318 lines
12 KiB
C++
318 lines
12 KiB
C++
//===- AMDGPUResourceUsageAnalysis.h ---- analysis of resources -----------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
/// \file
|
|
/// \brief Analyzes how many registers and other resources are used by
|
|
/// functions.
|
|
///
|
|
/// The results of this analysis are used to fill the register usage, flat
|
|
/// usage, etc. into hardware registers.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "AMDGPUResourceUsageAnalysis.h"
|
|
#include "AMDGPU.h"
|
|
#include "GCNSubtarget.h"
|
|
#include "SIMachineFunctionInfo.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineModuleInfo.h"
|
|
#include "llvm/CodeGen/TargetPassConfig.h"
|
|
#include "llvm/IR/GlobalValue.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::AMDGPU;
|
|
|
|
#define DEBUG_TYPE "amdgpu-resource-usage"
|
|
|
|
char llvm::AMDGPUResourceUsageAnalysisWrapperPass::ID = 0;
|
|
char &llvm::AMDGPUResourceUsageAnalysisID =
|
|
AMDGPUResourceUsageAnalysisWrapperPass::ID;
|
|
|
|
// In code object v4 and older, we need to tell the runtime some amount ahead of
|
|
// time if we don't know the true stack size. Assume a smaller number if this is
|
|
// only due to dynamic / non-entry block allocas.
|
|
static cl::opt<uint32_t> clAssumedStackSizeForExternalCall(
|
|
"amdgpu-assume-external-call-stack-size",
|
|
cl::desc("Assumed stack use of any external call (in bytes)"), cl::Hidden,
|
|
cl::init(16384));
|
|
|
|
static cl::opt<uint32_t> clAssumedStackSizeForDynamicSizeObjects(
|
|
"amdgpu-assume-dynamic-stack-object-size",
|
|
cl::desc("Assumed extra stack use if there are any "
|
|
"variable sized objects (in bytes)"),
|
|
cl::Hidden, cl::init(4096));
|
|
|
|
INITIALIZE_PASS(AMDGPUResourceUsageAnalysisWrapperPass, DEBUG_TYPE,
|
|
"Function register usage analysis", true, true)
|
|
|
|
static const Function *getCalleeFunction(const MachineOperand &Op) {
|
|
if (Op.isImm()) {
|
|
assert(Op.getImm() == 0);
|
|
return nullptr;
|
|
}
|
|
return cast<Function>(Op.getGlobal()->stripPointerCastsAndAliases());
|
|
}
|
|
|
|
static bool hasAnyNonFlatUseOfReg(const MachineRegisterInfo &MRI,
|
|
const SIInstrInfo &TII, unsigned Reg) {
|
|
for (const MachineOperand &UseOp : MRI.reg_operands(Reg)) {
|
|
if (!UseOp.isImplicit() || !TII.isFLAT(*UseOp.getParent()))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool AMDGPUResourceUsageAnalysisWrapperPass::runOnMachineFunction(
|
|
MachineFunction &MF) {
|
|
auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
|
|
if (!TPC)
|
|
return false;
|
|
|
|
const TargetMachine &TM = TPC->getTM<TargetMachine>();
|
|
const MCSubtargetInfo &STI = *TM.getMCSubtargetInfo();
|
|
|
|
// By default, for code object v5 and later, track only the minimum scratch
|
|
// size
|
|
uint32_t AssumedStackSizeForDynamicSizeObjects =
|
|
clAssumedStackSizeForDynamicSizeObjects;
|
|
uint32_t AssumedStackSizeForExternalCall = clAssumedStackSizeForExternalCall;
|
|
if (AMDGPU::getAMDHSACodeObjectVersion(*MF.getFunction().getParent()) >=
|
|
AMDGPU::AMDHSA_COV5 ||
|
|
STI.getTargetTriple().getOS() == Triple::AMDPAL) {
|
|
if (!clAssumedStackSizeForDynamicSizeObjects.getNumOccurrences())
|
|
AssumedStackSizeForDynamicSizeObjects = 0;
|
|
if (!clAssumedStackSizeForExternalCall.getNumOccurrences())
|
|
AssumedStackSizeForExternalCall = 0;
|
|
}
|
|
|
|
ResourceInfo = AMDGPUResourceUsageAnalysisImpl().analyzeResourceUsage(
|
|
MF, AssumedStackSizeForDynamicSizeObjects,
|
|
AssumedStackSizeForExternalCall);
|
|
|
|
return false;
|
|
}
|
|
|
|
AnalysisKey AMDGPUResourceUsageAnalysis::Key;
|
|
AMDGPUResourceUsageAnalysis::Result
|
|
AMDGPUResourceUsageAnalysis::run(MachineFunction &MF,
|
|
MachineFunctionAnalysisManager &MFAM) {
|
|
const MCSubtargetInfo &STI = *TM.getMCSubtargetInfo();
|
|
|
|
// By default, for code object v5 and later, track only the minimum scratch
|
|
// size
|
|
uint32_t AssumedStackSizeForDynamicSizeObjects =
|
|
clAssumedStackSizeForDynamicSizeObjects;
|
|
uint32_t AssumedStackSizeForExternalCall = clAssumedStackSizeForExternalCall;
|
|
if (AMDGPU::getAMDHSACodeObjectVersion(*MF.getFunction().getParent()) >=
|
|
AMDGPU::AMDHSA_COV5 ||
|
|
STI.getTargetTriple().getOS() == Triple::AMDPAL) {
|
|
if (!clAssumedStackSizeForDynamicSizeObjects.getNumOccurrences())
|
|
AssumedStackSizeForDynamicSizeObjects = 0;
|
|
if (!clAssumedStackSizeForExternalCall.getNumOccurrences())
|
|
AssumedStackSizeForExternalCall = 0;
|
|
}
|
|
|
|
return AMDGPUResourceUsageAnalysisImpl().analyzeResourceUsage(
|
|
MF, AssumedStackSizeForDynamicSizeObjects,
|
|
AssumedStackSizeForExternalCall);
|
|
}
|
|
|
|
AMDGPUResourceUsageAnalysisImpl::SIFunctionResourceInfo
|
|
AMDGPUResourceUsageAnalysisImpl::analyzeResourceUsage(
|
|
const MachineFunction &MF, uint32_t AssumedStackSizeForDynamicSizeObjects,
|
|
uint32_t AssumedStackSizeForExternalCall) const {
|
|
SIFunctionResourceInfo Info;
|
|
|
|
const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
|
|
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
|
|
const MachineFrameInfo &FrameInfo = MF.getFrameInfo();
|
|
const MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
const SIInstrInfo *TII = ST.getInstrInfo();
|
|
const SIRegisterInfo &TRI = TII->getRegisterInfo();
|
|
|
|
Info.UsesFlatScratch = MRI.isPhysRegUsed(AMDGPU::FLAT_SCR_LO) ||
|
|
MRI.isPhysRegUsed(AMDGPU::FLAT_SCR_HI) ||
|
|
MRI.isLiveIn(MFI->getPreloadedReg(
|
|
AMDGPUFunctionArgInfo::FLAT_SCRATCH_INIT));
|
|
|
|
Info.NumNamedBarrier = MFI->getNumNamedBarriers();
|
|
|
|
// Even if FLAT_SCRATCH is implicitly used, it has no effect if flat
|
|
// instructions aren't used to access the scratch buffer. Inline assembly may
|
|
// need it though.
|
|
//
|
|
// If we only have implicit uses of flat_scr on flat instructions, it is not
|
|
// really needed.
|
|
if (Info.UsesFlatScratch && !MFI->getUserSGPRInfo().hasFlatScratchInit() &&
|
|
(!hasAnyNonFlatUseOfReg(MRI, *TII, AMDGPU::FLAT_SCR) &&
|
|
!hasAnyNonFlatUseOfReg(MRI, *TII, AMDGPU::FLAT_SCR_LO) &&
|
|
!hasAnyNonFlatUseOfReg(MRI, *TII, AMDGPU::FLAT_SCR_HI))) {
|
|
Info.UsesFlatScratch = false;
|
|
}
|
|
|
|
Info.PrivateSegmentSize = FrameInfo.getStackSize();
|
|
|
|
// Assume a big number if there are any unknown sized objects.
|
|
Info.HasDynamicallySizedStack = FrameInfo.hasVarSizedObjects();
|
|
if (Info.HasDynamicallySizedStack)
|
|
Info.PrivateSegmentSize += AssumedStackSizeForDynamicSizeObjects;
|
|
|
|
if (MFI->isStackRealigned())
|
|
Info.PrivateSegmentSize += FrameInfo.getMaxAlign().value();
|
|
|
|
Info.UsesVCC =
|
|
MRI.isPhysRegUsed(AMDGPU::VCC_LO) || MRI.isPhysRegUsed(AMDGPU::VCC_HI);
|
|
Info.NumExplicitSGPR = TRI.getNumUsedPhysRegs(MRI, AMDGPU::SGPR_32RegClass,
|
|
/*IncludeCalls=*/false);
|
|
if (ST.hasMAIInsts())
|
|
Info.NumAGPR = TRI.getNumUsedPhysRegs(MRI, AMDGPU::AGPR_32RegClass,
|
|
/*IncludeCalls=*/false);
|
|
|
|
// If there are no calls, MachineRegisterInfo can tell us the used register
|
|
// count easily.
|
|
// A tail call isn't considered a call for MachineFrameInfo's purposes.
|
|
if (!FrameInfo.hasCalls() && !FrameInfo.hasTailCall()) {
|
|
Info.NumVGPR = TRI.getNumUsedPhysRegs(MRI, AMDGPU::VGPR_32RegClass,
|
|
/*IncludeCalls=*/false);
|
|
return Info;
|
|
}
|
|
|
|
int32_t MaxVGPR = -1;
|
|
Info.CalleeSegmentSize = 0;
|
|
|
|
for (const MachineBasicBlock &MBB : MF) {
|
|
for (const MachineInstr &MI : MBB) {
|
|
for (unsigned I = 0; I < MI.getNumOperands(); ++I) {
|
|
const MachineOperand &MO = MI.getOperand(I);
|
|
|
|
if (!MO.isReg())
|
|
continue;
|
|
|
|
Register Reg = MO.getReg();
|
|
switch (Reg) {
|
|
case AMDGPU::NoRegister:
|
|
assert(MI.isDebugInstr() &&
|
|
"Instruction uses invalid noreg register");
|
|
continue;
|
|
|
|
case AMDGPU::XNACK_MASK:
|
|
case AMDGPU::XNACK_MASK_LO:
|
|
case AMDGPU::XNACK_MASK_HI:
|
|
llvm_unreachable("xnack_mask registers should not be used");
|
|
|
|
case AMDGPU::LDS_DIRECT:
|
|
llvm_unreachable("lds_direct register should not be used");
|
|
|
|
case AMDGPU::TBA:
|
|
case AMDGPU::TBA_LO:
|
|
case AMDGPU::TBA_HI:
|
|
case AMDGPU::TMA:
|
|
case AMDGPU::TMA_LO:
|
|
case AMDGPU::TMA_HI:
|
|
llvm_unreachable("trap handler registers should not be used");
|
|
|
|
case AMDGPU::SRC_VCCZ:
|
|
llvm_unreachable("src_vccz register should not be used");
|
|
|
|
case AMDGPU::SRC_EXECZ:
|
|
llvm_unreachable("src_execz register should not be used");
|
|
|
|
case AMDGPU::SRC_SCC:
|
|
llvm_unreachable("src_scc register should not be used");
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
const TargetRegisterClass *RC = TRI.getPhysRegBaseClass(Reg);
|
|
assert((!RC || TRI.isVGPRClass(RC) || TRI.isSGPRClass(RC) ||
|
|
TRI.isAGPRClass(RC) || AMDGPU::TTMP_32RegClass.contains(Reg) ||
|
|
AMDGPU::TTMP_64RegClass.contains(Reg) ||
|
|
AMDGPU::TTMP_128RegClass.contains(Reg) ||
|
|
AMDGPU::TTMP_256RegClass.contains(Reg) ||
|
|
AMDGPU::TTMP_512RegClass.contains(Reg)) &&
|
|
"Unknown register class");
|
|
|
|
if (!RC || !TRI.isVGPRClass(RC))
|
|
continue;
|
|
|
|
if (MI.isCall() || MI.isMetaInstruction())
|
|
continue;
|
|
|
|
unsigned Width = divideCeil(TRI.getRegSizeInBits(*RC), 32);
|
|
unsigned HWReg = TRI.getHWRegIndex(Reg);
|
|
int MaxUsed = HWReg + Width - 1;
|
|
MaxVGPR = std::max(MaxUsed, MaxVGPR);
|
|
}
|
|
|
|
if (MI.isCall()) {
|
|
// Pseudo used just to encode the underlying global. Is there a better
|
|
// way to track this?
|
|
|
|
const MachineOperand *CalleeOp =
|
|
TII->getNamedOperand(MI, AMDGPU::OpName::callee);
|
|
|
|
const Function *Callee = getCalleeFunction(*CalleeOp);
|
|
|
|
// Avoid crashing on undefined behavior with an illegal call to a
|
|
// kernel. If a callsite's calling convention doesn't match the
|
|
// function's, it's undefined behavior. If the callsite calling
|
|
// convention does match, that would have errored earlier.
|
|
if (Callee && AMDGPU::isEntryFunctionCC(Callee->getCallingConv()))
|
|
report_fatal_error("invalid call to entry function");
|
|
|
|
auto isSameFunction = [](const MachineFunction &MF, const Function *F) {
|
|
return F == &MF.getFunction();
|
|
};
|
|
|
|
if (Callee && !isSameFunction(MF, Callee))
|
|
Info.Callees.push_back(Callee);
|
|
|
|
bool IsIndirect = !Callee || Callee->isDeclaration();
|
|
|
|
// FIXME: Call site could have norecurse on it
|
|
if (!Callee || !Callee->doesNotRecurse()) {
|
|
Info.HasRecursion = true;
|
|
|
|
// TODO: If we happen to know there is no stack usage in the
|
|
// callgraph, we don't need to assume an infinitely growing stack.
|
|
if (!MI.isReturn()) {
|
|
// We don't need to assume an unknown stack size for tail calls.
|
|
|
|
// FIXME: This only benefits in the case where the kernel does not
|
|
// directly call the tail called function. If a kernel directly
|
|
// calls a tail recursive function, we'll assume maximum stack size
|
|
// based on the regular call instruction.
|
|
Info.CalleeSegmentSize = std::max(
|
|
Info.CalleeSegmentSize,
|
|
static_cast<uint64_t>(AssumedStackSizeForExternalCall));
|
|
}
|
|
}
|
|
|
|
if (IsIndirect) {
|
|
Info.CalleeSegmentSize =
|
|
std::max(Info.CalleeSegmentSize,
|
|
static_cast<uint64_t>(AssumedStackSizeForExternalCall));
|
|
|
|
// Register usage of indirect calls gets handled later
|
|
Info.UsesVCC = true;
|
|
Info.UsesFlatScratch = ST.hasFlatAddressSpace();
|
|
Info.HasDynamicallySizedStack = true;
|
|
Info.HasIndirectCall = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
Info.NumVGPR = MaxVGPR + 1;
|
|
|
|
return Info;
|
|
}
|