
if (isa<DependentScopeDeclRefExpr, CXXDependentScopeMemberExpr>(VarExpr)) {
// There isn't really anything we can do here, so we add them anyway and
// we can check them again when we instantiate this.
} else if (const auto *MemExpr = dyn_cast<MemberExpr>(VarExpr)) {
FieldDecl *FD =
cast<FieldDecl>(MemExpr->getMemberDecl()->getCanonicalDecl());
CurDecl = FD;
if (removeLinkageSpecDC(
FD->getLexicalDeclContext()->getPrimaryContext()) != DC) {
Diag(MemExpr->getBeginLoc(), diag::err_acc_declare_same_scope)
<< Clause.getClauseKind();
continue;
}
} else {
const Expr *VarExprTemp = VarExpr;
while (const auto *ASE = dyn_cast<ArraySectionExpr>(VarExprTemp))
VarExprTemp = ASE->getBase()->IgnoreParenImpCasts();
const auto *DRE = cast<DeclRefExpr>(VarExprTemp);
if (const auto *Var = dyn_cast<VarDecl>(DRE->getDecl())) {
CurDecl = Var->getCanonicalDecl();
// OpenACC3.3 2.13:
// A 'declare' directive must be in the same scope as the declaration of
// any var that appears in the clauses of the directive or any scope
// within a C/C++ function.
// We can't really check 'scope' here, so we check declaration context,
// which is a reasonable approximation, but misses scopes inside of
// functions.
if (removeLinkageSpecDC(
Var->getLexicalDeclContext()->getPrimaryContext()) != DC) {
Diag(VarExpr->getBeginLoc(), diag::err_acc_declare_same_scope)
<< Clause.getClauseKind();
continue;
}
// OpenACC3.3 2.13:
// C and C++ extern variables may only appear in 'create',
// 'copyin', 'deviceptr', 'device_resident', or 'link' clauses on a
// 'declare' directive.
if (!IsSpecialClause && Var->hasExternalStorage()) {
Diag(VarExpr->getBeginLoc(), diag::err_acc_declare_extern)
<< Clause.getClauseKind();
continue;
}
}
// OpenACC3.3 2.13:
// A var may appear at most once in all the clauses of declare
// directives for a function, subroutine, program, or module.
if (CurDecl) {
auto [Itr, Inserted] = DeclareVarReferences.try_emplace(CurDecl);
if (!Inserted) {
Diag(VarExpr->getBeginLoc(), diag::err_acc_multiple_references)
<< Clause.getClauseKind();
Diag(Itr->second, diag::note_acc_previous_reference);
continue;
} else {
Itr->second = VarExpr->getBeginLoc();
}
}
}
FilteredVarList.push_back(VarExpr);
}
Clause.setVarListDetails(FilteredVarList, Mods);
return false;
}