
When computing the number of registers required by entry functions, the `AMDGPUAsmPrinter` needs to take into account both the register usage computed by the `AMDGPUResourceUsageAnalysis` pass, and the number of registers initialized by the hardware. At the moment, the way it computes the latter is different for graphics vs compute, due to differences in the implementation. For kernels, all the information needed is available in the `SIMachineFunctionInfo`, but for graphics shaders we would iterate over the `Function` arguments in the `AMDGPUAsmPrinter`. This pretty much repeats some of the logic from instruction selection. This patch introduces 2 new members to `SIMachineFunctionInfo`, one for SGPRs and one for VGPRs. Both will be computed during instruction selection and then used during `AMDGPUAsmPrinter`, removing the need to refer to the `Function` when printing assembly. This patch is NFC except for the fact that we now add the extra SGPRs (VCC, XNACK etc) to the number of SGPRs computed for graphics entry points. I'm not sure why these weren't included before. It would be nice if someone could confirm if that was just an oversight or if we have some docs somewhere that I haven't managed to find. Only one test is affected (its SGPR usage increases because we now take into account the XNACK registers).
1215 lines
40 KiB
C++
1215 lines
40 KiB
C++
//==- SIMachineFunctionInfo.h - SIMachineFunctionInfo interface --*- C++ -*-==//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
/// \file
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_LIB_TARGET_AMDGPU_SIMACHINEFUNCTIONINFO_H
|
|
#define LLVM_LIB_TARGET_AMDGPU_SIMACHINEFUNCTIONINFO_H
|
|
|
|
#include "AMDGPUArgumentUsageInfo.h"
|
|
#include "AMDGPUMachineFunction.h"
|
|
#include "AMDGPUTargetMachine.h"
|
|
#include "GCNSubtarget.h"
|
|
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
|
|
#include "SIInstrInfo.h"
|
|
#include "SIModeRegisterDefaults.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/CodeGen/MIRYamlMapping.h"
|
|
#include "llvm/CodeGen/PseudoSourceValue.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <optional>
|
|
|
|
namespace llvm {
|
|
|
|
class MachineFrameInfo;
|
|
class MachineFunction;
|
|
class SIMachineFunctionInfo;
|
|
class SIRegisterInfo;
|
|
class TargetRegisterClass;
|
|
|
|
class AMDGPUPseudoSourceValue : public PseudoSourceValue {
|
|
public:
|
|
enum AMDGPUPSVKind : unsigned {
|
|
PSVImage = PseudoSourceValue::TargetCustom,
|
|
GWSResource
|
|
};
|
|
|
|
protected:
|
|
AMDGPUPseudoSourceValue(unsigned Kind, const AMDGPUTargetMachine &TM)
|
|
: PseudoSourceValue(Kind, TM) {}
|
|
|
|
public:
|
|
bool isConstant(const MachineFrameInfo *) const override {
|
|
// This should probably be true for most images, but we will start by being
|
|
// conservative.
|
|
return false;
|
|
}
|
|
|
|
bool isAliased(const MachineFrameInfo *) const override {
|
|
return true;
|
|
}
|
|
|
|
bool mayAlias(const MachineFrameInfo *) const override {
|
|
return true;
|
|
}
|
|
};
|
|
|
|
class AMDGPUGWSResourcePseudoSourceValue final : public AMDGPUPseudoSourceValue {
|
|
public:
|
|
explicit AMDGPUGWSResourcePseudoSourceValue(const AMDGPUTargetMachine &TM)
|
|
: AMDGPUPseudoSourceValue(GWSResource, TM) {}
|
|
|
|
static bool classof(const PseudoSourceValue *V) {
|
|
return V->kind() == GWSResource;
|
|
}
|
|
|
|
// These are inaccessible memory from IR.
|
|
bool isAliased(const MachineFrameInfo *) const override {
|
|
return false;
|
|
}
|
|
|
|
// These are inaccessible memory from IR.
|
|
bool mayAlias(const MachineFrameInfo *) const override {
|
|
return false;
|
|
}
|
|
|
|
void printCustom(raw_ostream &OS) const override {
|
|
OS << "GWSResource";
|
|
}
|
|
};
|
|
|
|
namespace yaml {
|
|
|
|
struct SIArgument {
|
|
bool IsRegister;
|
|
union {
|
|
StringValue RegisterName;
|
|
unsigned StackOffset;
|
|
};
|
|
std::optional<unsigned> Mask;
|
|
|
|
// Default constructor, which creates a stack argument.
|
|
SIArgument() : IsRegister(false), StackOffset(0) {}
|
|
SIArgument(const SIArgument &Other) {
|
|
IsRegister = Other.IsRegister;
|
|
if (IsRegister)
|
|
new (&RegisterName) StringValue(Other.RegisterName);
|
|
else
|
|
StackOffset = Other.StackOffset;
|
|
Mask = Other.Mask;
|
|
}
|
|
SIArgument &operator=(const SIArgument &Other) {
|
|
// Default-construct or destruct the old RegisterName in case of switching
|
|
// union members
|
|
if (IsRegister != Other.IsRegister) {
|
|
if (Other.IsRegister)
|
|
new (&RegisterName) StringValue();
|
|
else
|
|
RegisterName.~StringValue();
|
|
}
|
|
IsRegister = Other.IsRegister;
|
|
if (IsRegister)
|
|
RegisterName = Other.RegisterName;
|
|
else
|
|
StackOffset = Other.StackOffset;
|
|
Mask = Other.Mask;
|
|
return *this;
|
|
}
|
|
~SIArgument() {
|
|
if (IsRegister)
|
|
RegisterName.~StringValue();
|
|
}
|
|
|
|
// Helper to create a register or stack argument.
|
|
static inline SIArgument createArgument(bool IsReg) {
|
|
if (IsReg)
|
|
return SIArgument(IsReg);
|
|
return SIArgument();
|
|
}
|
|
|
|
private:
|
|
// Construct a register argument.
|
|
SIArgument(bool) : IsRegister(true), RegisterName() {}
|
|
};
|
|
|
|
template <> struct MappingTraits<SIArgument> {
|
|
static void mapping(IO &YamlIO, SIArgument &A) {
|
|
if (YamlIO.outputting()) {
|
|
if (A.IsRegister)
|
|
YamlIO.mapRequired("reg", A.RegisterName);
|
|
else
|
|
YamlIO.mapRequired("offset", A.StackOffset);
|
|
} else {
|
|
auto Keys = YamlIO.keys();
|
|
if (is_contained(Keys, "reg")) {
|
|
A = SIArgument::createArgument(true);
|
|
YamlIO.mapRequired("reg", A.RegisterName);
|
|
} else if (is_contained(Keys, "offset"))
|
|
YamlIO.mapRequired("offset", A.StackOffset);
|
|
else
|
|
YamlIO.setError("missing required key 'reg' or 'offset'");
|
|
}
|
|
YamlIO.mapOptional("mask", A.Mask);
|
|
}
|
|
static const bool flow = true;
|
|
};
|
|
|
|
struct SIArgumentInfo {
|
|
std::optional<SIArgument> PrivateSegmentBuffer;
|
|
std::optional<SIArgument> DispatchPtr;
|
|
std::optional<SIArgument> QueuePtr;
|
|
std::optional<SIArgument> KernargSegmentPtr;
|
|
std::optional<SIArgument> DispatchID;
|
|
std::optional<SIArgument> FlatScratchInit;
|
|
std::optional<SIArgument> PrivateSegmentSize;
|
|
|
|
std::optional<SIArgument> WorkGroupIDX;
|
|
std::optional<SIArgument> WorkGroupIDY;
|
|
std::optional<SIArgument> WorkGroupIDZ;
|
|
std::optional<SIArgument> WorkGroupInfo;
|
|
std::optional<SIArgument> LDSKernelId;
|
|
std::optional<SIArgument> PrivateSegmentWaveByteOffset;
|
|
|
|
std::optional<SIArgument> ImplicitArgPtr;
|
|
std::optional<SIArgument> ImplicitBufferPtr;
|
|
|
|
std::optional<SIArgument> WorkItemIDX;
|
|
std::optional<SIArgument> WorkItemIDY;
|
|
std::optional<SIArgument> WorkItemIDZ;
|
|
};
|
|
|
|
template <> struct MappingTraits<SIArgumentInfo> {
|
|
static void mapping(IO &YamlIO, SIArgumentInfo &AI) {
|
|
YamlIO.mapOptional("privateSegmentBuffer", AI.PrivateSegmentBuffer);
|
|
YamlIO.mapOptional("dispatchPtr", AI.DispatchPtr);
|
|
YamlIO.mapOptional("queuePtr", AI.QueuePtr);
|
|
YamlIO.mapOptional("kernargSegmentPtr", AI.KernargSegmentPtr);
|
|
YamlIO.mapOptional("dispatchID", AI.DispatchID);
|
|
YamlIO.mapOptional("flatScratchInit", AI.FlatScratchInit);
|
|
YamlIO.mapOptional("privateSegmentSize", AI.PrivateSegmentSize);
|
|
|
|
YamlIO.mapOptional("workGroupIDX", AI.WorkGroupIDX);
|
|
YamlIO.mapOptional("workGroupIDY", AI.WorkGroupIDY);
|
|
YamlIO.mapOptional("workGroupIDZ", AI.WorkGroupIDZ);
|
|
YamlIO.mapOptional("workGroupInfo", AI.WorkGroupInfo);
|
|
YamlIO.mapOptional("LDSKernelId", AI.LDSKernelId);
|
|
YamlIO.mapOptional("privateSegmentWaveByteOffset",
|
|
AI.PrivateSegmentWaveByteOffset);
|
|
|
|
YamlIO.mapOptional("implicitArgPtr", AI.ImplicitArgPtr);
|
|
YamlIO.mapOptional("implicitBufferPtr", AI.ImplicitBufferPtr);
|
|
|
|
YamlIO.mapOptional("workItemIDX", AI.WorkItemIDX);
|
|
YamlIO.mapOptional("workItemIDY", AI.WorkItemIDY);
|
|
YamlIO.mapOptional("workItemIDZ", AI.WorkItemIDZ);
|
|
}
|
|
};
|
|
|
|
// Default to default mode for default calling convention.
|
|
struct SIMode {
|
|
bool IEEE = true;
|
|
bool DX10Clamp = true;
|
|
bool FP32InputDenormals = true;
|
|
bool FP32OutputDenormals = true;
|
|
bool FP64FP16InputDenormals = true;
|
|
bool FP64FP16OutputDenormals = true;
|
|
|
|
SIMode() = default;
|
|
|
|
SIMode(const SIModeRegisterDefaults &Mode) {
|
|
IEEE = Mode.IEEE;
|
|
DX10Clamp = Mode.DX10Clamp;
|
|
FP32InputDenormals = Mode.FP32Denormals.Input != DenormalMode::PreserveSign;
|
|
FP32OutputDenormals =
|
|
Mode.FP32Denormals.Output != DenormalMode::PreserveSign;
|
|
FP64FP16InputDenormals =
|
|
Mode.FP64FP16Denormals.Input != DenormalMode::PreserveSign;
|
|
FP64FP16OutputDenormals =
|
|
Mode.FP64FP16Denormals.Output != DenormalMode::PreserveSign;
|
|
}
|
|
|
|
bool operator ==(const SIMode Other) const {
|
|
return IEEE == Other.IEEE &&
|
|
DX10Clamp == Other.DX10Clamp &&
|
|
FP32InputDenormals == Other.FP32InputDenormals &&
|
|
FP32OutputDenormals == Other.FP32OutputDenormals &&
|
|
FP64FP16InputDenormals == Other.FP64FP16InputDenormals &&
|
|
FP64FP16OutputDenormals == Other.FP64FP16OutputDenormals;
|
|
}
|
|
};
|
|
|
|
template <> struct MappingTraits<SIMode> {
|
|
static void mapping(IO &YamlIO, SIMode &Mode) {
|
|
YamlIO.mapOptional("ieee", Mode.IEEE, true);
|
|
YamlIO.mapOptional("dx10-clamp", Mode.DX10Clamp, true);
|
|
YamlIO.mapOptional("fp32-input-denormals", Mode.FP32InputDenormals, true);
|
|
YamlIO.mapOptional("fp32-output-denormals", Mode.FP32OutputDenormals, true);
|
|
YamlIO.mapOptional("fp64-fp16-input-denormals", Mode.FP64FP16InputDenormals, true);
|
|
YamlIO.mapOptional("fp64-fp16-output-denormals", Mode.FP64FP16OutputDenormals, true);
|
|
}
|
|
};
|
|
|
|
struct SIMachineFunctionInfo final : public yaml::MachineFunctionInfo {
|
|
uint64_t ExplicitKernArgSize = 0;
|
|
Align MaxKernArgAlign;
|
|
uint32_t LDSSize = 0;
|
|
uint32_t GDSSize = 0;
|
|
Align DynLDSAlign;
|
|
bool IsEntryFunction = false;
|
|
bool IsChainFunction = false;
|
|
bool NoSignedZerosFPMath = false;
|
|
bool MemoryBound = false;
|
|
bool WaveLimiter = false;
|
|
bool HasSpilledSGPRs = false;
|
|
bool HasSpilledVGPRs = false;
|
|
uint16_t NumWaveDispatchSGPRs = 0;
|
|
uint16_t NumWaveDispatchVGPRs = 0;
|
|
uint32_t HighBitsOf32BitAddress = 0;
|
|
|
|
// TODO: 10 may be a better default since it's the maximum.
|
|
unsigned Occupancy = 0;
|
|
|
|
SmallVector<StringValue, 2> SpillPhysVGPRS;
|
|
SmallVector<StringValue> WWMReservedRegs;
|
|
|
|
StringValue ScratchRSrcReg = "$private_rsrc_reg";
|
|
StringValue FrameOffsetReg = "$fp_reg";
|
|
StringValue StackPtrOffsetReg = "$sp_reg";
|
|
|
|
unsigned BytesInStackArgArea = 0;
|
|
bool ReturnsVoid = true;
|
|
|
|
std::optional<SIArgumentInfo> ArgInfo;
|
|
|
|
unsigned PSInputAddr = 0;
|
|
unsigned PSInputEnable = 0;
|
|
unsigned MaxMemoryClusterDWords = DefaultMemoryClusterDWordsLimit;
|
|
|
|
SIMode Mode;
|
|
std::optional<FrameIndex> ScavengeFI;
|
|
StringValue VGPRForAGPRCopy;
|
|
StringValue SGPRForEXECCopy;
|
|
StringValue LongBranchReservedReg;
|
|
|
|
bool HasInitWholeWave = false;
|
|
bool IsWholeWaveFunction = false;
|
|
|
|
unsigned DynamicVGPRBlockSize = 0;
|
|
unsigned ScratchReservedForDynamicVGPRs = 0;
|
|
|
|
SIMachineFunctionInfo() = default;
|
|
SIMachineFunctionInfo(const llvm::SIMachineFunctionInfo &,
|
|
const TargetRegisterInfo &TRI,
|
|
const llvm::MachineFunction &MF);
|
|
|
|
void mappingImpl(yaml::IO &YamlIO) override;
|
|
~SIMachineFunctionInfo() = default;
|
|
};
|
|
|
|
template <> struct MappingTraits<SIMachineFunctionInfo> {
|
|
static void mapping(IO &YamlIO, SIMachineFunctionInfo &MFI) {
|
|
YamlIO.mapOptional("explicitKernArgSize", MFI.ExplicitKernArgSize,
|
|
UINT64_C(0));
|
|
YamlIO.mapOptional("maxKernArgAlign", MFI.MaxKernArgAlign);
|
|
YamlIO.mapOptional("ldsSize", MFI.LDSSize, 0u);
|
|
YamlIO.mapOptional("gdsSize", MFI.GDSSize, 0u);
|
|
YamlIO.mapOptional("dynLDSAlign", MFI.DynLDSAlign, Align());
|
|
YamlIO.mapOptional("isEntryFunction", MFI.IsEntryFunction, false);
|
|
YamlIO.mapOptional("isChainFunction", MFI.IsChainFunction, false);
|
|
YamlIO.mapOptional("noSignedZerosFPMath", MFI.NoSignedZerosFPMath, false);
|
|
YamlIO.mapOptional("memoryBound", MFI.MemoryBound, false);
|
|
YamlIO.mapOptional("waveLimiter", MFI.WaveLimiter, false);
|
|
YamlIO.mapOptional("hasSpilledSGPRs", MFI.HasSpilledSGPRs, false);
|
|
YamlIO.mapOptional("hasSpilledVGPRs", MFI.HasSpilledVGPRs, false);
|
|
YamlIO.mapOptional("numWaveDispatchSGPRs", MFI.NumWaveDispatchSGPRs, false);
|
|
YamlIO.mapOptional("numWaveDispatchVGPRs", MFI.NumWaveDispatchVGPRs, false);
|
|
YamlIO.mapOptional("scratchRSrcReg", MFI.ScratchRSrcReg,
|
|
StringValue("$private_rsrc_reg"));
|
|
YamlIO.mapOptional("frameOffsetReg", MFI.FrameOffsetReg,
|
|
StringValue("$fp_reg"));
|
|
YamlIO.mapOptional("stackPtrOffsetReg", MFI.StackPtrOffsetReg,
|
|
StringValue("$sp_reg"));
|
|
YamlIO.mapOptional("bytesInStackArgArea", MFI.BytesInStackArgArea, 0u);
|
|
YamlIO.mapOptional("returnsVoid", MFI.ReturnsVoid, true);
|
|
YamlIO.mapOptional("argumentInfo", MFI.ArgInfo);
|
|
YamlIO.mapOptional("psInputAddr", MFI.PSInputAddr, 0u);
|
|
YamlIO.mapOptional("psInputEnable", MFI.PSInputEnable, 0u);
|
|
YamlIO.mapOptional("maxMemoryClusterDWords", MFI.MaxMemoryClusterDWords,
|
|
DefaultMemoryClusterDWordsLimit);
|
|
YamlIO.mapOptional("mode", MFI.Mode, SIMode());
|
|
YamlIO.mapOptional("highBitsOf32BitAddress",
|
|
MFI.HighBitsOf32BitAddress, 0u);
|
|
YamlIO.mapOptional("occupancy", MFI.Occupancy, 0);
|
|
YamlIO.mapOptional("spillPhysVGPRs", MFI.SpillPhysVGPRS);
|
|
YamlIO.mapOptional("wwmReservedRegs", MFI.WWMReservedRegs);
|
|
YamlIO.mapOptional("scavengeFI", MFI.ScavengeFI);
|
|
YamlIO.mapOptional("vgprForAGPRCopy", MFI.VGPRForAGPRCopy,
|
|
StringValue()); // Don't print out when it's empty.
|
|
YamlIO.mapOptional("sgprForEXECCopy", MFI.SGPRForEXECCopy,
|
|
StringValue()); // Don't print out when it's empty.
|
|
YamlIO.mapOptional("longBranchReservedReg", MFI.LongBranchReservedReg,
|
|
StringValue());
|
|
YamlIO.mapOptional("hasInitWholeWave", MFI.HasInitWholeWave, false);
|
|
YamlIO.mapOptional("dynamicVGPRBlockSize", MFI.DynamicVGPRBlockSize, false);
|
|
YamlIO.mapOptional("scratchReservedForDynamicVGPRs",
|
|
MFI.ScratchReservedForDynamicVGPRs, 0);
|
|
YamlIO.mapOptional("isWholeWaveFunction", MFI.IsWholeWaveFunction, false);
|
|
}
|
|
};
|
|
|
|
} // end namespace yaml
|
|
|
|
// A CSR SGPR value can be preserved inside a callee using one of the following
|
|
// methods.
|
|
// 1. Copy to an unused scratch SGPR.
|
|
// 2. Spill to a VGPR lane.
|
|
// 3. Spill to memory via. a scratch VGPR.
|
|
// class PrologEpilogSGPRSaveRestoreInfo represents the save/restore method used
|
|
// for an SGPR at function prolog/epilog.
|
|
enum class SGPRSaveKind : uint8_t {
|
|
COPY_TO_SCRATCH_SGPR,
|
|
SPILL_TO_VGPR_LANE,
|
|
SPILL_TO_MEM
|
|
};
|
|
|
|
class PrologEpilogSGPRSaveRestoreInfo {
|
|
SGPRSaveKind Kind;
|
|
union {
|
|
int Index;
|
|
Register Reg;
|
|
};
|
|
|
|
public:
|
|
PrologEpilogSGPRSaveRestoreInfo(SGPRSaveKind K, int I) : Kind(K), Index(I) {}
|
|
PrologEpilogSGPRSaveRestoreInfo(SGPRSaveKind K, Register R)
|
|
: Kind(K), Reg(R) {}
|
|
Register getReg() const { return Reg; }
|
|
int getIndex() const { return Index; }
|
|
SGPRSaveKind getKind() const { return Kind; }
|
|
};
|
|
|
|
struct VGPRBlock2IndexFunctor {
|
|
using argument_type = Register;
|
|
unsigned operator()(Register Reg) const {
|
|
assert(AMDGPU::VReg_1024RegClass.contains(Reg) && "Expecting a VGPR block");
|
|
|
|
const MCRegister FirstVGPRBlock = AMDGPU::VReg_1024RegClass.getRegister(0);
|
|
return Reg - FirstVGPRBlock;
|
|
}
|
|
};
|
|
|
|
/// This class keeps track of the SPI_SP_INPUT_ADDR config register, which
|
|
/// tells the hardware which interpolation parameters to load.
|
|
class SIMachineFunctionInfo final : public AMDGPUMachineFunction,
|
|
private MachineRegisterInfo::Delegate {
|
|
friend class GCNTargetMachine;
|
|
|
|
// State of MODE register, assumed FP mode.
|
|
SIModeRegisterDefaults Mode;
|
|
|
|
// Registers that may be reserved for spilling purposes. These may be the same
|
|
// as the input registers.
|
|
Register ScratchRSrcReg = AMDGPU::PRIVATE_RSRC_REG;
|
|
|
|
// This is the unswizzled offset from the current dispatch's scratch wave
|
|
// base to the beginning of the current function's frame.
|
|
Register FrameOffsetReg = AMDGPU::FP_REG;
|
|
|
|
// This is an ABI register used in the non-entry calling convention to
|
|
// communicate the unswizzled offset from the current dispatch's scratch wave
|
|
// base to the beginning of the new function's frame.
|
|
Register StackPtrOffsetReg = AMDGPU::SP_REG;
|
|
|
|
// Registers that may be reserved when RA doesn't allocate enough
|
|
// registers to plan for the case where an indirect branch ends up
|
|
// being needed during branch relaxation.
|
|
Register LongBranchReservedReg;
|
|
|
|
AMDGPUFunctionArgInfo ArgInfo;
|
|
|
|
// Graphics info.
|
|
unsigned PSInputAddr = 0;
|
|
unsigned PSInputEnable = 0;
|
|
|
|
/// Number of bytes of arguments this function has on the stack. If the callee
|
|
/// is expected to restore the argument stack this should be a multiple of 16,
|
|
/// all usable during a tail call.
|
|
///
|
|
/// The alternative would forbid tail call optimisation in some cases: if we
|
|
/// want to transfer control from a function with 8-bytes of stack-argument
|
|
/// space to a function with 16-bytes then misalignment of this value would
|
|
/// make a stack adjustment necessary, which could not be undone by the
|
|
/// callee.
|
|
unsigned BytesInStackArgArea = 0;
|
|
|
|
bool ReturnsVoid = true;
|
|
|
|
// A pair of default/requested minimum/maximum flat work group sizes.
|
|
// Minimum - first, maximum - second.
|
|
std::pair<unsigned, unsigned> FlatWorkGroupSizes = {0, 0};
|
|
|
|
// A pair of default/requested minimum/maximum number of waves per execution
|
|
// unit. Minimum - first, maximum - second.
|
|
std::pair<unsigned, unsigned> WavesPerEU = {0, 0};
|
|
|
|
const AMDGPUGWSResourcePseudoSourceValue GWSResourcePSV;
|
|
|
|
// Default/requested number of work groups for the function.
|
|
SmallVector<unsigned> MaxNumWorkGroups = {0, 0, 0};
|
|
|
|
private:
|
|
unsigned NumUserSGPRs = 0;
|
|
unsigned NumSystemSGPRs = 0;
|
|
|
|
unsigned NumWaveDispatchSGPRs = 0;
|
|
unsigned NumWaveDispatchVGPRs = 0;
|
|
|
|
bool HasSpilledSGPRs = false;
|
|
bool HasSpilledVGPRs = false;
|
|
bool HasNonSpillStackObjects = false;
|
|
bool IsStackRealigned = false;
|
|
|
|
unsigned NumSpilledSGPRs = 0;
|
|
unsigned NumSpilledVGPRs = 0;
|
|
|
|
unsigned DynamicVGPRBlockSize = 0;
|
|
|
|
// The size in bytes of the scratch space reserved for the CWSR trap handler
|
|
// to spill some of the dynamic VGPRs.
|
|
unsigned ScratchReservedForDynamicVGPRs = 0;
|
|
|
|
// Tracks information about user SGPRs that will be setup by hardware which
|
|
// will apply to all wavefronts of the grid.
|
|
GCNUserSGPRUsageInfo UserSGPRInfo;
|
|
|
|
// Feature bits required for inputs passed in system SGPRs.
|
|
bool WorkGroupIDX : 1; // Always initialized.
|
|
bool WorkGroupIDY : 1;
|
|
bool WorkGroupIDZ : 1;
|
|
bool WorkGroupInfo : 1;
|
|
bool LDSKernelId : 1;
|
|
bool PrivateSegmentWaveByteOffset : 1;
|
|
|
|
bool WorkItemIDX : 1; // Always initialized.
|
|
bool WorkItemIDY : 1;
|
|
bool WorkItemIDZ : 1;
|
|
|
|
// Pointer to where the ABI inserts special kernel arguments separate from the
|
|
// user arguments. This is an offset from the KernargSegmentPtr.
|
|
bool ImplicitArgPtr : 1;
|
|
|
|
bool MayNeedAGPRs : 1;
|
|
|
|
// The hard-wired high half of the address of the global information table
|
|
// for AMDPAL OS type. 0xffffffff represents no hard-wired high half, since
|
|
// current hardware only allows a 16 bit value.
|
|
unsigned GITPtrHigh;
|
|
|
|
unsigned HighBitsOf32BitAddress;
|
|
|
|
// Flags associated with the virtual registers.
|
|
IndexedMap<uint8_t, VirtReg2IndexFunctor> VRegFlags;
|
|
|
|
// Current recorded maximum possible occupancy.
|
|
unsigned Occupancy;
|
|
|
|
// Maximum number of dwords that can be clusterred during instruction
|
|
// scheduler stage.
|
|
unsigned MaxMemoryClusterDWords = DefaultMemoryClusterDWordsLimit;
|
|
|
|
MCPhysReg getNextUserSGPR() const;
|
|
|
|
MCPhysReg getNextSystemSGPR() const;
|
|
|
|
// MachineRegisterInfo callback functions to notify events.
|
|
void MRI_NoteNewVirtualRegister(Register Reg) override;
|
|
void MRI_NoteCloneVirtualRegister(Register NewReg, Register SrcReg) override;
|
|
|
|
public:
|
|
struct VGPRSpillToAGPR {
|
|
SmallVector<MCPhysReg, 32> Lanes;
|
|
bool FullyAllocated = false;
|
|
bool IsDead = false;
|
|
};
|
|
|
|
private:
|
|
// To track virtual VGPR + lane index for each subregister of the SGPR spilled
|
|
// to frameindex key during SILowerSGPRSpills pass.
|
|
DenseMap<int, std::vector<SIRegisterInfo::SpilledReg>>
|
|
SGPRSpillsToVirtualVGPRLanes;
|
|
// To track physical VGPR + lane index for CSR SGPR spills and special SGPRs
|
|
// like Frame Pointer identified during PrologEpilogInserter.
|
|
DenseMap<int, std::vector<SIRegisterInfo::SpilledReg>>
|
|
SGPRSpillsToPhysicalVGPRLanes;
|
|
unsigned NumVirtualVGPRSpillLanes = 0;
|
|
unsigned NumPhysicalVGPRSpillLanes = 0;
|
|
SmallVector<Register, 2> SpillVGPRs;
|
|
SmallVector<Register, 2> SpillPhysVGPRs;
|
|
using WWMSpillsMap = MapVector<Register, int>;
|
|
// To track the registers used in instructions that can potentially modify the
|
|
// inactive lanes. The WWM instructions and the writelane instructions for
|
|
// spilling SGPRs to VGPRs fall under such category of operations. The VGPRs
|
|
// modified by them should be spilled/restored at function prolog/epilog to
|
|
// avoid any undesired outcome. Each entry in this map holds a pair of values,
|
|
// the VGPR and its stack slot index.
|
|
WWMSpillsMap WWMSpills;
|
|
|
|
// Before allocation, the VGPR registers are partitioned into two distinct
|
|
// sets, the first one for WWM-values and the second set for non-WWM values.
|
|
// The latter set should be reserved during WWM-regalloc.
|
|
BitVector NonWWMRegMask;
|
|
|
|
using ReservedRegSet = SmallSetVector<Register, 8>;
|
|
// To track the VGPRs reserved for WWM instructions. They get stack slots
|
|
// later during PrologEpilogInserter and get added into the superset WWMSpills
|
|
// for actual spilling. A separate set makes the register reserved part and
|
|
// the serialization easier.
|
|
ReservedRegSet WWMReservedRegs;
|
|
|
|
bool IsWholeWaveFunction = false;
|
|
|
|
using PrologEpilogSGPRSpill =
|
|
std::pair<Register, PrologEpilogSGPRSaveRestoreInfo>;
|
|
// To track the SGPR spill method used for a CSR SGPR register during
|
|
// frame lowering. Even though the SGPR spills are handled during
|
|
// SILowerSGPRSpills pass, some special handling needed later during the
|
|
// PrologEpilogInserter.
|
|
SmallVector<PrologEpilogSGPRSpill, 3> PrologEpilogSGPRSpills;
|
|
|
|
// To save/restore EXEC MASK around WWM spills and copies.
|
|
Register SGPRForEXECCopy;
|
|
|
|
DenseMap<int, VGPRSpillToAGPR> VGPRToAGPRSpills;
|
|
|
|
// AGPRs used for VGPR spills.
|
|
SmallVector<MCPhysReg, 32> SpillAGPR;
|
|
|
|
// VGPRs used for AGPR spills.
|
|
SmallVector<MCPhysReg, 32> SpillVGPR;
|
|
|
|
// Emergency stack slot. Sometimes, we create this before finalizing the stack
|
|
// frame, so save it here and add it to the RegScavenger later.
|
|
std::optional<int> ScavengeFI;
|
|
|
|
// Map each VGPR CSR to the mask needed to save and restore it using block
|
|
// load/store instructions. Only used if the subtarget feature for VGPR block
|
|
// load/store is enabled.
|
|
IndexedMap<uint32_t, VGPRBlock2IndexFunctor> MaskForVGPRBlockOps;
|
|
|
|
private:
|
|
Register VGPRForAGPRCopy;
|
|
|
|
bool allocateVirtualVGPRForSGPRSpills(MachineFunction &MF, int FI,
|
|
unsigned LaneIndex);
|
|
bool allocatePhysicalVGPRForSGPRSpills(MachineFunction &MF, int FI,
|
|
unsigned LaneIndex,
|
|
bool IsPrologEpilog);
|
|
|
|
public:
|
|
Register getVGPRForAGPRCopy() const {
|
|
return VGPRForAGPRCopy;
|
|
}
|
|
|
|
void setVGPRForAGPRCopy(Register NewVGPRForAGPRCopy) {
|
|
VGPRForAGPRCopy = NewVGPRForAGPRCopy;
|
|
}
|
|
|
|
bool isCalleeSavedReg(const MCPhysReg *CSRegs, MCPhysReg Reg) const;
|
|
|
|
void setMaskForVGPRBlockOps(Register RegisterBlock, uint32_t Mask) {
|
|
MaskForVGPRBlockOps.grow(RegisterBlock);
|
|
MaskForVGPRBlockOps[RegisterBlock] = Mask;
|
|
}
|
|
|
|
uint32_t getMaskForVGPRBlockOps(Register RegisterBlock) const {
|
|
return MaskForVGPRBlockOps[RegisterBlock];
|
|
}
|
|
|
|
bool hasMaskForVGPRBlockOps(Register RegisterBlock) const {
|
|
return MaskForVGPRBlockOps.inBounds(RegisterBlock);
|
|
}
|
|
|
|
public:
|
|
SIMachineFunctionInfo(const SIMachineFunctionInfo &MFI) = default;
|
|
SIMachineFunctionInfo(const Function &F, const GCNSubtarget *STI);
|
|
|
|
MachineFunctionInfo *
|
|
clone(BumpPtrAllocator &Allocator, MachineFunction &DestMF,
|
|
const DenseMap<MachineBasicBlock *, MachineBasicBlock *> &Src2DstMBB)
|
|
const override;
|
|
|
|
bool initializeBaseYamlFields(const yaml::SIMachineFunctionInfo &YamlMFI,
|
|
const MachineFunction &MF,
|
|
PerFunctionMIParsingState &PFS,
|
|
SMDiagnostic &Error, SMRange &SourceRange);
|
|
|
|
void reserveWWMRegister(Register Reg) { WWMReservedRegs.insert(Reg); }
|
|
bool isWWMReg(Register Reg) const {
|
|
return Reg.isVirtual() ? checkFlag(Reg, AMDGPU::VirtRegFlag::WWM_REG)
|
|
: WWMReservedRegs.contains(Reg);
|
|
}
|
|
|
|
void updateNonWWMRegMask(BitVector &RegMask) { NonWWMRegMask = RegMask; }
|
|
BitVector getNonWWMRegMask() const { return NonWWMRegMask; }
|
|
void clearNonWWMRegAllocMask() { NonWWMRegMask.clear(); }
|
|
|
|
SIModeRegisterDefaults getMode() const { return Mode; }
|
|
|
|
ArrayRef<SIRegisterInfo::SpilledReg>
|
|
getSGPRSpillToVirtualVGPRLanes(int FrameIndex) const {
|
|
auto I = SGPRSpillsToVirtualVGPRLanes.find(FrameIndex);
|
|
return (I == SGPRSpillsToVirtualVGPRLanes.end())
|
|
? ArrayRef<SIRegisterInfo::SpilledReg>()
|
|
: ArrayRef(I->second);
|
|
}
|
|
|
|
ArrayRef<Register> getSGPRSpillVGPRs() const { return SpillVGPRs; }
|
|
ArrayRef<Register> getSGPRSpillPhysVGPRs() const { return SpillPhysVGPRs; }
|
|
|
|
const WWMSpillsMap &getWWMSpills() const { return WWMSpills; }
|
|
const ReservedRegSet &getWWMReservedRegs() const { return WWMReservedRegs; }
|
|
|
|
bool isWWMReservedRegister(Register Reg) const {
|
|
return WWMReservedRegs.contains(Reg);
|
|
}
|
|
|
|
bool isWholeWaveFunction() const { return IsWholeWaveFunction; }
|
|
|
|
ArrayRef<PrologEpilogSGPRSpill> getPrologEpilogSGPRSpills() const {
|
|
assert(is_sorted(PrologEpilogSGPRSpills, llvm::less_first()));
|
|
return PrologEpilogSGPRSpills;
|
|
}
|
|
|
|
GCNUserSGPRUsageInfo &getUserSGPRInfo() { return UserSGPRInfo; }
|
|
|
|
const GCNUserSGPRUsageInfo &getUserSGPRInfo() const { return UserSGPRInfo; }
|
|
|
|
void addToPrologEpilogSGPRSpills(Register Reg,
|
|
PrologEpilogSGPRSaveRestoreInfo SI) {
|
|
assert(!hasPrologEpilogSGPRSpillEntry(Reg));
|
|
|
|
// Insert a new entry in the right place to keep the vector in sorted order.
|
|
// This should be cheap since the vector is expected to be very short.
|
|
PrologEpilogSGPRSpills.insert(
|
|
upper_bound(
|
|
PrologEpilogSGPRSpills, Reg,
|
|
[](const auto &LHS, const auto &RHS) { return LHS < RHS.first; }),
|
|
std::make_pair(Reg, SI));
|
|
}
|
|
|
|
// Check if an entry created for \p Reg in PrologEpilogSGPRSpills. Return true
|
|
// on success and false otherwise.
|
|
bool hasPrologEpilogSGPRSpillEntry(Register Reg) const {
|
|
const auto *I = find_if(PrologEpilogSGPRSpills, [&Reg](const auto &Spill) {
|
|
return Spill.first == Reg;
|
|
});
|
|
return I != PrologEpilogSGPRSpills.end();
|
|
}
|
|
|
|
// Get the scratch SGPR if allocated to save/restore \p Reg.
|
|
Register getScratchSGPRCopyDstReg(Register Reg) const {
|
|
const auto *I = find_if(PrologEpilogSGPRSpills, [&Reg](const auto &Spill) {
|
|
return Spill.first == Reg;
|
|
});
|
|
if (I != PrologEpilogSGPRSpills.end() &&
|
|
I->second.getKind() == SGPRSaveKind::COPY_TO_SCRATCH_SGPR)
|
|
return I->second.getReg();
|
|
|
|
return AMDGPU::NoRegister;
|
|
}
|
|
|
|
// Get all scratch SGPRs allocated to copy/restore the SGPR spills.
|
|
void getAllScratchSGPRCopyDstRegs(SmallVectorImpl<Register> &Regs) const {
|
|
for (const auto &SI : PrologEpilogSGPRSpills) {
|
|
if (SI.second.getKind() == SGPRSaveKind::COPY_TO_SCRATCH_SGPR)
|
|
Regs.push_back(SI.second.getReg());
|
|
}
|
|
}
|
|
|
|
// Check if \p FI is allocated for any SGPR spill to a VGPR lane during PEI.
|
|
bool checkIndexInPrologEpilogSGPRSpills(int FI) const {
|
|
return find_if(PrologEpilogSGPRSpills,
|
|
[FI](const std::pair<Register,
|
|
PrologEpilogSGPRSaveRestoreInfo> &SI) {
|
|
return SI.second.getKind() ==
|
|
SGPRSaveKind::SPILL_TO_VGPR_LANE &&
|
|
SI.second.getIndex() == FI;
|
|
}) != PrologEpilogSGPRSpills.end();
|
|
}
|
|
|
|
const PrologEpilogSGPRSaveRestoreInfo &
|
|
getPrologEpilogSGPRSaveRestoreInfo(Register Reg) const {
|
|
const auto *I = find_if(PrologEpilogSGPRSpills, [&Reg](const auto &Spill) {
|
|
return Spill.first == Reg;
|
|
});
|
|
assert(I != PrologEpilogSGPRSpills.end());
|
|
|
|
return I->second;
|
|
}
|
|
|
|
ArrayRef<SIRegisterInfo::SpilledReg>
|
|
getSGPRSpillToPhysicalVGPRLanes(int FrameIndex) const {
|
|
auto I = SGPRSpillsToPhysicalVGPRLanes.find(FrameIndex);
|
|
return (I == SGPRSpillsToPhysicalVGPRLanes.end())
|
|
? ArrayRef<SIRegisterInfo::SpilledReg>()
|
|
: ArrayRef(I->second);
|
|
}
|
|
|
|
void setFlag(Register Reg, uint8_t Flag) {
|
|
assert(Reg.isVirtual());
|
|
if (VRegFlags.inBounds(Reg))
|
|
VRegFlags[Reg] |= Flag;
|
|
}
|
|
|
|
bool checkFlag(Register Reg, uint8_t Flag) const {
|
|
if (Reg.isPhysical())
|
|
return false;
|
|
|
|
return VRegFlags.inBounds(Reg) && VRegFlags[Reg] & Flag;
|
|
}
|
|
|
|
bool hasVRegFlags() { return VRegFlags.size(); }
|
|
|
|
void allocateWWMSpill(MachineFunction &MF, Register VGPR, uint64_t Size = 4,
|
|
Align Alignment = Align(4));
|
|
|
|
void splitWWMSpillRegisters(
|
|
MachineFunction &MF,
|
|
SmallVectorImpl<std::pair<Register, int>> &CalleeSavedRegs,
|
|
SmallVectorImpl<std::pair<Register, int>> &ScratchRegs) const;
|
|
|
|
ArrayRef<MCPhysReg> getAGPRSpillVGPRs() const {
|
|
return SpillAGPR;
|
|
}
|
|
|
|
Register getSGPRForEXECCopy() const { return SGPRForEXECCopy; }
|
|
|
|
void setSGPRForEXECCopy(Register Reg) { SGPRForEXECCopy = Reg; }
|
|
|
|
ArrayRef<MCPhysReg> getVGPRSpillAGPRs() const {
|
|
return SpillVGPR;
|
|
}
|
|
|
|
MCPhysReg getVGPRToAGPRSpill(int FrameIndex, unsigned Lane) const {
|
|
auto I = VGPRToAGPRSpills.find(FrameIndex);
|
|
return (I == VGPRToAGPRSpills.end()) ? (MCPhysReg)AMDGPU::NoRegister
|
|
: I->second.Lanes[Lane];
|
|
}
|
|
|
|
void setVGPRToAGPRSpillDead(int FrameIndex) {
|
|
auto I = VGPRToAGPRSpills.find(FrameIndex);
|
|
if (I != VGPRToAGPRSpills.end())
|
|
I->second.IsDead = true;
|
|
}
|
|
|
|
// To bring the allocated WWM registers in \p WWMVGPRs to the lowest available
|
|
// range.
|
|
void shiftWwmVGPRsToLowestRange(MachineFunction &MF,
|
|
SmallVectorImpl<Register> &WWMVGPRs,
|
|
BitVector &SavedVGPRs);
|
|
|
|
bool allocateSGPRSpillToVGPRLane(MachineFunction &MF, int FI,
|
|
bool SpillToPhysVGPRLane = false,
|
|
bool IsPrologEpilog = false);
|
|
bool allocateVGPRSpillToAGPR(MachineFunction &MF, int FI, bool isAGPRtoVGPR);
|
|
|
|
/// If \p ResetSGPRSpillStackIDs is true, reset the stack ID from sgpr-spill
|
|
/// to the default stack.
|
|
bool removeDeadFrameIndices(MachineFrameInfo &MFI,
|
|
bool ResetSGPRSpillStackIDs);
|
|
|
|
int getScavengeFI(MachineFrameInfo &MFI, const SIRegisterInfo &TRI);
|
|
std::optional<int> getOptionalScavengeFI() const { return ScavengeFI; }
|
|
|
|
unsigned getBytesInStackArgArea() const {
|
|
return BytesInStackArgArea;
|
|
}
|
|
|
|
void setBytesInStackArgArea(unsigned Bytes) {
|
|
BytesInStackArgArea = Bytes;
|
|
}
|
|
|
|
bool isDynamicVGPREnabled() const { return DynamicVGPRBlockSize != 0; }
|
|
unsigned getDynamicVGPRBlockSize() const { return DynamicVGPRBlockSize; }
|
|
|
|
// This is only used if we need to save any dynamic VGPRs in scratch.
|
|
unsigned getScratchReservedForDynamicVGPRs() const {
|
|
return ScratchReservedForDynamicVGPRs;
|
|
}
|
|
|
|
void setScratchReservedForDynamicVGPRs(unsigned SizeInBytes) {
|
|
ScratchReservedForDynamicVGPRs = SizeInBytes;
|
|
}
|
|
|
|
// Add user SGPRs.
|
|
Register addPrivateSegmentBuffer(const SIRegisterInfo &TRI);
|
|
Register addDispatchPtr(const SIRegisterInfo &TRI);
|
|
Register addQueuePtr(const SIRegisterInfo &TRI);
|
|
Register addKernargSegmentPtr(const SIRegisterInfo &TRI);
|
|
Register addDispatchID(const SIRegisterInfo &TRI);
|
|
Register addFlatScratchInit(const SIRegisterInfo &TRI);
|
|
Register addPrivateSegmentSize(const SIRegisterInfo &TRI);
|
|
Register addImplicitBufferPtr(const SIRegisterInfo &TRI);
|
|
Register addLDSKernelId();
|
|
SmallVectorImpl<MCRegister> *
|
|
addPreloadedKernArg(const SIRegisterInfo &TRI, const TargetRegisterClass *RC,
|
|
unsigned AllocSizeDWord, int KernArgIdx,
|
|
int PaddingSGPRs);
|
|
|
|
/// Increment user SGPRs used for padding the argument list only.
|
|
Register addReservedUserSGPR() {
|
|
Register Next = getNextUserSGPR();
|
|
++NumUserSGPRs;
|
|
return Next;
|
|
}
|
|
|
|
// Add system SGPRs.
|
|
Register addWorkGroupIDX() {
|
|
ArgInfo.WorkGroupIDX = ArgDescriptor::createRegister(getNextSystemSGPR());
|
|
NumSystemSGPRs += 1;
|
|
return ArgInfo.WorkGroupIDX.getRegister();
|
|
}
|
|
|
|
Register addWorkGroupIDY() {
|
|
ArgInfo.WorkGroupIDY = ArgDescriptor::createRegister(getNextSystemSGPR());
|
|
NumSystemSGPRs += 1;
|
|
return ArgInfo.WorkGroupIDY.getRegister();
|
|
}
|
|
|
|
Register addWorkGroupIDZ() {
|
|
ArgInfo.WorkGroupIDZ = ArgDescriptor::createRegister(getNextSystemSGPR());
|
|
NumSystemSGPRs += 1;
|
|
return ArgInfo.WorkGroupIDZ.getRegister();
|
|
}
|
|
|
|
Register addWorkGroupInfo() {
|
|
ArgInfo.WorkGroupInfo = ArgDescriptor::createRegister(getNextSystemSGPR());
|
|
NumSystemSGPRs += 1;
|
|
return ArgInfo.WorkGroupInfo.getRegister();
|
|
}
|
|
|
|
bool hasLDSKernelId() const { return LDSKernelId; }
|
|
|
|
// Add special VGPR inputs
|
|
void setWorkItemIDX(ArgDescriptor Arg) {
|
|
ArgInfo.WorkItemIDX = Arg;
|
|
}
|
|
|
|
void setWorkItemIDY(ArgDescriptor Arg) {
|
|
ArgInfo.WorkItemIDY = Arg;
|
|
}
|
|
|
|
void setWorkItemIDZ(ArgDescriptor Arg) {
|
|
ArgInfo.WorkItemIDZ = Arg;
|
|
}
|
|
|
|
Register addPrivateSegmentWaveByteOffset() {
|
|
ArgInfo.PrivateSegmentWaveByteOffset
|
|
= ArgDescriptor::createRegister(getNextSystemSGPR());
|
|
NumSystemSGPRs += 1;
|
|
return ArgInfo.PrivateSegmentWaveByteOffset.getRegister();
|
|
}
|
|
|
|
void setPrivateSegmentWaveByteOffset(Register Reg) {
|
|
ArgInfo.PrivateSegmentWaveByteOffset = ArgDescriptor::createRegister(Reg);
|
|
}
|
|
|
|
bool hasWorkGroupIDX() const {
|
|
return WorkGroupIDX;
|
|
}
|
|
|
|
bool hasWorkGroupIDY() const {
|
|
return WorkGroupIDY;
|
|
}
|
|
|
|
bool hasWorkGroupIDZ() const {
|
|
return WorkGroupIDZ;
|
|
}
|
|
|
|
bool hasWorkGroupInfo() const {
|
|
return WorkGroupInfo;
|
|
}
|
|
|
|
bool hasPrivateSegmentWaveByteOffset() const {
|
|
return PrivateSegmentWaveByteOffset;
|
|
}
|
|
|
|
bool hasWorkItemIDX() const {
|
|
return WorkItemIDX;
|
|
}
|
|
|
|
bool hasWorkItemIDY() const {
|
|
return WorkItemIDY;
|
|
}
|
|
|
|
bool hasWorkItemIDZ() const {
|
|
return WorkItemIDZ;
|
|
}
|
|
|
|
bool hasImplicitArgPtr() const {
|
|
return ImplicitArgPtr;
|
|
}
|
|
|
|
AMDGPUFunctionArgInfo &getArgInfo() {
|
|
return ArgInfo;
|
|
}
|
|
|
|
const AMDGPUFunctionArgInfo &getArgInfo() const {
|
|
return ArgInfo;
|
|
}
|
|
|
|
std::tuple<const ArgDescriptor *, const TargetRegisterClass *, LLT>
|
|
getPreloadedValue(AMDGPUFunctionArgInfo::PreloadedValue Value) const {
|
|
return ArgInfo.getPreloadedValue(Value);
|
|
}
|
|
|
|
MCRegister getPreloadedReg(AMDGPUFunctionArgInfo::PreloadedValue Value) const {
|
|
const auto *Arg = std::get<0>(ArgInfo.getPreloadedValue(Value));
|
|
return Arg ? Arg->getRegister() : MCRegister();
|
|
}
|
|
|
|
unsigned getGITPtrHigh() const {
|
|
return GITPtrHigh;
|
|
}
|
|
|
|
Register getGITPtrLoReg(const MachineFunction &MF) const;
|
|
|
|
uint32_t get32BitAddressHighBits() const {
|
|
return HighBitsOf32BitAddress;
|
|
}
|
|
|
|
unsigned getNumUserSGPRs() const {
|
|
return NumUserSGPRs;
|
|
}
|
|
|
|
unsigned getNumPreloadedSGPRs() const {
|
|
return NumUserSGPRs + NumSystemSGPRs;
|
|
}
|
|
|
|
unsigned getNumKernargPreloadedSGPRs() const {
|
|
return UserSGPRInfo.getNumKernargPreloadSGPRs();
|
|
}
|
|
|
|
unsigned getNumWaveDispatchSGPRs() const { return NumWaveDispatchSGPRs; }
|
|
|
|
void setNumWaveDispatchSGPRs(unsigned Count) { NumWaveDispatchSGPRs = Count; }
|
|
|
|
unsigned getNumWaveDispatchVGPRs() const { return NumWaveDispatchVGPRs; }
|
|
|
|
void setNumWaveDispatchVGPRs(unsigned Count) { NumWaveDispatchVGPRs = Count; }
|
|
|
|
Register getPrivateSegmentWaveByteOffsetSystemSGPR() const {
|
|
return ArgInfo.PrivateSegmentWaveByteOffset.getRegister();
|
|
}
|
|
|
|
/// Returns the physical register reserved for use as the resource
|
|
/// descriptor for scratch accesses.
|
|
Register getScratchRSrcReg() const {
|
|
return ScratchRSrcReg;
|
|
}
|
|
|
|
void setScratchRSrcReg(Register Reg) {
|
|
assert(Reg != 0 && "Should never be unset");
|
|
ScratchRSrcReg = Reg;
|
|
}
|
|
|
|
Register getFrameOffsetReg() const {
|
|
return FrameOffsetReg;
|
|
}
|
|
|
|
void setFrameOffsetReg(Register Reg) {
|
|
assert(Reg != 0 && "Should never be unset");
|
|
FrameOffsetReg = Reg;
|
|
}
|
|
|
|
void setStackPtrOffsetReg(Register Reg) {
|
|
assert(Reg != 0 && "Should never be unset");
|
|
StackPtrOffsetReg = Reg;
|
|
}
|
|
|
|
void setLongBranchReservedReg(Register Reg) { LongBranchReservedReg = Reg; }
|
|
|
|
// Note the unset value for this is AMDGPU::SP_REG rather than
|
|
// NoRegister. This is mostly a workaround for MIR tests where state that
|
|
// can't be directly computed from the function is not preserved in serialized
|
|
// MIR.
|
|
Register getStackPtrOffsetReg() const {
|
|
return StackPtrOffsetReg;
|
|
}
|
|
|
|
Register getLongBranchReservedReg() const { return LongBranchReservedReg; }
|
|
|
|
Register getQueuePtrUserSGPR() const {
|
|
return ArgInfo.QueuePtr.getRegister();
|
|
}
|
|
|
|
Register getImplicitBufferPtrUserSGPR() const {
|
|
return ArgInfo.ImplicitBufferPtr.getRegister();
|
|
}
|
|
|
|
bool hasSpilledSGPRs() const {
|
|
return HasSpilledSGPRs;
|
|
}
|
|
|
|
void setHasSpilledSGPRs(bool Spill = true) {
|
|
HasSpilledSGPRs = Spill;
|
|
}
|
|
|
|
bool hasSpilledVGPRs() const {
|
|
return HasSpilledVGPRs;
|
|
}
|
|
|
|
void setHasSpilledVGPRs(bool Spill = true) {
|
|
HasSpilledVGPRs = Spill;
|
|
}
|
|
|
|
bool hasNonSpillStackObjects() const {
|
|
return HasNonSpillStackObjects;
|
|
}
|
|
|
|
void setHasNonSpillStackObjects(bool StackObject = true) {
|
|
HasNonSpillStackObjects = StackObject;
|
|
}
|
|
|
|
bool isStackRealigned() const {
|
|
return IsStackRealigned;
|
|
}
|
|
|
|
void setIsStackRealigned(bool Realigned = true) {
|
|
IsStackRealigned = Realigned;
|
|
}
|
|
|
|
unsigned getNumSpilledSGPRs() const {
|
|
return NumSpilledSGPRs;
|
|
}
|
|
|
|
unsigned getNumSpilledVGPRs() const {
|
|
return NumSpilledVGPRs;
|
|
}
|
|
|
|
void addToSpilledSGPRs(unsigned num) {
|
|
NumSpilledSGPRs += num;
|
|
}
|
|
|
|
void addToSpilledVGPRs(unsigned num) {
|
|
NumSpilledVGPRs += num;
|
|
}
|
|
|
|
unsigned getPSInputAddr() const {
|
|
return PSInputAddr;
|
|
}
|
|
|
|
unsigned getPSInputEnable() const {
|
|
return PSInputEnable;
|
|
}
|
|
|
|
bool isPSInputAllocated(unsigned Index) const {
|
|
return PSInputAddr & (1 << Index);
|
|
}
|
|
|
|
void markPSInputAllocated(unsigned Index) {
|
|
PSInputAddr |= 1 << Index;
|
|
}
|
|
|
|
void markPSInputEnabled(unsigned Index) {
|
|
PSInputEnable |= 1 << Index;
|
|
}
|
|
|
|
bool returnsVoid() const {
|
|
return ReturnsVoid;
|
|
}
|
|
|
|
void setIfReturnsVoid(bool Value) {
|
|
ReturnsVoid = Value;
|
|
}
|
|
|
|
/// \returns A pair of default/requested minimum/maximum flat work group sizes
|
|
/// for this function.
|
|
std::pair<unsigned, unsigned> getFlatWorkGroupSizes() const {
|
|
return FlatWorkGroupSizes;
|
|
}
|
|
|
|
/// \returns Default/requested minimum flat work group size for this function.
|
|
unsigned getMinFlatWorkGroupSize() const {
|
|
return FlatWorkGroupSizes.first;
|
|
}
|
|
|
|
/// \returns Default/requested maximum flat work group size for this function.
|
|
unsigned getMaxFlatWorkGroupSize() const {
|
|
return FlatWorkGroupSizes.second;
|
|
}
|
|
|
|
/// \returns A pair of default/requested minimum/maximum number of waves per
|
|
/// execution unit.
|
|
std::pair<unsigned, unsigned> getWavesPerEU() const {
|
|
return WavesPerEU;
|
|
}
|
|
|
|
/// \returns Default/requested minimum number of waves per execution unit.
|
|
unsigned getMinWavesPerEU() const {
|
|
return WavesPerEU.first;
|
|
}
|
|
|
|
/// \returns Default/requested maximum number of waves per execution unit.
|
|
unsigned getMaxWavesPerEU() const {
|
|
return WavesPerEU.second;
|
|
}
|
|
|
|
const AMDGPUGWSResourcePseudoSourceValue *
|
|
getGWSPSV(const AMDGPUTargetMachine &TM) {
|
|
return &GWSResourcePSV;
|
|
}
|
|
|
|
unsigned getOccupancy() const {
|
|
return Occupancy;
|
|
}
|
|
|
|
unsigned getMinAllowedOccupancy() const {
|
|
if (!isMemoryBound() && !needsWaveLimiter())
|
|
return Occupancy;
|
|
return (Occupancy < 4) ? Occupancy : 4;
|
|
}
|
|
|
|
void limitOccupancy(const MachineFunction &MF);
|
|
|
|
void limitOccupancy(unsigned Limit) {
|
|
if (Occupancy > Limit)
|
|
Occupancy = Limit;
|
|
}
|
|
|
|
void increaseOccupancy(const MachineFunction &MF, unsigned Limit) {
|
|
if (Occupancy < Limit)
|
|
Occupancy = Limit;
|
|
limitOccupancy(MF);
|
|
}
|
|
|
|
unsigned getMaxMemoryClusterDWords() const { return MaxMemoryClusterDWords; }
|
|
|
|
bool mayNeedAGPRs() const {
|
|
return MayNeedAGPRs;
|
|
}
|
|
|
|
// \returns true if a function has a use of AGPRs via inline asm or
|
|
// has a call which may use it.
|
|
bool mayUseAGPRs(const Function &F) const;
|
|
|
|
/// \returns Default/requested number of work groups for this function.
|
|
SmallVector<unsigned> getMaxNumWorkGroups() const { return MaxNumWorkGroups; }
|
|
|
|
unsigned getMaxNumWorkGroupsX() const { return MaxNumWorkGroups[0]; }
|
|
unsigned getMaxNumWorkGroupsY() const { return MaxNumWorkGroups[1]; }
|
|
unsigned getMaxNumWorkGroupsZ() const { return MaxNumWorkGroups[2]; }
|
|
};
|
|
|
|
} // end namespace llvm
|
|
|
|
#endif // LLVM_LIB_TARGET_AMDGPU_SIMACHINEFUNCTIONINFO_H
|