
This PR depends on #148165; the first commit (90f1d0a881a21a8b4f192622d798c290770fda63) belongs to that PR. The changes are distinct, so separate PRs seemed like the best option. I don't have commit access, so I couldn't use user-branches to mark the dependency. As AMDGPULateCodeGenPrepare actually performs changes that invalidate Uniformity Analysis; use `setPreservesCFG()` to mark this, instead of `setPreservesAll()` which wrongly includes preserving Uniformity Analysis. Note that before #148165, this would still have preserved Uniformity Analysis, hence the dependency. In addition, `amdgpu/llc-pipeline.cc` needs to be changed when both changes are in effect, but those changes would make the test fail if the PRs weren't based on one another. Note on why this hasn't caused issues so far: It just so happens that AMDGPULateCodeGenPrepare is always immediately followed by AMDGPUUnifyDivergentExitNodes, which *does* invalidate most analyses, including Uniformity. And because UnifyDivergentExitNodes only looks at terminators, and LateCGP seemingly does not replace uniform values with divergent values, or divergent values with uniform values, and it only *inserts new values that are not looked at by UnifyDivergentExitNodes*, this bug remained hidden. --- I ran `git-clang-format` on my changes. I tested them using the `check-llvm` target; no unexpected failures occurred after I made the change to `amdgpu/llc-pipeline.ll`.
584 lines
20 KiB
C++
584 lines
20 KiB
C++
//===-- AMDGPUCodeGenPrepare.cpp ------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
/// \file
|
|
/// This pass does misc. AMDGPU optimizations on IR *just* before instruction
|
|
/// selection.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "AMDGPU.h"
|
|
#include "AMDGPUTargetMachine.h"
|
|
#include "llvm/Analysis/AssumptionCache.h"
|
|
#include "llvm/Analysis/UniformityAnalysis.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/CodeGen/TargetPassConfig.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/InstVisitor.h"
|
|
#include "llvm/IR/IntrinsicsAMDGPU.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/KnownBits.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
|
|
#define DEBUG_TYPE "amdgpu-late-codegenprepare"
|
|
|
|
using namespace llvm;
|
|
|
|
// Scalar load widening needs running after load-store-vectorizer as that pass
|
|
// doesn't handle overlapping cases. In addition, this pass enhances the
|
|
// widening to handle cases where scalar sub-dword loads are naturally aligned
|
|
// only but not dword aligned.
|
|
static cl::opt<bool>
|
|
WidenLoads("amdgpu-late-codegenprepare-widen-constant-loads",
|
|
cl::desc("Widen sub-dword constant address space loads in "
|
|
"AMDGPULateCodeGenPrepare"),
|
|
cl::ReallyHidden, cl::init(true));
|
|
|
|
namespace {
|
|
|
|
class AMDGPULateCodeGenPrepare
|
|
: public InstVisitor<AMDGPULateCodeGenPrepare, bool> {
|
|
Function &F;
|
|
const DataLayout &DL;
|
|
const GCNSubtarget &ST;
|
|
|
|
AssumptionCache *const AC;
|
|
UniformityInfo &UA;
|
|
|
|
SmallVector<WeakTrackingVH, 8> DeadInsts;
|
|
|
|
public:
|
|
AMDGPULateCodeGenPrepare(Function &F, const GCNSubtarget &ST,
|
|
AssumptionCache *AC, UniformityInfo &UA)
|
|
: F(F), DL(F.getDataLayout()), ST(ST), AC(AC), UA(UA) {}
|
|
bool run();
|
|
bool visitInstruction(Instruction &) { return false; }
|
|
|
|
// Check if the specified value is at least DWORD aligned.
|
|
bool isDWORDAligned(const Value *V) const {
|
|
KnownBits Known = computeKnownBits(V, DL, AC);
|
|
return Known.countMinTrailingZeros() >= 2;
|
|
}
|
|
|
|
bool canWidenScalarExtLoad(LoadInst &LI) const;
|
|
bool visitLoadInst(LoadInst &LI);
|
|
};
|
|
|
|
using ValueToValueMap = DenseMap<const Value *, Value *>;
|
|
|
|
class LiveRegOptimizer {
|
|
private:
|
|
Module &Mod;
|
|
const DataLayout &DL;
|
|
const GCNSubtarget &ST;
|
|
|
|
/// The scalar type to convert to
|
|
Type *const ConvertToScalar;
|
|
/// Map of Value -> Converted Value
|
|
ValueToValueMap ValMap;
|
|
/// Map of containing conversions from Optimal Type -> Original Type per BB.
|
|
DenseMap<BasicBlock *, ValueToValueMap> BBUseValMap;
|
|
|
|
public:
|
|
/// Calculate the and \p return the type to convert to given a problematic \p
|
|
/// OriginalType. In some instances, we may widen the type (e.g. v2i8 -> i32).
|
|
Type *calculateConvertType(Type *OriginalType);
|
|
/// Convert the virtual register defined by \p V to the compatible vector of
|
|
/// legal type
|
|
Value *convertToOptType(Instruction *V, BasicBlock::iterator &InstPt);
|
|
/// Convert the virtual register defined by \p V back to the original type \p
|
|
/// ConvertType, stripping away the MSBs in cases where there was an imperfect
|
|
/// fit (e.g. v2i32 -> v7i8)
|
|
Value *convertFromOptType(Type *ConvertType, Instruction *V,
|
|
BasicBlock::iterator &InstPt,
|
|
BasicBlock *InsertBlock);
|
|
/// Check for problematic PHI nodes or cross-bb values based on the value
|
|
/// defined by \p I, and coerce to legal types if necessary. For problematic
|
|
/// PHI node, we coerce all incoming values in a single invocation.
|
|
bool optimizeLiveType(Instruction *I,
|
|
SmallVectorImpl<WeakTrackingVH> &DeadInsts);
|
|
|
|
// Whether or not the type should be replaced to avoid inefficient
|
|
// legalization code
|
|
bool shouldReplace(Type *ITy) {
|
|
FixedVectorType *VTy = dyn_cast<FixedVectorType>(ITy);
|
|
if (!VTy)
|
|
return false;
|
|
|
|
const auto *TLI = ST.getTargetLowering();
|
|
|
|
Type *EltTy = VTy->getElementType();
|
|
// If the element size is not less than the convert to scalar size, then we
|
|
// can't do any bit packing
|
|
if (!EltTy->isIntegerTy() ||
|
|
EltTy->getScalarSizeInBits() > ConvertToScalar->getScalarSizeInBits())
|
|
return false;
|
|
|
|
// Only coerce illegal types
|
|
TargetLoweringBase::LegalizeKind LK =
|
|
TLI->getTypeConversion(EltTy->getContext(), EVT::getEVT(EltTy, false));
|
|
return LK.first != TargetLoweringBase::TypeLegal;
|
|
}
|
|
|
|
bool isOpLegal(Instruction *I) { return isa<StoreInst, IntrinsicInst>(I); }
|
|
|
|
bool isCoercionProfitable(Instruction *II) {
|
|
SmallPtrSet<Instruction *, 4> CVisited;
|
|
SmallVector<Instruction *, 4> UserList;
|
|
|
|
// Check users for profitable conditions (across block user which can
|
|
// natively handle the illegal vector).
|
|
for (User *V : II->users())
|
|
if (auto *UseInst = dyn_cast<Instruction>(V))
|
|
UserList.push_back(UseInst);
|
|
|
|
auto IsLookThru = [](Instruction *II) {
|
|
if (const auto *Intr = dyn_cast<IntrinsicInst>(II))
|
|
return Intr->getIntrinsicID() == Intrinsic::amdgcn_perm;
|
|
return isa<PHINode, ShuffleVectorInst, InsertElementInst,
|
|
ExtractElementInst, CastInst>(II);
|
|
};
|
|
|
|
while (!UserList.empty()) {
|
|
auto CII = UserList.pop_back_val();
|
|
if (!CVisited.insert(CII).second)
|
|
continue;
|
|
|
|
if (CII->getParent() == II->getParent() && !IsLookThru(II))
|
|
continue;
|
|
|
|
if (isOpLegal(CII))
|
|
return true;
|
|
|
|
if (IsLookThru(CII))
|
|
for (User *V : CII->users())
|
|
if (auto *UseInst = dyn_cast<Instruction>(V))
|
|
UserList.push_back(UseInst);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
LiveRegOptimizer(Module &Mod, const GCNSubtarget &ST)
|
|
: Mod(Mod), DL(Mod.getDataLayout()), ST(ST),
|
|
ConvertToScalar(Type::getInt32Ty(Mod.getContext())) {}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
bool AMDGPULateCodeGenPrepare::run() {
|
|
// "Optimize" the virtual regs that cross basic block boundaries. When
|
|
// building the SelectionDAG, vectors of illegal types that cross basic blocks
|
|
// will be scalarized and widened, with each scalar living in its
|
|
// own register. To work around this, this optimization converts the
|
|
// vectors to equivalent vectors of legal type (which are converted back
|
|
// before uses in subsequent blocks), to pack the bits into fewer physical
|
|
// registers (used in CopyToReg/CopyFromReg pairs).
|
|
LiveRegOptimizer LRO(*F.getParent(), ST);
|
|
|
|
bool Changed = false;
|
|
|
|
bool HasScalarSubwordLoads = ST.hasScalarSubwordLoads();
|
|
|
|
for (auto &BB : reverse(F))
|
|
for (Instruction &I : make_early_inc_range(reverse(BB))) {
|
|
Changed |= !HasScalarSubwordLoads && visit(I);
|
|
Changed |= LRO.optimizeLiveType(&I, DeadInsts);
|
|
}
|
|
|
|
RecursivelyDeleteTriviallyDeadInstructionsPermissive(DeadInsts);
|
|
return Changed;
|
|
}
|
|
|
|
Type *LiveRegOptimizer::calculateConvertType(Type *OriginalType) {
|
|
assert(OriginalType->getScalarSizeInBits() <=
|
|
ConvertToScalar->getScalarSizeInBits());
|
|
|
|
FixedVectorType *VTy = cast<FixedVectorType>(OriginalType);
|
|
|
|
TypeSize OriginalSize = DL.getTypeSizeInBits(VTy);
|
|
TypeSize ConvertScalarSize = DL.getTypeSizeInBits(ConvertToScalar);
|
|
unsigned ConvertEltCount =
|
|
(OriginalSize + ConvertScalarSize - 1) / ConvertScalarSize;
|
|
|
|
if (OriginalSize <= ConvertScalarSize)
|
|
return IntegerType::get(Mod.getContext(), ConvertScalarSize);
|
|
|
|
return VectorType::get(Type::getIntNTy(Mod.getContext(), ConvertScalarSize),
|
|
ConvertEltCount, false);
|
|
}
|
|
|
|
Value *LiveRegOptimizer::convertToOptType(Instruction *V,
|
|
BasicBlock::iterator &InsertPt) {
|
|
FixedVectorType *VTy = cast<FixedVectorType>(V->getType());
|
|
Type *NewTy = calculateConvertType(V->getType());
|
|
|
|
TypeSize OriginalSize = DL.getTypeSizeInBits(VTy);
|
|
TypeSize NewSize = DL.getTypeSizeInBits(NewTy);
|
|
|
|
IRBuilder<> Builder(V->getParent(), InsertPt);
|
|
// If there is a bitsize match, we can fit the old vector into a new vector of
|
|
// desired type.
|
|
if (OriginalSize == NewSize)
|
|
return Builder.CreateBitCast(V, NewTy, V->getName() + ".bc");
|
|
|
|
// If there is a bitsize mismatch, we must use a wider vector.
|
|
assert(NewSize > OriginalSize);
|
|
uint64_t ExpandedVecElementCount = NewSize / VTy->getScalarSizeInBits();
|
|
|
|
SmallVector<int, 8> ShuffleMask;
|
|
uint64_t OriginalElementCount = VTy->getElementCount().getFixedValue();
|
|
for (unsigned I = 0; I < OriginalElementCount; I++)
|
|
ShuffleMask.push_back(I);
|
|
|
|
for (uint64_t I = OriginalElementCount; I < ExpandedVecElementCount; I++)
|
|
ShuffleMask.push_back(OriginalElementCount);
|
|
|
|
Value *ExpandedVec = Builder.CreateShuffleVector(V, ShuffleMask);
|
|
return Builder.CreateBitCast(ExpandedVec, NewTy, V->getName() + ".bc");
|
|
}
|
|
|
|
Value *LiveRegOptimizer::convertFromOptType(Type *ConvertType, Instruction *V,
|
|
BasicBlock::iterator &InsertPt,
|
|
BasicBlock *InsertBB) {
|
|
FixedVectorType *NewVTy = cast<FixedVectorType>(ConvertType);
|
|
|
|
TypeSize OriginalSize = DL.getTypeSizeInBits(V->getType());
|
|
TypeSize NewSize = DL.getTypeSizeInBits(NewVTy);
|
|
|
|
IRBuilder<> Builder(InsertBB, InsertPt);
|
|
// If there is a bitsize match, we simply convert back to the original type.
|
|
if (OriginalSize == NewSize)
|
|
return Builder.CreateBitCast(V, NewVTy, V->getName() + ".bc");
|
|
|
|
// If there is a bitsize mismatch, then we must have used a wider value to
|
|
// hold the bits.
|
|
assert(OriginalSize > NewSize);
|
|
// For wide scalars, we can just truncate the value.
|
|
if (!V->getType()->isVectorTy()) {
|
|
Instruction *Trunc = cast<Instruction>(
|
|
Builder.CreateTrunc(V, IntegerType::get(Mod.getContext(), NewSize)));
|
|
return cast<Instruction>(Builder.CreateBitCast(Trunc, NewVTy));
|
|
}
|
|
|
|
// For wider vectors, we must strip the MSBs to convert back to the original
|
|
// type.
|
|
VectorType *ExpandedVT = VectorType::get(
|
|
Type::getIntNTy(Mod.getContext(), NewVTy->getScalarSizeInBits()),
|
|
(OriginalSize / NewVTy->getScalarSizeInBits()), false);
|
|
Instruction *Converted =
|
|
cast<Instruction>(Builder.CreateBitCast(V, ExpandedVT));
|
|
|
|
unsigned NarrowElementCount = NewVTy->getElementCount().getFixedValue();
|
|
SmallVector<int, 8> ShuffleMask(NarrowElementCount);
|
|
std::iota(ShuffleMask.begin(), ShuffleMask.end(), 0);
|
|
|
|
return Builder.CreateShuffleVector(Converted, ShuffleMask);
|
|
}
|
|
|
|
bool LiveRegOptimizer::optimizeLiveType(
|
|
Instruction *I, SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
|
|
SmallVector<Instruction *, 4> Worklist;
|
|
SmallPtrSet<PHINode *, 4> PhiNodes;
|
|
SmallPtrSet<Instruction *, 4> Defs;
|
|
SmallPtrSet<Instruction *, 4> Uses;
|
|
SmallPtrSet<Instruction *, 4> Visited;
|
|
|
|
Worklist.push_back(cast<Instruction>(I));
|
|
while (!Worklist.empty()) {
|
|
Instruction *II = Worklist.pop_back_val();
|
|
|
|
if (!Visited.insert(II).second)
|
|
continue;
|
|
|
|
if (!shouldReplace(II->getType()))
|
|
continue;
|
|
|
|
if (!isCoercionProfitable(II))
|
|
continue;
|
|
|
|
if (PHINode *Phi = dyn_cast<PHINode>(II)) {
|
|
PhiNodes.insert(Phi);
|
|
// Collect all the incoming values of problematic PHI nodes.
|
|
for (Value *V : Phi->incoming_values()) {
|
|
// Repeat the collection process for newly found PHI nodes.
|
|
if (PHINode *OpPhi = dyn_cast<PHINode>(V)) {
|
|
if (!PhiNodes.count(OpPhi) && !Visited.count(OpPhi))
|
|
Worklist.push_back(OpPhi);
|
|
continue;
|
|
}
|
|
|
|
Instruction *IncInst = dyn_cast<Instruction>(V);
|
|
// Other incoming value types (e.g. vector literals) are unhandled
|
|
if (!IncInst && !isa<ConstantAggregateZero>(V))
|
|
return false;
|
|
|
|
// Collect all other incoming values for coercion.
|
|
if (IncInst)
|
|
Defs.insert(IncInst);
|
|
}
|
|
}
|
|
|
|
// Collect all relevant uses.
|
|
for (User *V : II->users()) {
|
|
// Repeat the collection process for problematic PHI nodes.
|
|
if (PHINode *OpPhi = dyn_cast<PHINode>(V)) {
|
|
if (!PhiNodes.count(OpPhi) && !Visited.count(OpPhi))
|
|
Worklist.push_back(OpPhi);
|
|
continue;
|
|
}
|
|
|
|
Instruction *UseInst = cast<Instruction>(V);
|
|
// Collect all uses of PHINodes and any use the crosses BB boundaries.
|
|
if (UseInst->getParent() != II->getParent() || isa<PHINode>(II)) {
|
|
Uses.insert(UseInst);
|
|
if (!isa<PHINode>(II))
|
|
Defs.insert(II);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Coerce and track the defs.
|
|
for (Instruction *D : Defs) {
|
|
if (!ValMap.contains(D)) {
|
|
BasicBlock::iterator InsertPt = std::next(D->getIterator());
|
|
Value *ConvertVal = convertToOptType(D, InsertPt);
|
|
assert(ConvertVal);
|
|
ValMap[D] = ConvertVal;
|
|
}
|
|
}
|
|
|
|
// Construct new-typed PHI nodes.
|
|
for (PHINode *Phi : PhiNodes) {
|
|
ValMap[Phi] = PHINode::Create(calculateConvertType(Phi->getType()),
|
|
Phi->getNumIncomingValues(),
|
|
Phi->getName() + ".tc", Phi->getIterator());
|
|
}
|
|
|
|
// Connect all the PHI nodes with their new incoming values.
|
|
for (PHINode *Phi : PhiNodes) {
|
|
PHINode *NewPhi = cast<PHINode>(ValMap[Phi]);
|
|
bool MissingIncVal = false;
|
|
for (int I = 0, E = Phi->getNumIncomingValues(); I < E; I++) {
|
|
Value *IncVal = Phi->getIncomingValue(I);
|
|
if (isa<ConstantAggregateZero>(IncVal)) {
|
|
Type *NewType = calculateConvertType(Phi->getType());
|
|
NewPhi->addIncoming(ConstantInt::get(NewType, 0, false),
|
|
Phi->getIncomingBlock(I));
|
|
} else if (Value *Val = ValMap.lookup(IncVal))
|
|
NewPhi->addIncoming(Val, Phi->getIncomingBlock(I));
|
|
else
|
|
MissingIncVal = true;
|
|
}
|
|
if (MissingIncVal) {
|
|
Value *DeadVal = ValMap[Phi];
|
|
// The coercion chain of the PHI is broken. Delete the Phi
|
|
// from the ValMap and any connected / user Phis.
|
|
SmallVector<Value *, 4> PHIWorklist;
|
|
SmallPtrSet<Value *, 4> VisitedPhis;
|
|
PHIWorklist.push_back(DeadVal);
|
|
while (!PHIWorklist.empty()) {
|
|
Value *NextDeadValue = PHIWorklist.pop_back_val();
|
|
VisitedPhis.insert(NextDeadValue);
|
|
auto OriginalPhi =
|
|
llvm::find_if(PhiNodes, [this, &NextDeadValue](PHINode *CandPhi) {
|
|
return ValMap[CandPhi] == NextDeadValue;
|
|
});
|
|
// This PHI may have already been removed from maps when
|
|
// unwinding a previous Phi
|
|
if (OriginalPhi != PhiNodes.end())
|
|
ValMap.erase(*OriginalPhi);
|
|
|
|
DeadInsts.emplace_back(cast<Instruction>(NextDeadValue));
|
|
|
|
for (User *U : NextDeadValue->users()) {
|
|
if (!VisitedPhis.contains(cast<PHINode>(U)))
|
|
PHIWorklist.push_back(U);
|
|
}
|
|
}
|
|
} else {
|
|
DeadInsts.emplace_back(cast<Instruction>(Phi));
|
|
}
|
|
}
|
|
// Coerce back to the original type and replace the uses.
|
|
for (Instruction *U : Uses) {
|
|
// Replace all converted operands for a use.
|
|
for (auto [OpIdx, Op] : enumerate(U->operands())) {
|
|
if (Value *Val = ValMap.lookup(Op)) {
|
|
Value *NewVal = nullptr;
|
|
if (BBUseValMap.contains(U->getParent()) &&
|
|
BBUseValMap[U->getParent()].contains(Val))
|
|
NewVal = BBUseValMap[U->getParent()][Val];
|
|
else {
|
|
BasicBlock::iterator InsertPt = U->getParent()->getFirstNonPHIIt();
|
|
// We may pick up ops that were previously converted for users in
|
|
// other blocks. If there is an originally typed definition of the Op
|
|
// already in this block, simply reuse it.
|
|
if (isa<Instruction>(Op) && !isa<PHINode>(Op) &&
|
|
U->getParent() == cast<Instruction>(Op)->getParent()) {
|
|
NewVal = Op;
|
|
} else {
|
|
NewVal =
|
|
convertFromOptType(Op->getType(), cast<Instruction>(ValMap[Op]),
|
|
InsertPt, U->getParent());
|
|
BBUseValMap[U->getParent()][ValMap[Op]] = NewVal;
|
|
}
|
|
}
|
|
assert(NewVal);
|
|
U->setOperand(OpIdx, NewVal);
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool AMDGPULateCodeGenPrepare::canWidenScalarExtLoad(LoadInst &LI) const {
|
|
unsigned AS = LI.getPointerAddressSpace();
|
|
// Skip non-constant address space.
|
|
if (AS != AMDGPUAS::CONSTANT_ADDRESS &&
|
|
AS != AMDGPUAS::CONSTANT_ADDRESS_32BIT)
|
|
return false;
|
|
// Skip non-simple loads.
|
|
if (!LI.isSimple())
|
|
return false;
|
|
Type *Ty = LI.getType();
|
|
// Skip aggregate types.
|
|
if (Ty->isAggregateType())
|
|
return false;
|
|
unsigned TySize = DL.getTypeStoreSize(Ty);
|
|
// Only handle sub-DWORD loads.
|
|
if (TySize >= 4)
|
|
return false;
|
|
// That load must be at least naturally aligned.
|
|
if (LI.getAlign() < DL.getABITypeAlign(Ty))
|
|
return false;
|
|
// It should be uniform, i.e. a scalar load.
|
|
return UA.isUniform(&LI);
|
|
}
|
|
|
|
bool AMDGPULateCodeGenPrepare::visitLoadInst(LoadInst &LI) {
|
|
if (!WidenLoads)
|
|
return false;
|
|
|
|
// Skip if that load is already aligned on DWORD at least as it's handled in
|
|
// SDAG.
|
|
if (LI.getAlign() >= 4)
|
|
return false;
|
|
|
|
if (!canWidenScalarExtLoad(LI))
|
|
return false;
|
|
|
|
int64_t Offset = 0;
|
|
auto *Base =
|
|
GetPointerBaseWithConstantOffset(LI.getPointerOperand(), Offset, DL);
|
|
// If that base is not DWORD aligned, it's not safe to perform the following
|
|
// transforms.
|
|
if (!isDWORDAligned(Base))
|
|
return false;
|
|
|
|
int64_t Adjust = Offset & 0x3;
|
|
if (Adjust == 0) {
|
|
// With a zero adjust, the original alignment could be promoted with a
|
|
// better one.
|
|
LI.setAlignment(Align(4));
|
|
return true;
|
|
}
|
|
|
|
IRBuilder<> IRB(&LI);
|
|
IRB.SetCurrentDebugLocation(LI.getDebugLoc());
|
|
|
|
unsigned LdBits = DL.getTypeStoreSizeInBits(LI.getType());
|
|
auto *IntNTy = Type::getIntNTy(LI.getContext(), LdBits);
|
|
|
|
auto *NewPtr = IRB.CreateConstGEP1_64(
|
|
IRB.getInt8Ty(),
|
|
IRB.CreateAddrSpaceCast(Base, LI.getPointerOperand()->getType()),
|
|
Offset - Adjust);
|
|
|
|
LoadInst *NewLd = IRB.CreateAlignedLoad(IRB.getInt32Ty(), NewPtr, Align(4));
|
|
NewLd->copyMetadata(LI);
|
|
NewLd->setMetadata(LLVMContext::MD_range, nullptr);
|
|
|
|
unsigned ShAmt = Adjust * 8;
|
|
Value *NewVal = IRB.CreateBitCast(
|
|
IRB.CreateTrunc(IRB.CreateLShr(NewLd, ShAmt),
|
|
DL.typeSizeEqualsStoreSize(LI.getType()) ? IntNTy
|
|
: LI.getType()),
|
|
LI.getType());
|
|
LI.replaceAllUsesWith(NewVal);
|
|
DeadInsts.emplace_back(&LI);
|
|
|
|
return true;
|
|
}
|
|
|
|
PreservedAnalyses
|
|
AMDGPULateCodeGenPreparePass::run(Function &F, FunctionAnalysisManager &FAM) {
|
|
const GCNSubtarget &ST = TM.getSubtarget<GCNSubtarget>(F);
|
|
AssumptionCache &AC = FAM.getResult<AssumptionAnalysis>(F);
|
|
UniformityInfo &UI = FAM.getResult<UniformityInfoAnalysis>(F);
|
|
|
|
bool Changed = AMDGPULateCodeGenPrepare(F, ST, &AC, UI).run();
|
|
|
|
if (!Changed)
|
|
return PreservedAnalyses::all();
|
|
PreservedAnalyses PA = PreservedAnalyses::none();
|
|
PA.preserveSet<CFGAnalyses>();
|
|
return PA;
|
|
}
|
|
|
|
class AMDGPULateCodeGenPrepareLegacy : public FunctionPass {
|
|
public:
|
|
static char ID;
|
|
|
|
AMDGPULateCodeGenPrepareLegacy() : FunctionPass(ID) {}
|
|
|
|
StringRef getPassName() const override {
|
|
return "AMDGPU IR late optimizations";
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<TargetPassConfig>();
|
|
AU.addRequired<AssumptionCacheTracker>();
|
|
AU.addRequired<UniformityInfoWrapperPass>();
|
|
// Invalidates UniformityInfo
|
|
AU.setPreservesCFG();
|
|
}
|
|
|
|
bool runOnFunction(Function &F) override;
|
|
};
|
|
|
|
bool AMDGPULateCodeGenPrepareLegacy::runOnFunction(Function &F) {
|
|
if (skipFunction(F))
|
|
return false;
|
|
|
|
const TargetPassConfig &TPC = getAnalysis<TargetPassConfig>();
|
|
const TargetMachine &TM = TPC.getTM<TargetMachine>();
|
|
const GCNSubtarget &ST = TM.getSubtarget<GCNSubtarget>(F);
|
|
|
|
AssumptionCache &AC =
|
|
getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
|
|
UniformityInfo &UI =
|
|
getAnalysis<UniformityInfoWrapperPass>().getUniformityInfo();
|
|
|
|
return AMDGPULateCodeGenPrepare(F, ST, &AC, UI).run();
|
|
}
|
|
|
|
INITIALIZE_PASS_BEGIN(AMDGPULateCodeGenPrepareLegacy, DEBUG_TYPE,
|
|
"AMDGPU IR late optimizations", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
|
|
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
|
|
INITIALIZE_PASS_DEPENDENCY(UniformityInfoWrapperPass)
|
|
INITIALIZE_PASS_END(AMDGPULateCodeGenPrepareLegacy, DEBUG_TYPE,
|
|
"AMDGPU IR late optimizations", false, false)
|
|
|
|
char AMDGPULateCodeGenPrepareLegacy::ID = 0;
|
|
|
|
FunctionPass *llvm::createAMDGPULateCodeGenPrepareLegacyPass() {
|
|
return new AMDGPULateCodeGenPrepareLegacy();
|
|
}
|