llvm-project/clang/lib/Interpreter/Interpreter.cpp
Vassil Vassilev 9a9546e30c
[clang-repl] Support wasm execution (#86402)
This commit introduces support for running clang-repl and executing C++
code interactively inside a Javascript engine using WebAssembly when
built with Emscripten. This is achieved by producing WASM "shared
libraries" that can be loaded by the Emscripten runtime using dlopen()

More discussion is available in https://reviews.llvm.org/D158140

Co-authored-by: Anubhab Ghosh <anubhabghosh.me@gmail.com>
2024-07-02 13:29:31 +03:00

964 lines
34 KiB
C++

//===------ Interpreter.cpp - Incremental Compilation and Execution -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the component which performs incremental code
// compilation and execution.
//
//===----------------------------------------------------------------------===//
#include "DeviceOffload.h"
#include "IncrementalExecutor.h"
#include "IncrementalParser.h"
#include "InterpreterUtils.h"
#ifdef __EMSCRIPTEN__
#include "Wasm.h"
#endif // __EMSCRIPTEN__
#include "clang/AST/ASTContext.h"
#include "clang/AST/Mangle.h"
#include "clang/AST/TypeVisitor.h"
#include "clang/Basic/DiagnosticSema.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/CodeGen/CodeGenAction.h"
#include "clang/CodeGen/ModuleBuilder.h"
#include "clang/CodeGen/ObjectFilePCHContainerOperations.h"
#include "clang/Driver/Compilation.h"
#include "clang/Driver/Driver.h"
#include "clang/Driver/Job.h"
#include "clang/Driver/Options.h"
#include "clang/Driver/Tool.h"
#include "clang/Frontend/CompilerInstance.h"
#include "clang/Frontend/TextDiagnosticBuffer.h"
#include "clang/Interpreter/Interpreter.h"
#include "clang/Interpreter/Value.h"
#include "clang/Lex/PreprocessorOptions.h"
#include "clang/Sema/Lookup.h"
#include "llvm/ExecutionEngine/JITSymbol.h"
#include "llvm/ExecutionEngine/Orc/LLJIT.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/Errc.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/TargetParser/Host.h"
#include <cstdarg>
using namespace clang;
// FIXME: Figure out how to unify with namespace init_convenience from
// tools/clang-import-test/clang-import-test.cpp
namespace {
/// Retrieves the clang CC1 specific flags out of the compilation's jobs.
/// \returns NULL on error.
static llvm::Expected<const llvm::opt::ArgStringList *>
GetCC1Arguments(DiagnosticsEngine *Diagnostics,
driver::Compilation *Compilation) {
// We expect to get back exactly one Command job, if we didn't something
// failed. Extract that job from the Compilation.
const driver::JobList &Jobs = Compilation->getJobs();
if (!Jobs.size() || !isa<driver::Command>(*Jobs.begin()))
return llvm::createStringError(llvm::errc::not_supported,
"Driver initialization failed. "
"Unable to create a driver job");
// The one job we find should be to invoke clang again.
const driver::Command *Cmd = cast<driver::Command>(&(*Jobs.begin()));
if (llvm::StringRef(Cmd->getCreator().getName()) != "clang")
return llvm::createStringError(llvm::errc::not_supported,
"Driver initialization failed");
return &Cmd->getArguments();
}
static llvm::Expected<std::unique_ptr<CompilerInstance>>
CreateCI(const llvm::opt::ArgStringList &Argv) {
std::unique_ptr<CompilerInstance> Clang(new CompilerInstance());
IntrusiveRefCntPtr<DiagnosticIDs> DiagID(new DiagnosticIDs());
// Register the support for object-file-wrapped Clang modules.
// FIXME: Clang should register these container operations automatically.
auto PCHOps = Clang->getPCHContainerOperations();
PCHOps->registerWriter(std::make_unique<ObjectFilePCHContainerWriter>());
PCHOps->registerReader(std::make_unique<ObjectFilePCHContainerReader>());
// Buffer diagnostics from argument parsing so that we can output them using
// a well formed diagnostic object.
IntrusiveRefCntPtr<DiagnosticOptions> DiagOpts = new DiagnosticOptions();
TextDiagnosticBuffer *DiagsBuffer = new TextDiagnosticBuffer;
DiagnosticsEngine Diags(DiagID, &*DiagOpts, DiagsBuffer);
bool Success = CompilerInvocation::CreateFromArgs(
Clang->getInvocation(), llvm::ArrayRef(Argv.begin(), Argv.size()), Diags);
// Infer the builtin include path if unspecified.
if (Clang->getHeaderSearchOpts().UseBuiltinIncludes &&
Clang->getHeaderSearchOpts().ResourceDir.empty())
Clang->getHeaderSearchOpts().ResourceDir =
CompilerInvocation::GetResourcesPath(Argv[0], nullptr);
// Create the actual diagnostics engine.
Clang->createDiagnostics();
if (!Clang->hasDiagnostics())
return llvm::createStringError(llvm::errc::not_supported,
"Initialization failed. "
"Unable to create diagnostics engine");
DiagsBuffer->FlushDiagnostics(Clang->getDiagnostics());
if (!Success)
return llvm::createStringError(llvm::errc::not_supported,
"Initialization failed. "
"Unable to flush diagnostics");
// FIXME: Merge with CompilerInstance::ExecuteAction.
llvm::MemoryBuffer *MB = llvm::MemoryBuffer::getMemBuffer("").release();
Clang->getPreprocessorOpts().addRemappedFile("<<< inputs >>>", MB);
Clang->setTarget(TargetInfo::CreateTargetInfo(
Clang->getDiagnostics(), Clang->getInvocation().TargetOpts));
if (!Clang->hasTarget())
return llvm::createStringError(llvm::errc::not_supported,
"Initialization failed. "
"Target is missing");
Clang->getTarget().adjust(Clang->getDiagnostics(), Clang->getLangOpts());
// Don't clear the AST before backend codegen since we do codegen multiple
// times, reusing the same AST.
Clang->getCodeGenOpts().ClearASTBeforeBackend = false;
Clang->getFrontendOpts().DisableFree = false;
Clang->getCodeGenOpts().DisableFree = false;
return std::move(Clang);
}
} // anonymous namespace
llvm::Expected<std::unique_ptr<CompilerInstance>>
IncrementalCompilerBuilder::create(std::string TT,
std::vector<const char *> &ClangArgv) {
// If we don't know ClangArgv0 or the address of main() at this point, try
// to guess it anyway (it's possible on some platforms).
std::string MainExecutableName =
llvm::sys::fs::getMainExecutable(nullptr, nullptr);
ClangArgv.insert(ClangArgv.begin(), MainExecutableName.c_str());
// Prepending -c to force the driver to do something if no action was
// specified. By prepending we allow users to override the default
// action and use other actions in incremental mode.
// FIXME: Print proper driver diagnostics if the driver flags are wrong.
// We do C++ by default; append right after argv[0] if no "-x" given
ClangArgv.insert(ClangArgv.end(), "-Xclang");
ClangArgv.insert(ClangArgv.end(), "-fincremental-extensions");
ClangArgv.insert(ClangArgv.end(), "-c");
// Put a dummy C++ file on to ensure there's at least one compile job for the
// driver to construct.
ClangArgv.push_back("<<< inputs >>>");
// Buffer diagnostics from argument parsing so that we can output them using a
// well formed diagnostic object.
IntrusiveRefCntPtr<DiagnosticIDs> DiagID(new DiagnosticIDs());
IntrusiveRefCntPtr<DiagnosticOptions> DiagOpts =
CreateAndPopulateDiagOpts(ClangArgv);
TextDiagnosticBuffer *DiagsBuffer = new TextDiagnosticBuffer;
DiagnosticsEngine Diags(DiagID, &*DiagOpts, DiagsBuffer);
driver::Driver Driver(/*MainBinaryName=*/ClangArgv[0], TT, Diags);
Driver.setCheckInputsExist(false); // the input comes from mem buffers
llvm::ArrayRef<const char *> RF = llvm::ArrayRef(ClangArgv);
std::unique_ptr<driver::Compilation> Compilation(Driver.BuildCompilation(RF));
if (Compilation->getArgs().hasArg(driver::options::OPT_v))
Compilation->getJobs().Print(llvm::errs(), "\n", /*Quote=*/false);
auto ErrOrCC1Args = GetCC1Arguments(&Diags, Compilation.get());
if (auto Err = ErrOrCC1Args.takeError())
return std::move(Err);
return CreateCI(**ErrOrCC1Args);
}
llvm::Expected<std::unique_ptr<CompilerInstance>>
IncrementalCompilerBuilder::CreateCpp() {
std::vector<const char *> Argv;
Argv.reserve(5 + 1 + UserArgs.size());
Argv.push_back("-xc++");
#ifdef __EMSCRIPTEN__
Argv.push_back("-target");
Argv.push_back("wasm32-unknown-emscripten");
Argv.push_back("-pie");
Argv.push_back("-shared");
#endif
Argv.insert(Argv.end(), UserArgs.begin(), UserArgs.end());
std::string TT = TargetTriple ? *TargetTriple : llvm::sys::getProcessTriple();
return IncrementalCompilerBuilder::create(TT, Argv);
}
llvm::Expected<std::unique_ptr<CompilerInstance>>
IncrementalCompilerBuilder::createCuda(bool device) {
std::vector<const char *> Argv;
Argv.reserve(5 + 4 + UserArgs.size());
Argv.push_back("-xcuda");
if (device)
Argv.push_back("--cuda-device-only");
else
Argv.push_back("--cuda-host-only");
std::string SDKPathArg = "--cuda-path=";
if (!CudaSDKPath.empty()) {
SDKPathArg += CudaSDKPath;
Argv.push_back(SDKPathArg.c_str());
}
std::string ArchArg = "--offload-arch=";
if (!OffloadArch.empty()) {
ArchArg += OffloadArch;
Argv.push_back(ArchArg.c_str());
}
Argv.insert(Argv.end(), UserArgs.begin(), UserArgs.end());
std::string TT = TargetTriple ? *TargetTriple : llvm::sys::getProcessTriple();
return IncrementalCompilerBuilder::create(TT, Argv);
}
llvm::Expected<std::unique_ptr<CompilerInstance>>
IncrementalCompilerBuilder::CreateCudaDevice() {
return IncrementalCompilerBuilder::createCuda(true);
}
llvm::Expected<std::unique_ptr<CompilerInstance>>
IncrementalCompilerBuilder::CreateCudaHost() {
return IncrementalCompilerBuilder::createCuda(false);
}
Interpreter::Interpreter(std::unique_ptr<CompilerInstance> CI,
llvm::Error &ErrOut,
std::unique_ptr<llvm::orc::LLJITBuilder> JITBuilder)
: JITBuilder(std::move(JITBuilder)) {
llvm::ErrorAsOutParameter EAO(&ErrOut);
auto LLVMCtx = std::make_unique<llvm::LLVMContext>();
TSCtx = std::make_unique<llvm::orc::ThreadSafeContext>(std::move(LLVMCtx));
IncrParser = std::make_unique<IncrementalParser>(
*this, std::move(CI), *TSCtx->getContext(), ErrOut);
if (ErrOut)
return;
// Not all frontends support code-generation, e.g. ast-dump actions don't
if (IncrParser->getCodeGen()) {
if (llvm::Error Err = CreateExecutor()) {
ErrOut = joinErrors(std::move(ErrOut), std::move(Err));
return;
}
// Process the PTUs that came from initialization. For example -include will
// give us a header that's processed at initialization of the preprocessor.
for (PartialTranslationUnit &PTU : IncrParser->getPTUs())
if (llvm::Error Err = Execute(PTU)) {
ErrOut = joinErrors(std::move(ErrOut), std::move(Err));
return;
}
}
}
Interpreter::~Interpreter() {
if (IncrExecutor) {
if (llvm::Error Err = IncrExecutor->cleanUp())
llvm::report_fatal_error(
llvm::Twine("Failed to clean up IncrementalExecutor: ") +
toString(std::move(Err)));
}
}
// These better to put in a runtime header but we can't. This is because we
// can't find the precise resource directory in unittests so we have to hard
// code them.
const char *const Runtimes = R"(
#define __CLANG_REPL__ 1
#ifdef __cplusplus
#define EXTERN_C extern "C"
void *__clang_Interpreter_SetValueWithAlloc(void*, void*, void*);
struct __clang_Interpreter_NewTag{} __ci_newtag;
void* operator new(__SIZE_TYPE__, void* __p, __clang_Interpreter_NewTag) noexcept;
template <class T, class = T (*)() /*disable for arrays*/>
void __clang_Interpreter_SetValueCopyArr(T* Src, void* Placement, unsigned long Size) {
for (auto Idx = 0; Idx < Size; ++Idx)
new ((void*)(((T*)Placement) + Idx), __ci_newtag) T(Src[Idx]);
}
template <class T, unsigned long N>
void __clang_Interpreter_SetValueCopyArr(const T (*Src)[N], void* Placement, unsigned long Size) {
__clang_Interpreter_SetValueCopyArr(Src[0], Placement, Size);
}
#else
#define EXTERN_C extern
#endif // __cplusplus
EXTERN_C void __clang_Interpreter_SetValueNoAlloc(void *This, void *OutVal, void *OpaqueType, ...);
)";
llvm::Expected<std::unique_ptr<Interpreter>>
Interpreter::create(std::unique_ptr<CompilerInstance> CI) {
llvm::Error Err = llvm::Error::success();
auto Interp =
std::unique_ptr<Interpreter>(new Interpreter(std::move(CI), Err));
if (Err)
return std::move(Err);
// Add runtime code and set a marker to hide it from user code. Undo will not
// go through that.
auto PTU = Interp->Parse(Runtimes);
if (!PTU)
return PTU.takeError();
Interp->markUserCodeStart();
Interp->ValuePrintingInfo.resize(4);
return std::move(Interp);
}
llvm::Expected<std::unique_ptr<Interpreter>>
Interpreter::createWithCUDA(std::unique_ptr<CompilerInstance> CI,
std::unique_ptr<CompilerInstance> DCI) {
// avoid writing fat binary to disk using an in-memory virtual file system
llvm::IntrusiveRefCntPtr<llvm::vfs::InMemoryFileSystem> IMVFS =
std::make_unique<llvm::vfs::InMemoryFileSystem>();
llvm::IntrusiveRefCntPtr<llvm::vfs::OverlayFileSystem> OverlayVFS =
std::make_unique<llvm::vfs::OverlayFileSystem>(
llvm::vfs::getRealFileSystem());
OverlayVFS->pushOverlay(IMVFS);
CI->createFileManager(OverlayVFS);
auto Interp = Interpreter::create(std::move(CI));
if (auto E = Interp.takeError())
return std::move(E);
llvm::Error Err = llvm::Error::success();
auto DeviceParser = std::make_unique<IncrementalCUDADeviceParser>(
**Interp, std::move(DCI), *(*Interp)->IncrParser.get(),
*(*Interp)->TSCtx->getContext(), IMVFS, Err);
if (Err)
return std::move(Err);
(*Interp)->DeviceParser = std::move(DeviceParser);
return Interp;
}
const CompilerInstance *Interpreter::getCompilerInstance() const {
return IncrParser->getCI();
}
CompilerInstance *Interpreter::getCompilerInstance() {
return IncrParser->getCI();
}
llvm::Expected<llvm::orc::LLJIT &> Interpreter::getExecutionEngine() {
if (!IncrExecutor) {
if (auto Err = CreateExecutor())
return std::move(Err);
}
return IncrExecutor->GetExecutionEngine();
}
ASTContext &Interpreter::getASTContext() {
return getCompilerInstance()->getASTContext();
}
const ASTContext &Interpreter::getASTContext() const {
return getCompilerInstance()->getASTContext();
}
void Interpreter::markUserCodeStart() {
assert(!InitPTUSize && "We only do this once");
InitPTUSize = IncrParser->getPTUs().size();
}
size_t Interpreter::getEffectivePTUSize() const {
std::list<PartialTranslationUnit> &PTUs = IncrParser->getPTUs();
assert(PTUs.size() >= InitPTUSize && "empty PTU list?");
return PTUs.size() - InitPTUSize;
}
llvm::Expected<PartialTranslationUnit &>
Interpreter::Parse(llvm::StringRef Code) {
// If we have a device parser, parse it first.
// The generated code will be included in the host compilation
if (DeviceParser) {
auto DevicePTU = DeviceParser->Parse(Code);
if (auto E = DevicePTU.takeError())
return std::move(E);
}
// Tell the interpreter sliently ignore unused expressions since value
// printing could cause it.
getCompilerInstance()->getDiagnostics().setSeverity(
clang::diag::warn_unused_expr, diag::Severity::Ignored, SourceLocation());
return IncrParser->Parse(Code);
}
static llvm::Expected<llvm::orc::JITTargetMachineBuilder>
createJITTargetMachineBuilder(const std::string &TT) {
if (TT == llvm::sys::getProcessTriple())
// This fails immediately if the target backend is not registered
return llvm::orc::JITTargetMachineBuilder::detectHost();
// If the target backend is not registered, LLJITBuilder::create() will fail
return llvm::orc::JITTargetMachineBuilder(llvm::Triple(TT));
}
llvm::Error Interpreter::CreateExecutor() {
if (IncrExecutor)
return llvm::make_error<llvm::StringError>("Operation failed. "
"Execution engine exists",
std::error_code());
if (!IncrParser->getCodeGen())
return llvm::make_error<llvm::StringError>("Operation failed. "
"No code generator available",
std::error_code());
if (!JITBuilder) {
const std::string &TT = getCompilerInstance()->getTargetOpts().Triple;
auto JTMB = createJITTargetMachineBuilder(TT);
if (!JTMB)
return JTMB.takeError();
auto JB = IncrementalExecutor::createDefaultJITBuilder(std::move(*JTMB));
if (!JB)
return JB.takeError();
JITBuilder = std::move(*JB);
}
llvm::Error Err = llvm::Error::success();
#ifdef __EMSCRIPTEN__
auto Executor = std::make_unique<WasmIncrementalExecutor>(*TSCtx);
#else
auto Executor =
std::make_unique<IncrementalExecutor>(*TSCtx, *JITBuilder, Err);
#endif
if (!Err)
IncrExecutor = std::move(Executor);
return Err;
}
void Interpreter::ResetExecutor() { IncrExecutor.reset(); }
llvm::Error Interpreter::Execute(PartialTranslationUnit &T) {
assert(T.TheModule);
if (!IncrExecutor) {
auto Err = CreateExecutor();
if (Err)
return Err;
}
// FIXME: Add a callback to retain the llvm::Module once the JIT is done.
if (auto Err = IncrExecutor->addModule(T))
return Err;
if (auto Err = IncrExecutor->runCtors())
return Err;
return llvm::Error::success();
}
llvm::Error Interpreter::ParseAndExecute(llvm::StringRef Code, Value *V) {
auto PTU = Parse(Code);
if (!PTU)
return PTU.takeError();
if (PTU->TheModule)
if (llvm::Error Err = Execute(*PTU))
return Err;
if (LastValue.isValid()) {
if (!V) {
LastValue.dump();
LastValue.clear();
} else
*V = std::move(LastValue);
}
return llvm::Error::success();
}
llvm::Expected<llvm::orc::ExecutorAddr>
Interpreter::getSymbolAddress(GlobalDecl GD) const {
if (!IncrExecutor)
return llvm::make_error<llvm::StringError>("Operation failed. "
"No execution engine",
std::error_code());
llvm::StringRef MangledName = IncrParser->GetMangledName(GD);
return getSymbolAddress(MangledName);
}
llvm::Expected<llvm::orc::ExecutorAddr>
Interpreter::getSymbolAddress(llvm::StringRef IRName) const {
if (!IncrExecutor)
return llvm::make_error<llvm::StringError>("Operation failed. "
"No execution engine",
std::error_code());
return IncrExecutor->getSymbolAddress(IRName, IncrementalExecutor::IRName);
}
llvm::Expected<llvm::orc::ExecutorAddr>
Interpreter::getSymbolAddressFromLinkerName(llvm::StringRef Name) const {
if (!IncrExecutor)
return llvm::make_error<llvm::StringError>("Operation failed. "
"No execution engine",
std::error_code());
return IncrExecutor->getSymbolAddress(Name, IncrementalExecutor::LinkerName);
}
llvm::Error Interpreter::Undo(unsigned N) {
std::list<PartialTranslationUnit> &PTUs = IncrParser->getPTUs();
if (N > getEffectivePTUSize())
return llvm::make_error<llvm::StringError>("Operation failed. "
"Too many undos",
std::error_code());
for (unsigned I = 0; I < N; I++) {
if (IncrExecutor) {
if (llvm::Error Err = IncrExecutor->removeModule(PTUs.back()))
return Err;
}
IncrParser->CleanUpPTU(PTUs.back());
PTUs.pop_back();
}
return llvm::Error::success();
}
llvm::Error Interpreter::LoadDynamicLibrary(const char *name) {
auto EE = getExecutionEngine();
if (!EE)
return EE.takeError();
auto &DL = EE->getDataLayout();
if (auto DLSG = llvm::orc::DynamicLibrarySearchGenerator::Load(
name, DL.getGlobalPrefix()))
EE->getMainJITDylib().addGenerator(std::move(*DLSG));
else
return DLSG.takeError();
return llvm::Error::success();
}
llvm::Expected<llvm::orc::ExecutorAddr>
Interpreter::CompileDtorCall(CXXRecordDecl *CXXRD) {
assert(CXXRD && "Cannot compile a destructor for a nullptr");
if (auto Dtor = Dtors.find(CXXRD); Dtor != Dtors.end())
return Dtor->getSecond();
if (CXXRD->hasIrrelevantDestructor())
return llvm::orc::ExecutorAddr{};
CXXDestructorDecl *DtorRD =
getCompilerInstance()->getSema().LookupDestructor(CXXRD);
llvm::StringRef Name =
IncrParser->GetMangledName(GlobalDecl(DtorRD, Dtor_Base));
auto AddrOrErr = getSymbolAddress(Name);
if (!AddrOrErr)
return AddrOrErr.takeError();
Dtors[CXXRD] = *AddrOrErr;
return AddrOrErr;
}
static constexpr llvm::StringRef MagicRuntimeInterface[] = {
"__clang_Interpreter_SetValueNoAlloc",
"__clang_Interpreter_SetValueWithAlloc",
"__clang_Interpreter_SetValueCopyArr", "__ci_newtag"};
static std::unique_ptr<RuntimeInterfaceBuilder>
createInProcessRuntimeInterfaceBuilder(Interpreter &Interp, ASTContext &Ctx,
Sema &S);
std::unique_ptr<RuntimeInterfaceBuilder> Interpreter::FindRuntimeInterface() {
if (llvm::all_of(ValuePrintingInfo, [](Expr *E) { return E != nullptr; }))
return nullptr;
Sema &S = getCompilerInstance()->getSema();
ASTContext &Ctx = S.getASTContext();
auto LookupInterface = [&](Expr *&Interface, llvm::StringRef Name) {
LookupResult R(S, &Ctx.Idents.get(Name), SourceLocation(),
Sema::LookupOrdinaryName,
RedeclarationKind::ForVisibleRedeclaration);
S.LookupQualifiedName(R, Ctx.getTranslationUnitDecl());
if (R.empty())
return false;
CXXScopeSpec CSS;
Interface = S.BuildDeclarationNameExpr(CSS, R, /*ADL=*/false).get();
return true;
};
if (!LookupInterface(ValuePrintingInfo[NoAlloc],
MagicRuntimeInterface[NoAlloc]))
return nullptr;
if (Ctx.getLangOpts().CPlusPlus) {
if (!LookupInterface(ValuePrintingInfo[WithAlloc],
MagicRuntimeInterface[WithAlloc]))
return nullptr;
if (!LookupInterface(ValuePrintingInfo[CopyArray],
MagicRuntimeInterface[CopyArray]))
return nullptr;
if (!LookupInterface(ValuePrintingInfo[NewTag],
MagicRuntimeInterface[NewTag]))
return nullptr;
}
return createInProcessRuntimeInterfaceBuilder(*this, Ctx, S);
}
namespace {
class InterfaceKindVisitor
: public TypeVisitor<InterfaceKindVisitor, Interpreter::InterfaceKind> {
friend class InProcessRuntimeInterfaceBuilder;
ASTContext &Ctx;
Sema &S;
Expr *E;
llvm::SmallVector<Expr *, 3> Args;
public:
InterfaceKindVisitor(ASTContext &Ctx, Sema &S, Expr *E)
: Ctx(Ctx), S(S), E(E) {}
Interpreter::InterfaceKind VisitRecordType(const RecordType *Ty) {
return Interpreter::InterfaceKind::WithAlloc;
}
Interpreter::InterfaceKind
VisitMemberPointerType(const MemberPointerType *Ty) {
return Interpreter::InterfaceKind::WithAlloc;
}
Interpreter::InterfaceKind
VisitConstantArrayType(const ConstantArrayType *Ty) {
return Interpreter::InterfaceKind::CopyArray;
}
Interpreter::InterfaceKind
VisitFunctionProtoType(const FunctionProtoType *Ty) {
HandlePtrType(Ty);
return Interpreter::InterfaceKind::NoAlloc;
}
Interpreter::InterfaceKind VisitPointerType(const PointerType *Ty) {
HandlePtrType(Ty);
return Interpreter::InterfaceKind::NoAlloc;
}
Interpreter::InterfaceKind VisitReferenceType(const ReferenceType *Ty) {
ExprResult AddrOfE = S.CreateBuiltinUnaryOp(SourceLocation(), UO_AddrOf, E);
assert(!AddrOfE.isInvalid() && "Can not create unary expression");
Args.push_back(AddrOfE.get());
return Interpreter::InterfaceKind::NoAlloc;
}
Interpreter::InterfaceKind VisitBuiltinType(const BuiltinType *Ty) {
if (Ty->isNullPtrType())
Args.push_back(E);
else if (Ty->isFloatingType())
Args.push_back(E);
else if (Ty->isIntegralOrEnumerationType())
HandleIntegralOrEnumType(Ty);
else if (Ty->isVoidType()) {
// Do we need to still run `E`?
}
return Interpreter::InterfaceKind::NoAlloc;
}
Interpreter::InterfaceKind VisitEnumType(const EnumType *Ty) {
HandleIntegralOrEnumType(Ty);
return Interpreter::InterfaceKind::NoAlloc;
}
private:
// Force cast these types to uint64 to reduce the number of overloads of
// `__clang_Interpreter_SetValueNoAlloc`.
void HandleIntegralOrEnumType(const Type *Ty) {
TypeSourceInfo *TSI = Ctx.getTrivialTypeSourceInfo(Ctx.UnsignedLongLongTy);
ExprResult CastedExpr =
S.BuildCStyleCastExpr(SourceLocation(), TSI, SourceLocation(), E);
assert(!CastedExpr.isInvalid() && "Cannot create cstyle cast expr");
Args.push_back(CastedExpr.get());
}
void HandlePtrType(const Type *Ty) {
TypeSourceInfo *TSI = Ctx.getTrivialTypeSourceInfo(Ctx.VoidPtrTy);
ExprResult CastedExpr =
S.BuildCStyleCastExpr(SourceLocation(), TSI, SourceLocation(), E);
assert(!CastedExpr.isInvalid() && "Can not create cstyle cast expression");
Args.push_back(CastedExpr.get());
}
};
class InProcessRuntimeInterfaceBuilder : public RuntimeInterfaceBuilder {
Interpreter &Interp;
ASTContext &Ctx;
Sema &S;
public:
InProcessRuntimeInterfaceBuilder(Interpreter &Interp, ASTContext &C, Sema &S)
: Interp(Interp), Ctx(C), S(S) {}
TransformExprFunction *getPrintValueTransformer() override {
return &transformForValuePrinting;
}
private:
static ExprResult transformForValuePrinting(RuntimeInterfaceBuilder *Builder,
Expr *E,
ArrayRef<Expr *> FixedArgs) {
auto *B = static_cast<InProcessRuntimeInterfaceBuilder *>(Builder);
// Get rid of ExprWithCleanups.
if (auto *EWC = llvm::dyn_cast_if_present<ExprWithCleanups>(E))
E = EWC->getSubExpr();
InterfaceKindVisitor Visitor(B->Ctx, B->S, E);
// The Interpreter* parameter and the out parameter `OutVal`.
for (Expr *E : FixedArgs)
Visitor.Args.push_back(E);
QualType Ty = E->getType();
QualType DesugaredTy = Ty.getDesugaredType(B->Ctx);
// For lvalue struct, we treat it as a reference.
if (DesugaredTy->isRecordType() && E->isLValue()) {
DesugaredTy = B->Ctx.getLValueReferenceType(DesugaredTy);
Ty = B->Ctx.getLValueReferenceType(Ty);
}
Expr *TypeArg = CStyleCastPtrExpr(B->S, B->Ctx.VoidPtrTy,
(uintptr_t)Ty.getAsOpaquePtr());
// The QualType parameter `OpaqueType`, represented as `void*`.
Visitor.Args.push_back(TypeArg);
// We push the last parameter based on the type of the Expr. Note we need
// special care for rvalue struct.
Interpreter::InterfaceKind Kind = Visitor.Visit(&*DesugaredTy);
switch (Kind) {
case Interpreter::InterfaceKind::WithAlloc:
case Interpreter::InterfaceKind::CopyArray: {
// __clang_Interpreter_SetValueWithAlloc.
ExprResult AllocCall = B->S.ActOnCallExpr(
/*Scope=*/nullptr,
B->Interp
.getValuePrintingInfo()[Interpreter::InterfaceKind::WithAlloc],
E->getBeginLoc(), Visitor.Args, E->getEndLoc());
assert(!AllocCall.isInvalid() && "Can't create runtime interface call!");
TypeSourceInfo *TSI =
B->Ctx.getTrivialTypeSourceInfo(Ty, SourceLocation());
// Force CodeGen to emit destructor.
if (auto *RD = Ty->getAsCXXRecordDecl()) {
auto *Dtor = B->S.LookupDestructor(RD);
Dtor->addAttr(UsedAttr::CreateImplicit(B->Ctx));
B->Interp.getCompilerInstance()->getASTConsumer().HandleTopLevelDecl(
DeclGroupRef(Dtor));
}
// __clang_Interpreter_SetValueCopyArr.
if (Kind == Interpreter::InterfaceKind::CopyArray) {
const auto *ConstantArrTy =
cast<ConstantArrayType>(DesugaredTy.getTypePtr());
size_t ArrSize = B->Ctx.getConstantArrayElementCount(ConstantArrTy);
Expr *ArrSizeExpr = IntegerLiteralExpr(B->Ctx, ArrSize);
Expr *Args[] = {E, AllocCall.get(), ArrSizeExpr};
return B->S.ActOnCallExpr(
/*Scope *=*/nullptr,
B->Interp
.getValuePrintingInfo()[Interpreter::InterfaceKind::CopyArray],
SourceLocation(), Args, SourceLocation());
}
Expr *Args[] = {
AllocCall.get(),
B->Interp.getValuePrintingInfo()[Interpreter::InterfaceKind::NewTag]};
ExprResult CXXNewCall = B->S.BuildCXXNew(
E->getSourceRange(),
/*UseGlobal=*/true, /*PlacementLParen=*/SourceLocation(), Args,
/*PlacementRParen=*/SourceLocation(),
/*TypeIdParens=*/SourceRange(), TSI->getType(), TSI, std::nullopt,
E->getSourceRange(), E);
assert(!CXXNewCall.isInvalid() &&
"Can't create runtime placement new call!");
return B->S.ActOnFinishFullExpr(CXXNewCall.get(),
/*DiscardedValue=*/false);
}
// __clang_Interpreter_SetValueNoAlloc.
case Interpreter::InterfaceKind::NoAlloc: {
return B->S.ActOnCallExpr(
/*Scope=*/nullptr,
B->Interp.getValuePrintingInfo()[Interpreter::InterfaceKind::NoAlloc],
E->getBeginLoc(), Visitor.Args, E->getEndLoc());
}
default:
llvm_unreachable("Unhandled Interpreter::InterfaceKind");
}
}
};
} // namespace
static std::unique_ptr<RuntimeInterfaceBuilder>
createInProcessRuntimeInterfaceBuilder(Interpreter &Interp, ASTContext &Ctx,
Sema &S) {
return std::make_unique<InProcessRuntimeInterfaceBuilder>(Interp, Ctx, S);
}
// This synthesizes a call expression to a speciall
// function that is responsible for generating the Value.
// In general, we transform:
// clang-repl> x
// To:
// // 1. If x is a built-in type like int, float.
// __clang_Interpreter_SetValueNoAlloc(ThisInterp, OpaqueValue, xQualType, x);
// // 2. If x is a struct, and a lvalue.
// __clang_Interpreter_SetValueNoAlloc(ThisInterp, OpaqueValue, xQualType,
// &x);
// // 3. If x is a struct, but a rvalue.
// new (__clang_Interpreter_SetValueWithAlloc(ThisInterp, OpaqueValue,
// xQualType)) (x);
Expr *Interpreter::SynthesizeExpr(Expr *E) {
Sema &S = getCompilerInstance()->getSema();
ASTContext &Ctx = S.getASTContext();
if (!RuntimeIB) {
RuntimeIB = FindRuntimeInterface();
AddPrintValueCall = RuntimeIB->getPrintValueTransformer();
}
assert(AddPrintValueCall &&
"We don't have a runtime interface for pretty print!");
// Create parameter `ThisInterp`.
auto *ThisInterp = CStyleCastPtrExpr(S, Ctx.VoidPtrTy, (uintptr_t)this);
// Create parameter `OutVal`.
auto *OutValue = CStyleCastPtrExpr(S, Ctx.VoidPtrTy, (uintptr_t)&LastValue);
// Build `__clang_Interpreter_SetValue*` call.
ExprResult Result =
AddPrintValueCall(RuntimeIB.get(), E, {ThisInterp, OutValue});
// It could fail, like printing an array type in C. (not supported)
if (Result.isInvalid())
return E;
return Result.get();
}
// Temporary rvalue struct that need special care.
REPL_EXTERNAL_VISIBILITY void *
__clang_Interpreter_SetValueWithAlloc(void *This, void *OutVal,
void *OpaqueType) {
Value &VRef = *(Value *)OutVal;
VRef = Value(static_cast<Interpreter *>(This), OpaqueType);
return VRef.getPtr();
}
extern "C" void REPL_EXTERNAL_VISIBILITY __clang_Interpreter_SetValueNoAlloc(
void *This, void *OutVal, void *OpaqueType, ...) {
Value &VRef = *(Value *)OutVal;
Interpreter *I = static_cast<Interpreter *>(This);
VRef = Value(I, OpaqueType);
if (VRef.isVoid())
return;
va_list args;
va_start(args, /*last named param*/ OpaqueType);
QualType QT = VRef.getType();
if (VRef.getKind() == Value::K_PtrOrObj) {
VRef.setPtr(va_arg(args, void *));
} else {
if (const auto *ET = QT->getAs<EnumType>())
QT = ET->getDecl()->getIntegerType();
switch (QT->castAs<BuiltinType>()->getKind()) {
default:
llvm_unreachable("unknown type kind!");
break;
// Types shorter than int are resolved as int, else va_arg has UB.
case BuiltinType::Bool:
VRef.setBool(va_arg(args, int));
break;
case BuiltinType::Char_S:
VRef.setChar_S(va_arg(args, int));
break;
case BuiltinType::SChar:
VRef.setSChar(va_arg(args, int));
break;
case BuiltinType::Char_U:
VRef.setChar_U(va_arg(args, unsigned));
break;
case BuiltinType::UChar:
VRef.setUChar(va_arg(args, unsigned));
break;
case BuiltinType::Short:
VRef.setShort(va_arg(args, int));
break;
case BuiltinType::UShort:
VRef.setUShort(va_arg(args, unsigned));
break;
case BuiltinType::Int:
VRef.setInt(va_arg(args, int));
break;
case BuiltinType::UInt:
VRef.setUInt(va_arg(args, unsigned));
break;
case BuiltinType::Long:
VRef.setLong(va_arg(args, long));
break;
case BuiltinType::ULong:
VRef.setULong(va_arg(args, unsigned long));
break;
case BuiltinType::LongLong:
VRef.setLongLong(va_arg(args, long long));
break;
case BuiltinType::ULongLong:
VRef.setULongLong(va_arg(args, unsigned long long));
break;
// Types shorter than double are resolved as double, else va_arg has UB.
case BuiltinType::Float:
VRef.setFloat(va_arg(args, double));
break;
case BuiltinType::Double:
VRef.setDouble(va_arg(args, double));
break;
case BuiltinType::LongDouble:
VRef.setLongDouble(va_arg(args, long double));
break;
// See REPL_BUILTIN_TYPES.
}
}
va_end(args);
}
// A trampoline to work around the fact that operator placement new cannot
// really be forward declared due to libc++ and libstdc++ declaration mismatch.
// FIXME: __clang_Interpreter_NewTag is ODR violation because we get the same
// definition in the interpreter runtime. We should move it in a runtime header
// which gets included by the interpreter and here.
struct __clang_Interpreter_NewTag {};
REPL_EXTERNAL_VISIBILITY void *
operator new(size_t __sz, void *__p, __clang_Interpreter_NewTag) noexcept {
// Just forward to the standard operator placement new.
return operator new(__sz, __p);
}