llvm-project/flang/lib/Lower/ConvertCall.cpp
jeanPerier 9f44d5d9d0
[flang] Simplify copy-in copy-out runtime API (#95822)
The runtime API for copy-in copy-out currently only has an entry only
for the copy-out. This entry has a "skipInit" boolean that is never set
to false by lowering and it does not deal with the deallocation of the
temporary.

The generated code was a mix of inline code and runtime calls This is not a big deal,
but this is unneeded compiler and generated code complexity.
With assumed-rank, it is also more cumbersome to establish a
temporary descriptor.

Instead, this patch:
- Adds a CopyInAssignment API that deals with establishing the temporary
descriptor and does the copy.
- Removes unused arg to CopyOutAssign, and pushes
destruction/deallocation responsibility inside it.

Note that this runtime API are still not responsible for deciding the
need of copying-in and out. This is kept as a separate runtime call to
IsContiguous, which is easier to inline/replace by inline code with the
hope of removing the copy-in/out calls after user function inlining.
@vzakhari has already shown that always inlining all the copy part
increase Fortran compilation time due to loop optimization attempts for
loops that are known to have little optimization profitability (the
variable being copied from and to is not contiguous).
2024-06-18 12:04:04 +02:00

2810 lines
128 KiB
C++

//===-- ConvertCall.cpp ---------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/
//
//===----------------------------------------------------------------------===//
#include "flang/Lower/ConvertCall.h"
#include "flang/Lower/Allocatable.h"
#include "flang/Lower/ConvertExprToHLFIR.h"
#include "flang/Lower/ConvertProcedureDesignator.h"
#include "flang/Lower/ConvertVariable.h"
#include "flang/Lower/CustomIntrinsicCall.h"
#include "flang/Lower/HlfirIntrinsics.h"
#include "flang/Lower/StatementContext.h"
#include "flang/Lower/SymbolMap.h"
#include "flang/Optimizer/Builder/BoxValue.h"
#include "flang/Optimizer/Builder/Character.h"
#include "flang/Optimizer/Builder/FIRBuilder.h"
#include "flang/Optimizer/Builder/HLFIRTools.h"
#include "flang/Optimizer/Builder/IntrinsicCall.h"
#include "flang/Optimizer/Builder/LowLevelIntrinsics.h"
#include "flang/Optimizer/Builder/MutableBox.h"
#include "flang/Optimizer/Builder/Runtime/Derived.h"
#include "flang/Optimizer/Builder/Todo.h"
#include "flang/Optimizer/Dialect/CUF/CUFOps.h"
#include "flang/Optimizer/Dialect/FIROpsSupport.h"
#include "flang/Optimizer/HLFIR/HLFIROps.h"
#include "mlir/IR/IRMapping.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include <optional>
#define DEBUG_TYPE "flang-lower-expr"
static llvm::cl::opt<bool> useHlfirIntrinsicOps(
"use-hlfir-intrinsic-ops", llvm::cl::init(true),
llvm::cl::desc("Lower via HLFIR transformational intrinsic operations such "
"as hlfir.sum"));
static constexpr char tempResultName[] = ".tmp.func_result";
/// Helper to package a Value and its properties into an ExtendedValue.
static fir::ExtendedValue toExtendedValue(mlir::Location loc, mlir::Value base,
llvm::ArrayRef<mlir::Value> extents,
llvm::ArrayRef<mlir::Value> lengths) {
mlir::Type type = base.getType();
if (mlir::isa<fir::BaseBoxType>(type))
return fir::BoxValue(base, /*lbounds=*/{}, lengths, extents);
type = fir::unwrapRefType(type);
if (mlir::isa<fir::BaseBoxType>(type))
return fir::MutableBoxValue(base, lengths, /*mutableProperties*/ {});
if (auto seqTy = mlir::dyn_cast<fir::SequenceType>(type)) {
if (seqTy.getDimension() != extents.size())
fir::emitFatalError(loc, "incorrect number of extents for array");
if (mlir::isa<fir::CharacterType>(seqTy.getEleTy())) {
if (lengths.empty())
fir::emitFatalError(loc, "missing length for character");
assert(lengths.size() == 1);
return fir::CharArrayBoxValue(base, lengths[0], extents);
}
return fir::ArrayBoxValue(base, extents);
}
if (mlir::isa<fir::CharacterType>(type)) {
if (lengths.empty())
fir::emitFatalError(loc, "missing length for character");
assert(lengths.size() == 1);
return fir::CharBoxValue(base, lengths[0]);
}
return base;
}
/// Lower a type(C_PTR/C_FUNPTR) argument with VALUE attribute into a
/// reference. A C pointer can correspond to a Fortran dummy argument of type
/// C_PTR with the VALUE attribute. (see 18.3.6 note 3).
static mlir::Value genRecordCPtrValueArg(fir::FirOpBuilder &builder,
mlir::Location loc, mlir::Value rec,
mlir::Type ty) {
mlir::Value cAddr = fir::factory::genCPtrOrCFunptrAddr(builder, loc, rec, ty);
mlir::Value cVal = builder.create<fir::LoadOp>(loc, cAddr);
return builder.createConvert(loc, cAddr.getType(), cVal);
}
// Find the argument that corresponds to the host associations.
// Verify some assumptions about how the signature was built here.
[[maybe_unused]] static unsigned findHostAssocTuplePos(mlir::func::FuncOp fn) {
// Scan the argument list from last to first as the host associations are
// appended for now.
for (unsigned i = fn.getNumArguments(); i > 0; --i)
if (fn.getArgAttr(i - 1, fir::getHostAssocAttrName())) {
// Host assoc tuple must be last argument (for now).
assert(i == fn.getNumArguments() && "tuple must be last");
return i - 1;
}
llvm_unreachable("anyFuncArgsHaveAttr failed");
}
mlir::Value
Fortran::lower::argumentHostAssocs(Fortran::lower::AbstractConverter &converter,
mlir::Value arg) {
if (auto addr = mlir::dyn_cast_or_null<fir::AddrOfOp>(arg.getDefiningOp())) {
auto &builder = converter.getFirOpBuilder();
if (auto funcOp = builder.getNamedFunction(addr.getSymbol()))
if (fir::anyFuncArgsHaveAttr(funcOp, fir::getHostAssocAttrName()))
return converter.hostAssocTupleValue();
}
return {};
}
static bool mustCastFuncOpToCopeWithImplicitInterfaceMismatch(
mlir::Location loc, Fortran::lower::AbstractConverter &converter,
mlir::FunctionType callSiteType, mlir::FunctionType funcOpType) {
// Deal with argument number mismatch by making a function pointer so
// that function type cast can be inserted. Do not emit a warning here
// because this can happen in legal program if the function is not
// defined here and it was first passed as an argument without any more
// information.
if (callSiteType.getNumResults() != funcOpType.getNumResults() ||
callSiteType.getNumInputs() != funcOpType.getNumInputs())
return true;
// Implicit interface result type mismatch are not standard Fortran, but
// some compilers are not complaining about it. The front end is not
// protecting lowering from this currently. Support this with a
// discouraging warning.
// Cast the actual function to the current caller implicit type because
// that is the behavior we would get if we could not see the definition.
if (callSiteType.getResults() != funcOpType.getResults()) {
LLVM_DEBUG(mlir::emitWarning(
loc, "a return type mismatch is not standard compliant and may "
"lead to undefined behavior."));
return true;
}
// In HLFIR, there is little attempt to cope with implicit interface
// mismatch on the arguments. The argument are always prepared according
// to the implicit interface. Cast the actual function if any of the
// argument mismatch cannot be dealt with a simple fir.convert.
if (converter.getLoweringOptions().getLowerToHighLevelFIR())
for (auto [actualType, dummyType] :
llvm::zip(callSiteType.getInputs(), funcOpType.getInputs()))
if (actualType != dummyType &&
!fir::ConvertOp::canBeConverted(actualType, dummyType))
return true;
return false;
}
static mlir::Value readDim3Value(fir::FirOpBuilder &builder, mlir::Location loc,
mlir::Value dim3Addr, llvm::StringRef comp) {
mlir::Type i32Ty = builder.getI32Type();
mlir::Type refI32Ty = fir::ReferenceType::get(i32Ty);
llvm::SmallVector<mlir::Value> lenParams;
mlir::Value designate = builder.create<hlfir::DesignateOp>(
loc, refI32Ty, dim3Addr, /*component=*/comp,
/*componentShape=*/mlir::Value{}, hlfir::DesignateOp::Subscripts{},
/*substring=*/mlir::ValueRange{}, /*complexPartAttr=*/std::nullopt,
mlir::Value{}, lenParams);
return hlfir::loadTrivialScalar(loc, builder, hlfir::Entity{designate});
}
static mlir::Value remapActualToDummyDescriptor(
mlir::Location loc, Fortran::lower::AbstractConverter &converter,
Fortran::lower::SymMap &symMap,
const Fortran::lower::CallerInterface::PassedEntity &arg,
Fortran::lower::CallerInterface &caller, bool isBindcCall) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
mlir::IndexType idxTy = builder.getIndexType();
mlir::Value zero = builder.createIntegerConstant(loc, idxTy, 0);
Fortran::lower::StatementContext localStmtCtx;
auto lowerSpecExpr = [&](const auto &expr,
bool isAssumedSizeExtent) -> mlir::Value {
mlir::Value convertExpr = builder.createConvert(
loc, idxTy, fir::getBase(converter.genExprValue(expr, localStmtCtx)));
if (isAssumedSizeExtent)
return convertExpr;
return fir::factory::genMaxWithZero(builder, loc, convertExpr);
};
bool mapSymbols = caller.mustMapInterfaceSymbolsForDummyArgument(arg);
if (mapSymbols) {
symMap.pushScope();
const Fortran::semantics::Symbol *sym = caller.getDummySymbol(arg);
assert(sym && "call must have explicit interface to map interface symbols");
Fortran::lower::mapCallInterfaceSymbolsForDummyArgument(converter, caller,
symMap, *sym);
}
llvm::SmallVector<mlir::Value> extents;
llvm::SmallVector<mlir::Value> lengths;
mlir::Type dummyBoxType = caller.getDummyArgumentType(arg);
mlir::Type dummyBaseType = fir::unwrapPassByRefType(dummyBoxType);
if (mlir::isa<fir::SequenceType>(dummyBaseType))
caller.walkDummyArgumentExtents(
arg, [&](const Fortran::lower::SomeExpr &e, bool isAssumedSizeExtent) {
extents.emplace_back(lowerSpecExpr(e, isAssumedSizeExtent));
});
mlir::Value shape;
if (!extents.empty()) {
if (isBindcCall) {
// Preserve zero lower bounds (see F'2023 18.5.3).
llvm::SmallVector<mlir::Value> lowerBounds(extents.size(), zero);
shape = builder.genShape(loc, lowerBounds, extents);
} else {
shape = builder.genShape(loc, extents);
}
}
hlfir::Entity explicitArgument = hlfir::Entity{caller.getInput(arg)};
mlir::Type dummyElementType = fir::unwrapSequenceType(dummyBaseType);
if (auto recType = llvm::dyn_cast<fir::RecordType>(dummyElementType))
if (recType.getNumLenParams() > 0)
TODO(loc, "sequence association of length parameterized derived type "
"dummy arguments");
if (fir::isa_char(dummyElementType))
lengths.emplace_back(hlfir::genCharLength(loc, builder, explicitArgument));
mlir::Value baseAddr =
hlfir::genVariableRawAddress(loc, builder, explicitArgument);
baseAddr = builder.createConvert(loc, fir::ReferenceType::get(dummyBaseType),
baseAddr);
mlir::Value mold;
if (fir::isPolymorphicType(dummyBoxType))
mold = explicitArgument;
mlir::Value remapped =
builder.create<fir::EmboxOp>(loc, dummyBoxType, baseAddr, shape,
/*slice=*/mlir::Value{}, lengths, mold);
if (mapSymbols)
symMap.popScope();
return remapped;
}
/// Create a descriptor for sequenced associated descriptor that are passed
/// by descriptor. Sequence association (F'2023 15.5.2.12) implies that the
/// dummy shape and rank need to not be the same as the actual argument. This
/// helper creates a descriptor based on the dummy shape and rank (sequence
/// association can only happen with explicit and assumed-size array) so that it
/// is safe to assume the rank of the incoming descriptor inside the callee.
/// This helper must be called once all the actual arguments have been lowered
/// and placed inside "caller". Copy-in/copy-out must already have been
/// generated if needed using the actual argument shape (the dummy shape may be
/// assumed-size).
static void remapActualToDummyDescriptors(
mlir::Location loc, Fortran::lower::AbstractConverter &converter,
Fortran::lower::SymMap &symMap,
const Fortran::lower::PreparedActualArguments &loweredActuals,
Fortran::lower::CallerInterface &caller, bool isBindcCall) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
for (auto [preparedActual, arg] :
llvm::zip(loweredActuals, caller.getPassedArguments())) {
if (arg.isSequenceAssociatedDescriptor()) {
if (!preparedActual.value().handleDynamicOptional()) {
mlir::Value remapped = remapActualToDummyDescriptor(
loc, converter, symMap, arg, caller, isBindcCall);
caller.placeInput(arg, remapped);
} else {
// Absent optional actual argument descriptor cannot be read and
// remapped unconditionally.
mlir::Type dummyType = caller.getDummyArgumentType(arg);
mlir::Value isPresent = preparedActual.value().getIsPresent();
auto &argLambdaCapture = arg;
mlir::Value remapped =
builder
.genIfOp(loc, {dummyType}, isPresent,
/*withElseRegion=*/true)
.genThen([&]() {
mlir::Value newBox = remapActualToDummyDescriptor(
loc, converter, symMap, argLambdaCapture, caller,
isBindcCall);
builder.create<fir::ResultOp>(loc, newBox);
})
.genElse([&]() {
mlir::Value absent =
builder.create<fir::AbsentOp>(loc, dummyType);
builder.create<fir::ResultOp>(loc, absent);
})
.getResults()[0];
caller.placeInput(arg, remapped);
}
}
}
}
std::pair<fir::ExtendedValue, bool> Fortran::lower::genCallOpAndResult(
mlir::Location loc, Fortran::lower::AbstractConverter &converter,
Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx,
Fortran::lower::CallerInterface &caller, mlir::FunctionType callSiteType,
std::optional<mlir::Type> resultType, bool isElemental) {
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
using PassBy = Fortran::lower::CallerInterface::PassEntityBy;
bool mustPopSymMap = false;
if (caller.mustMapInterfaceSymbolsForResult()) {
symMap.pushScope();
mustPopSymMap = true;
Fortran::lower::mapCallInterfaceSymbolsForResult(converter, caller, symMap);
}
// If this is an indirect call, retrieve the function address. Also retrieve
// the result length if this is a character function (note that this length
// will be used only if there is no explicit length in the local interface).
mlir::Value funcPointer;
mlir::Value charFuncPointerLength;
if (const Fortran::evaluate::ProcedureDesignator *procDesignator =
caller.getIfIndirectCall()) {
if (mlir::Value passedArg = caller.getIfPassedArg()) {
// Procedure pointer component call with PASS argument. To avoid
// "double" lowering of the ComponentRef, semantics only place the
// ComponentRef in the ActualArguments, not in the ProcedureDesignator (
// that is only the component symbol).
// Fetch the passed argument and addresses of its procedure pointer
// component.
funcPointer = Fortran::lower::derefPassProcPointerComponent(
loc, converter, *procDesignator, passedArg, symMap, stmtCtx);
} else {
Fortran::lower::SomeExpr expr{*procDesignator};
fir::ExtendedValue loweredProc =
converter.genExprAddr(loc, expr, stmtCtx);
funcPointer = fir::getBase(loweredProc);
// Dummy procedure may have assumed length, in which case the result
// length was passed along the dummy procedure.
// This is not possible with procedure pointer components.
if (const fir::CharBoxValue *charBox = loweredProc.getCharBox())
charFuncPointerLength = charBox->getLen();
}
}
mlir::IndexType idxTy = builder.getIndexType();
auto lowerSpecExpr = [&](const auto &expr) -> mlir::Value {
mlir::Value convertExpr = builder.createConvert(
loc, idxTy, fir::getBase(converter.genExprValue(expr, stmtCtx)));
return fir::factory::genMaxWithZero(builder, loc, convertExpr);
};
llvm::SmallVector<mlir::Value> resultLengths;
auto allocatedResult = [&]() -> std::optional<fir::ExtendedValue> {
llvm::SmallVector<mlir::Value> extents;
llvm::SmallVector<mlir::Value> lengths;
if (!caller.callerAllocateResult())
return {};
mlir::Type type = caller.getResultStorageType();
if (mlir::isa<fir::SequenceType>(type))
caller.walkResultExtents(
[&](const Fortran::lower::SomeExpr &e, bool isAssumedSizeExtent) {
assert(!isAssumedSizeExtent && "result cannot be assumed-size");
extents.emplace_back(lowerSpecExpr(e));
});
caller.walkResultLengths(
[&](const Fortran::lower::SomeExpr &e, bool isAssumedSizeExtent) {
assert(!isAssumedSizeExtent && "result cannot be assumed-size");
lengths.emplace_back(lowerSpecExpr(e));
});
// Result length parameters should not be provided to box storage
// allocation and save_results, but they are still useful information to
// keep in the ExtendedValue if non-deferred.
if (!mlir::isa<fir::BoxType>(type)) {
if (fir::isa_char(fir::unwrapSequenceType(type)) && lengths.empty()) {
// Calling an assumed length function. This is only possible if this
// is a call to a character dummy procedure.
if (!charFuncPointerLength)
fir::emitFatalError(loc, "failed to retrieve character function "
"length while calling it");
lengths.push_back(charFuncPointerLength);
}
resultLengths = lengths;
}
if (!extents.empty() || !lengths.empty()) {
auto *bldr = &converter.getFirOpBuilder();
auto stackSaveFn = fir::factory::getLlvmStackSave(builder);
auto stackSaveSymbol = bldr->getSymbolRefAttr(stackSaveFn.getName());
mlir::Value sp;
fir::CallOp call = bldr->create<fir::CallOp>(
loc, stackSaveFn.getFunctionType().getResults(), stackSaveSymbol,
mlir::ValueRange{});
if (call.getNumResults() != 0)
sp = call.getResult(0);
stmtCtx.attachCleanup([bldr, loc, sp]() {
auto stackRestoreFn = fir::factory::getLlvmStackRestore(*bldr);
auto stackRestoreSymbol =
bldr->getSymbolRefAttr(stackRestoreFn.getName());
bldr->create<fir::CallOp>(loc,
stackRestoreFn.getFunctionType().getResults(),
stackRestoreSymbol, mlir::ValueRange{sp});
});
}
mlir::Value temp =
builder.createTemporary(loc, type, ".result", extents, resultLengths);
return toExtendedValue(loc, temp, extents, lengths);
}();
if (mustPopSymMap)
symMap.popScope();
// Place allocated result or prepare the fir.save_result arguments.
mlir::Value arrayResultShape;
if (allocatedResult) {
if (std::optional<Fortran::lower::CallInterface<
Fortran::lower::CallerInterface>::PassedEntity>
resultArg = caller.getPassedResult()) {
if (resultArg->passBy == PassBy::AddressAndLength)
caller.placeAddressAndLengthInput(*resultArg,
fir::getBase(*allocatedResult),
fir::getLen(*allocatedResult));
else if (resultArg->passBy == PassBy::BaseAddress)
caller.placeInput(*resultArg, fir::getBase(*allocatedResult));
else
fir::emitFatalError(
loc, "only expect character scalar result to be passed by ref");
} else {
assert(caller.mustSaveResult());
arrayResultShape = allocatedResult->match(
[&](const fir::CharArrayBoxValue &) {
return builder.createShape(loc, *allocatedResult);
},
[&](const fir::ArrayBoxValue &) {
return builder.createShape(loc, *allocatedResult);
},
[&](const auto &) { return mlir::Value{}; });
}
}
// In older Fortran, procedure argument types are inferred. This may lead
// different view of what the function signature is in different locations.
// Casts are inserted as needed below to accommodate this.
// The mlir::func::FuncOp type prevails, unless it has a different number of
// arguments which can happen in legal program if it was passed as a dummy
// procedure argument earlier with no further type information.
mlir::SymbolRefAttr funcSymbolAttr;
bool addHostAssociations = false;
if (!funcPointer) {
mlir::FunctionType funcOpType = caller.getFuncOp().getFunctionType();
mlir::SymbolRefAttr symbolAttr =
builder.getSymbolRefAttr(caller.getMangledName());
if (callSiteType.getNumResults() == funcOpType.getNumResults() &&
callSiteType.getNumInputs() + 1 == funcOpType.getNumInputs() &&
fir::anyFuncArgsHaveAttr(caller.getFuncOp(),
fir::getHostAssocAttrName())) {
// The number of arguments is off by one, and we're lowering a function
// with host associations. Modify call to include host associations
// argument by appending the value at the end of the operands.
assert(funcOpType.getInput(findHostAssocTuplePos(caller.getFuncOp())) ==
converter.hostAssocTupleValue().getType());
addHostAssociations = true;
}
// When this is not a call to an internal procedure (where there is a
// mismatch due to the extra argument, but the interface is otherwise
// explicit and safe), handle interface mismatch due to F77 implicit
// interface "abuse" with a function address cast if needed.
if (!addHostAssociations &&
mustCastFuncOpToCopeWithImplicitInterfaceMismatch(
loc, converter, callSiteType, funcOpType))
funcPointer = builder.create<fir::AddrOfOp>(loc, funcOpType, symbolAttr);
else
funcSymbolAttr = symbolAttr;
// Issue a warning if the procedure name conflicts with
// a runtime function name a call to which has been already
// lowered (implying that the FuncOp has been created).
// The behavior is undefined in this case.
if (caller.getFuncOp()->hasAttrOfType<mlir::UnitAttr>(
fir::FIROpsDialect::getFirRuntimeAttrName()))
LLVM_DEBUG(mlir::emitWarning(
loc,
llvm::Twine("function name '") +
llvm::Twine(symbolAttr.getLeafReference()) +
llvm::Twine("' conflicts with a runtime function name used by "
"Flang - this may lead to undefined behavior")));
}
mlir::FunctionType funcType =
funcPointer ? callSiteType : caller.getFuncOp().getFunctionType();
llvm::SmallVector<mlir::Value> operands;
// First operand of indirect call is the function pointer. Cast it to
// required function type for the call to handle procedures that have a
// compatible interface in Fortran, but that have different signatures in
// FIR.
if (funcPointer) {
operands.push_back(
mlir::isa<fir::BoxProcType>(funcPointer.getType())
? builder.create<fir::BoxAddrOp>(loc, funcType, funcPointer)
: builder.createConvert(loc, funcType, funcPointer));
}
// Deal with potential mismatches in arguments types. Passing an array to a
// scalar argument should for instance be tolerated here.
bool callingImplicitInterface = caller.canBeCalledViaImplicitInterface();
for (auto [fst, snd] : llvm::zip(caller.getInputs(), funcType.getInputs())) {
// When passing arguments to a procedure that can be called by implicit
// interface, allow any character actual arguments to be passed to dummy
// arguments of any type and vice versa.
mlir::Value cast;
auto *context = builder.getContext();
if (mlir::isa<fir::BoxProcType>(snd) &&
mlir::isa<mlir::FunctionType>(fst.getType())) {
auto funcTy =
mlir::FunctionType::get(context, std::nullopt, std::nullopt);
auto boxProcTy = builder.getBoxProcType(funcTy);
if (mlir::Value host = argumentHostAssocs(converter, fst)) {
cast = builder.create<fir::EmboxProcOp>(
loc, boxProcTy, llvm::ArrayRef<mlir::Value>{fst, host});
} else {
cast = builder.create<fir::EmboxProcOp>(loc, boxProcTy, fst);
}
} else {
mlir::Type fromTy = fir::unwrapRefType(fst.getType());
if (fir::isa_builtin_cptr_type(fromTy) &&
Fortran::lower::isCPtrArgByValueType(snd)) {
cast = genRecordCPtrValueArg(builder, loc, fst, fromTy);
} else if (fir::isa_derived(snd) && !fir::isa_derived(fst.getType())) {
// TODO: remove this TODO once the old lowering is gone.
TODO(loc, "derived type argument passed by value");
} else {
// With the lowering to HLFIR, box arguments have already been built
// according to the attributes, rank, bounds, and type they should have.
// Do not attempt any reboxing here that could break this.
bool legacyLowering =
!converter.getLoweringOptions().getLowerToHighLevelFIR();
cast = builder.convertWithSemantics(loc, snd, fst,
callingImplicitInterface,
/*allowRebox=*/legacyLowering);
}
}
operands.push_back(cast);
}
// Add host associations as necessary.
if (addHostAssociations)
operands.push_back(converter.hostAssocTupleValue());
mlir::Value callResult;
unsigned callNumResults;
if (!caller.getCallDescription().chevrons().empty()) {
// A call to a CUDA kernel with the chevron syntax.
mlir::Type i32Ty = builder.getI32Type();
mlir::Value one = builder.createIntegerConstant(loc, i32Ty, 1);
mlir::Value grid_x, grid_y, grid_z;
if (caller.getCallDescription().chevrons()[0].GetType()->category() ==
Fortran::common::TypeCategory::Integer) {
// If grid is an integer, it is converted to dim3(grid,1,1). Since z is
// not used for the number of thread blocks, it is omitted in the op.
grid_x = builder.createConvert(
loc, i32Ty,
fir::getBase(converter.genExprValue(
caller.getCallDescription().chevrons()[0], stmtCtx)));
grid_y = one;
grid_z = one;
} else {
auto dim3Addr = converter.genExprAddr(
caller.getCallDescription().chevrons()[0], stmtCtx);
grid_x = readDim3Value(builder, loc, fir::getBase(dim3Addr), "x");
grid_y = readDim3Value(builder, loc, fir::getBase(dim3Addr), "y");
grid_z = readDim3Value(builder, loc, fir::getBase(dim3Addr), "z");
}
mlir::Value block_x, block_y, block_z;
if (caller.getCallDescription().chevrons()[1].GetType()->category() ==
Fortran::common::TypeCategory::Integer) {
// If block is an integer, it is converted to dim3(block,1,1).
block_x = builder.createConvert(
loc, i32Ty,
fir::getBase(converter.genExprValue(
caller.getCallDescription().chevrons()[1], stmtCtx)));
block_y = one;
block_z = one;
} else {
auto dim3Addr = converter.genExprAddr(
caller.getCallDescription().chevrons()[1], stmtCtx);
block_x = readDim3Value(builder, loc, fir::getBase(dim3Addr), "x");
block_y = readDim3Value(builder, loc, fir::getBase(dim3Addr), "y");
block_z = readDim3Value(builder, loc, fir::getBase(dim3Addr), "z");
}
mlir::Value bytes; // bytes is optional.
if (caller.getCallDescription().chevrons().size() > 2)
bytes = builder.createConvert(
loc, i32Ty,
fir::getBase(converter.genExprValue(
caller.getCallDescription().chevrons()[2], stmtCtx)));
mlir::Value stream; // stream is optional.
if (caller.getCallDescription().chevrons().size() > 3)
stream = builder.createConvert(
loc, i32Ty,
fir::getBase(converter.genExprValue(
caller.getCallDescription().chevrons()[3], stmtCtx)));
builder.create<cuf::KernelLaunchOp>(
loc, funcType.getResults(), funcSymbolAttr, grid_x, grid_y, grid_z,
block_x, block_y, block_z, bytes, stream, operands);
callNumResults = 0;
} else if (caller.requireDispatchCall()) {
// Procedure call requiring a dynamic dispatch. Call is created with
// fir.dispatch.
// Get the raw procedure name. The procedure name is not mangled in the
// binding table, but there can be a suffix to distinguish bindings of
// the same name (which happens only when PRIVATE bindings exist in
// ancestor types in other modules).
const auto &ultimateSymbol =
caller.getCallDescription().proc().GetSymbol()->GetUltimate();
std::string procName = ultimateSymbol.name().ToString();
if (const auto &binding{
ultimateSymbol.get<Fortran::semantics::ProcBindingDetails>()};
binding.numPrivatesNotOverridden() > 0)
procName += "."s + std::to_string(binding.numPrivatesNotOverridden());
fir::DispatchOp dispatch;
if (std::optional<unsigned> passArg = caller.getPassArgIndex()) {
// PASS, PASS(arg-name)
// Note that caller.getInputs is used instead of operands to get the
// passed object because interface mismatch issues may have inserted a
// cast to the operand with a different declared type, which would break
// later type bound call resolution in the FIR to FIR pass.
dispatch = builder.create<fir::DispatchOp>(
loc, funcType.getResults(), builder.getStringAttr(procName),
caller.getInputs()[*passArg], operands,
builder.getI32IntegerAttr(*passArg));
} else {
// NOPASS
const Fortran::evaluate::Component *component =
caller.getCallDescription().proc().GetComponent();
assert(component && "expect component for type-bound procedure call.");
fir::ExtendedValue dataRefValue = Fortran::lower::convertDataRefToValue(
loc, converter, component->base(), symMap, stmtCtx);
mlir::Value passObject = fir::getBase(dataRefValue);
if (fir::isa_ref_type(passObject.getType()))
passObject = builder.create<fir::LoadOp>(loc, passObject);
dispatch = builder.create<fir::DispatchOp>(
loc, funcType.getResults(), builder.getStringAttr(procName),
passObject, operands, nullptr);
}
callNumResults = dispatch.getNumResults();
if (callNumResults != 0)
callResult = dispatch.getResult(0);
} else {
// Standard procedure call with fir.call.
auto call = builder.create<fir::CallOp>(loc, funcType.getResults(),
funcSymbolAttr, operands);
if (caller.characterize().IsBindC())
call.setIsBindC(true);
callNumResults = call.getNumResults();
if (callNumResults != 0)
callResult = call.getResult(0);
}
if (caller.mustSaveResult()) {
assert(allocatedResult.has_value());
builder.create<fir::SaveResultOp>(loc, callResult,
fir::getBase(*allocatedResult),
arrayResultShape, resultLengths);
}
if (allocatedResult) {
// The result must be optionally destroyed (if it is of a derived type
// that may need finalization or deallocation of the components).
// For an allocatable result we have to free the memory allocated
// for the top-level entity. Note that the Destroy calls below
// do not deallocate the top-level entity. The two clean-ups
// must be pushed in reverse order, so that the final order is:
// Destroy(desc)
// free(desc->base_addr)
allocatedResult->match(
[&](const fir::MutableBoxValue &box) {
if (box.isAllocatable()) {
// 9.7.3.2 point 4. Deallocate allocatable results. Note that
// finalization was done independently by calling
// genDerivedTypeDestroy above and is not triggered by this inline
// deallocation.
fir::FirOpBuilder *bldr = &converter.getFirOpBuilder();
stmtCtx.attachCleanup([bldr, loc, box]() {
fir::factory::genFreememIfAllocated(*bldr, loc, box);
});
}
},
[](const auto &) {});
// 7.5.6.3 point 5. Derived-type finalization for nonpointer function.
bool resultIsFinalized = false;
// Check if the derived-type is finalizable if it is a monomorphic
// derived-type.
// For polymorphic and unlimited polymorphic enities call the runtime
// in any cases.
std::optional<Fortran::evaluate::DynamicType> retTy =
caller.getCallDescription().proc().GetType();
// With HLFIR lowering, isElemental must be set to true
// if we are producing an elemental call. In this case,
// the elemental results must not be destroyed, instead,
// the resulting array result will be finalized/destroyed
// as needed by hlfir.destroy.
if (!isElemental && !fir::isPointerType(funcType.getResults()[0]) &&
retTy &&
(retTy->category() == Fortran::common::TypeCategory::Derived ||
retTy->IsPolymorphic() || retTy->IsUnlimitedPolymorphic())) {
if (retTy->IsPolymorphic() || retTy->IsUnlimitedPolymorphic()) {
auto *bldr = &converter.getFirOpBuilder();
stmtCtx.attachCleanup([bldr, loc, allocatedResult]() {
fir::runtime::genDerivedTypeDestroy(*bldr, loc,
fir::getBase(*allocatedResult));
});
resultIsFinalized = true;
} else {
const Fortran::semantics::DerivedTypeSpec &typeSpec =
retTy->GetDerivedTypeSpec();
// If the result type may require finalization
// or have allocatable components, we need to make sure
// everything is properly finalized/deallocated.
if (Fortran::semantics::MayRequireFinalization(typeSpec) ||
// We can use DerivedTypeDestroy even if finalization is not needed.
hlfir::mayHaveAllocatableComponent(funcType.getResults()[0])) {
auto *bldr = &converter.getFirOpBuilder();
stmtCtx.attachCleanup([bldr, loc, allocatedResult]() {
mlir::Value box = bldr->createBox(loc, *allocatedResult);
fir::runtime::genDerivedTypeDestroy(*bldr, loc, box);
});
resultIsFinalized = true;
}
}
}
return {*allocatedResult, resultIsFinalized};
}
// subroutine call
if (!resultType)
return {fir::ExtendedValue{mlir::Value{}}, /*resultIsFinalized=*/false};
// For now, Fortran return values are implemented with a single MLIR
// function return value.
assert(callNumResults == 1 && "Expected exactly one result in FUNCTION call");
(void)callNumResults;
// Call a BIND(C) function that return a char.
if (caller.characterize().IsBindC() &&
mlir::isa<fir::CharacterType>(funcType.getResults()[0])) {
fir::CharacterType charTy =
mlir::dyn_cast<fir::CharacterType>(funcType.getResults()[0]);
mlir::Value len = builder.createIntegerConstant(
loc, builder.getCharacterLengthType(), charTy.getLen());
return {fir::CharBoxValue{callResult, len}, /*resultIsFinalized=*/false};
}
return {callResult, /*resultIsFinalized=*/false};
}
static hlfir::EntityWithAttributes genStmtFunctionRef(
mlir::Location loc, Fortran::lower::AbstractConverter &converter,
Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx,
const Fortran::evaluate::ProcedureRef &procRef) {
const Fortran::semantics::Symbol *symbol = procRef.proc().GetSymbol();
assert(symbol && "expected symbol in ProcedureRef of statement functions");
const auto &details = symbol->get<Fortran::semantics::SubprogramDetails>();
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
// Statement functions have their own scope, we just need to associate
// the dummy symbols to argument expressions. There are no
// optional/alternate return arguments. Statement functions cannot be
// recursive (directly or indirectly) so it is safe to add dummy symbols to
// the local map here.
symMap.pushScope();
llvm::SmallVector<hlfir::AssociateOp> exprAssociations;
for (auto [arg, bind] : llvm::zip(details.dummyArgs(), procRef.arguments())) {
assert(arg && "alternate return in statement function");
assert(bind && "optional argument in statement function");
const auto *expr = bind->UnwrapExpr();
// TODO: assumed type in statement function, that surprisingly seems
// allowed, probably because nobody thought of restricting this usage.
// gfortran/ifort compiles this.
assert(expr && "assumed type used as statement function argument");
// As per Fortran 2018 C1580, statement function arguments can only be
// scalars.
// The only care is to use the dummy character explicit length if any
// instead of the actual argument length (that can be bigger).
hlfir::EntityWithAttributes loweredArg = Fortran::lower::convertExprToHLFIR(
loc, converter, *expr, symMap, stmtCtx);
fir::FortranVariableOpInterface variableIface = loweredArg.getIfVariable();
if (!variableIface) {
// So far only FortranVariableOpInterface can be mapped to symbols.
// Create an hlfir.associate to create a variable from a potential
// value argument.
mlir::Type argType = converter.genType(*arg);
auto associate = hlfir::genAssociateExpr(
loc, builder, loweredArg, argType, toStringRef(arg->name()));
exprAssociations.push_back(associate);
variableIface = associate;
}
const Fortran::semantics::DeclTypeSpec *type = arg->GetType();
if (type &&
type->category() == Fortran::semantics::DeclTypeSpec::Character) {
// Instantiate character as if it was a normal dummy argument so that the
// statement function dummy character length is applied and dealt with
// correctly.
symMap.addSymbol(*arg, variableIface.getBase());
Fortran::lower::mapSymbolAttributes(converter, *arg, symMap, stmtCtx);
} else {
// No need to create an extra hlfir.declare otherwise for
// numerical and logical scalar dummies.
symMap.addVariableDefinition(*arg, variableIface);
}
}
// Explicitly map statement function host associated symbols to their
// parent scope lowered symbol box.
for (const Fortran::semantics::SymbolRef &sym :
Fortran::evaluate::CollectSymbols(*details.stmtFunction()))
if (const auto *details =
sym->detailsIf<Fortran::semantics::HostAssocDetails>())
converter.copySymbolBinding(details->symbol(), sym);
hlfir::Entity result = Fortran::lower::convertExprToHLFIR(
loc, converter, details.stmtFunction().value(), symMap, stmtCtx);
symMap.popScope();
// The result must not be a variable.
result = hlfir::loadTrivialScalar(loc, builder, result);
if (result.isVariable())
result = hlfir::Entity{builder.create<hlfir::AsExprOp>(loc, result)};
for (auto associate : exprAssociations)
builder.create<hlfir::EndAssociateOp>(loc, associate);
return hlfir::EntityWithAttributes{result};
}
namespace {
// Structure to hold the information about the call and the lowering context.
// This structure is intended to help threading the information
// through the various lowering calls without having to pass every
// required structure one by one.
struct CallContext {
CallContext(const Fortran::evaluate::ProcedureRef &procRef,
std::optional<mlir::Type> resultType, mlir::Location loc,
Fortran::lower::AbstractConverter &converter,
Fortran::lower::SymMap &symMap,
Fortran::lower::StatementContext &stmtCtx)
: procRef{procRef}, converter{converter}, symMap{symMap},
stmtCtx{stmtCtx}, resultType{resultType}, loc{loc} {}
fir::FirOpBuilder &getBuilder() { return converter.getFirOpBuilder(); }
std::string getProcedureName() const {
if (const Fortran::semantics::Symbol *sym = procRef.proc().GetSymbol())
return sym->GetUltimate().name().ToString();
return procRef.proc().GetName();
}
/// Is this a call to an elemental procedure with at least one array argument?
bool isElementalProcWithArrayArgs() const {
if (procRef.IsElemental())
for (const std::optional<Fortran::evaluate::ActualArgument> &arg :
procRef.arguments())
if (arg && arg->Rank() != 0)
return true;
return false;
}
/// Is this a statement function reference?
bool isStatementFunctionCall() const {
if (const Fortran::semantics::Symbol *symbol = procRef.proc().GetSymbol())
if (const auto *details =
symbol->detailsIf<Fortran::semantics::SubprogramDetails>())
return details->stmtFunction().has_value();
return false;
}
/// Is this a call to a BIND(C) procedure?
bool isBindcCall() const {
if (const Fortran::semantics::Symbol *symbol = procRef.proc().GetSymbol())
return Fortran::semantics::IsBindCProcedure(*symbol);
return false;
}
const Fortran::evaluate::ProcedureRef &procRef;
Fortran::lower::AbstractConverter &converter;
Fortran::lower::SymMap &symMap;
Fortran::lower::StatementContext &stmtCtx;
std::optional<mlir::Type> resultType;
mlir::Location loc;
};
using ExvAndCleanup =
std::pair<fir::ExtendedValue, std::optional<hlfir::CleanupFunction>>;
} // namespace
// Helper to transform a fir::ExtendedValue to an hlfir::EntityWithAttributes.
static hlfir::EntityWithAttributes
extendedValueToHlfirEntity(mlir::Location loc, fir::FirOpBuilder &builder,
const fir::ExtendedValue &exv,
llvm::StringRef name) {
mlir::Value firBase = fir::getBase(exv);
mlir::Type firBaseTy = firBase.getType();
if (fir::isa_trivial(firBaseTy))
return hlfir::EntityWithAttributes{firBase};
if (auto charTy = mlir::dyn_cast<fir::CharacterType>(firBase.getType())) {
// CHAR() intrinsic and BIND(C) procedures returning CHARACTER(1)
// are lowered to a fir.char<kind,1> that is not in memory.
// This tends to cause a lot of bugs because the rest of the
// infrastructure is mostly tested with characters that are
// in memory.
// To avoid having to deal with this special case here and there,
// place it in memory here. If this turns out to be suboptimal,
// this could be fixed, but for now llvm opt -O1 is able to get
// rid of the memory indirection in a = char(b), so there is
// little incentive to increase the compiler complexity.
hlfir::Entity storage{builder.createTemporary(loc, charTy)};
builder.create<fir::StoreOp>(loc, firBase, storage);
auto asExpr = builder.create<hlfir::AsExprOp>(
loc, storage, /*mustFree=*/builder.createBool(loc, false));
return hlfir::EntityWithAttributes{asExpr.getResult()};
}
return hlfir::genDeclare(loc, builder, exv, name,
fir::FortranVariableFlagsAttr{});
}
namespace {
/// Structure to hold the clean-up related to a dummy argument preparation
/// that may have to be done after a call (copy-out or temporary deallocation).
struct CallCleanUp {
struct CopyIn {
void genCleanUp(mlir::Location loc, fir::FirOpBuilder &builder) {
builder.create<hlfir::CopyOutOp>(loc, tempBox, wasCopied, copyBackVar);
}
// address of the descriptor holding the temp if a temp was created.
mlir::Value tempBox;
// Boolean indicating if a copy was made or not.
mlir::Value wasCopied;
// copyBackVar may be null if copy back is not needed.
mlir::Value copyBackVar;
};
struct ExprAssociate {
void genCleanUp(mlir::Location loc, fir::FirOpBuilder &builder) {
builder.create<hlfir::EndAssociateOp>(loc, tempVar, mustFree);
}
mlir::Value tempVar;
mlir::Value mustFree;
};
void genCleanUp(mlir::Location loc, fir::FirOpBuilder &builder) {
Fortran::common::visit([&](auto &c) { c.genCleanUp(loc, builder); },
cleanUp);
}
std::variant<CopyIn, ExprAssociate> cleanUp;
};
/// Structure representing a prepared dummy argument.
/// It holds the value to be passed in the call and any related
/// clean-ups to be done after the call.
struct PreparedDummyArgument {
void pushCopyInCleanUp(mlir::Value tempBox, mlir::Value wasCopied,
mlir::Value copyBackVar) {
cleanups.emplace_back(
CallCleanUp{CallCleanUp::CopyIn{tempBox, wasCopied, copyBackVar}});
}
void pushExprAssociateCleanUp(mlir::Value tempVar, mlir::Value wasCopied) {
cleanups.emplace_back(
CallCleanUp{CallCleanUp::ExprAssociate{tempVar, wasCopied}});
}
void pushExprAssociateCleanUp(hlfir::AssociateOp associate) {
mlir::Value hlfirBase = associate.getBase();
mlir::Value firBase = associate.getFirBase();
cleanups.emplace_back(CallCleanUp{CallCleanUp::ExprAssociate{
hlfir::mayHaveAllocatableComponent(hlfirBase.getType()) ? hlfirBase
: firBase,
associate.getMustFreeStrorageFlag()}});
}
mlir::Value dummy;
// NOTE: the clean-ups are executed in reverse order.
llvm::SmallVector<CallCleanUp, 2> cleanups;
};
/// Structure to help conditionally preparing a dummy argument based
/// on the actual argument presence.
/// It helps "wrapping" the dummy and the clean-up information in
/// an if (present) {...}:
///
/// %conditionallyPrepared = fir.if (%present) {
/// fir.result %preparedDummy
/// } else {
/// fir.result %absent
/// }
///
struct ConditionallyPreparedDummy {
/// Create ConditionallyPreparedDummy from a preparedDummy that must
/// be wrapped in a fir.if.
ConditionallyPreparedDummy(PreparedDummyArgument &preparedDummy) {
thenResultValues.push_back(preparedDummy.dummy);
for (const CallCleanUp &c : preparedDummy.cleanups) {
if (const auto *copyInCleanUp =
std::get_if<CallCleanUp::CopyIn>(&c.cleanUp)) {
thenResultValues.push_back(copyInCleanUp->wasCopied);
if (copyInCleanUp->copyBackVar)
thenResultValues.push_back(copyInCleanUp->copyBackVar);
} else {
const auto &exprAssociate =
std::get<CallCleanUp::ExprAssociate>(c.cleanUp);
thenResultValues.push_back(exprAssociate.tempVar);
thenResultValues.push_back(exprAssociate.mustFree);
}
}
}
/// Get the result types of the wrapping fir.if that must be created.
llvm::SmallVector<mlir::Type> getIfResulTypes() const {
llvm::SmallVector<mlir::Type> types;
for (mlir::Value res : thenResultValues)
types.push_back(res.getType());
return types;
}
/// Generate the "fir.result %preparedDummy" in the then branch of the
/// wrapping fir.if.
void genThenResult(mlir::Location loc, fir::FirOpBuilder &builder) const {
builder.create<fir::ResultOp>(loc, thenResultValues);
}
/// Generate the "fir.result %absent" in the else branch of the
/// wrapping fir.if.
void genElseResult(mlir::Location loc, fir::FirOpBuilder &builder) const {
llvm::SmallVector<mlir::Value> elseResultValues;
mlir::Type i1Type = builder.getI1Type();
for (mlir::Value res : thenResultValues) {
mlir::Type type = res.getType();
if (type == i1Type)
elseResultValues.push_back(builder.createBool(loc, false));
else
elseResultValues.push_back(builder.genAbsentOp(loc, type));
}
builder.create<fir::ResultOp>(loc, elseResultValues);
}
/// Once the fir.if has been created, get the resulting %conditionallyPrepared
/// dummy argument.
PreparedDummyArgument
getPreparedDummy(fir::IfOp ifOp,
const PreparedDummyArgument &unconditionalDummy) {
PreparedDummyArgument preparedDummy;
preparedDummy.dummy = ifOp.getResults()[0];
for (const CallCleanUp &c : unconditionalDummy.cleanups) {
if (const auto *copyInCleanUp =
std::get_if<CallCleanUp::CopyIn>(&c.cleanUp)) {
mlir::Value copyBackVar;
if (copyInCleanUp->copyBackVar)
copyBackVar = ifOp.getResults().back();
// tempBox is an hlfir.copy_in argument created outside of the
// fir.if region. It needs not to be threaded as a fir.if result.
preparedDummy.pushCopyInCleanUp(copyInCleanUp->tempBox,
ifOp.getResults()[1], copyBackVar);
} else {
preparedDummy.pushExprAssociateCleanUp(ifOp.getResults()[1],
ifOp.getResults()[2]);
}
}
return preparedDummy;
}
llvm::SmallVector<mlir::Value> thenResultValues;
};
} // namespace
/// Fix-up the fact that it is supported to pass a character procedure
/// designator to a non character procedure dummy procedure and vice-versa, even
/// in case of explicit interface. Uglier cases where an object is passed as
/// procedure designator or vice versa are handled only for implicit interfaces
/// (refused by semantics with explicit interface), and handled with a funcOp
/// cast like other implicit interface mismatches.
static hlfir::Entity fixProcedureDummyMismatch(mlir::Location loc,
fir::FirOpBuilder &builder,
hlfir::Entity actual,
mlir::Type dummyType) {
if (mlir::isa<fir::BoxProcType>(actual.getType()) &&
fir::isCharacterProcedureTuple(dummyType)) {
mlir::Value length =
builder.create<fir::UndefOp>(loc, builder.getCharacterLengthType());
mlir::Value tuple = fir::factory::createCharacterProcedureTuple(
builder, loc, dummyType, actual, length);
return hlfir::Entity{tuple};
}
assert(fir::isCharacterProcedureTuple(actual.getType()) &&
mlir::isa<fir::BoxProcType>(dummyType) &&
"unsupported dummy procedure mismatch with the actual argument");
mlir::Value boxProc = fir::factory::extractCharacterProcedureTuple(
builder, loc, actual, /*openBoxProc=*/false)
.first;
return hlfir::Entity{boxProc};
}
mlir::Value static getZeroLowerBounds(mlir::Location loc,
fir::FirOpBuilder &builder,
hlfir::Entity entity) {
assert(!entity.isAssumedRank() &&
"assumed-rank must use fir.rebox_assumed_rank");
if (entity.getRank() < 1)
return {};
mlir::Value zero =
builder.createIntegerConstant(loc, builder.getIndexType(), 0);
llvm::SmallVector<mlir::Value> lowerBounds(entity.getRank(), zero);
return builder.genShift(loc, lowerBounds);
}
static bool
isSimplyContiguous(const Fortran::evaluate::ActualArgument &arg,
Fortran::evaluate::FoldingContext &foldingContext) {
if (const auto *expr = arg.UnwrapExpr())
return Fortran::evaluate::IsSimplyContiguous(*expr, foldingContext);
const Fortran::semantics::Symbol *sym = arg.GetAssumedTypeDummy();
assert(sym &&
"expect ActualArguments to be expression or assumed-type symbols");
return sym->Rank() == 0 ||
Fortran::evaluate::IsSimplyContiguous(*sym, foldingContext);
}
/// When dummy is not ALLOCATABLE, POINTER and is not passed in register,
/// prepare the actual argument according to the interface. Do as needed:
/// - address element if this is an array argument in an elemental call.
/// - set dynamic type to the dummy type if the dummy is not polymorphic.
/// - copy-in into contiguous variable if the dummy must be contiguous
/// - copy into a temporary if the dummy has the VALUE attribute.
/// - package the prepared dummy as required (fir.box, fir.class,
/// fir.box_char...).
/// This function should only be called with an actual that is present.
/// The optional aspects must be handled by this function user.
static PreparedDummyArgument preparePresentUserCallActualArgument(
mlir::Location loc, fir::FirOpBuilder &builder,
const Fortran::lower::PreparedActualArgument &preparedActual,
mlir::Type dummyType,
const Fortran::lower::CallerInterface::PassedEntity &arg,
CallContext &callContext) {
Fortran::evaluate::FoldingContext &foldingContext =
callContext.converter.getFoldingContext();
// Step 1: get the actual argument, which includes addressing the
// element if this is an array in an elemental call.
hlfir::Entity actual = preparedActual.getActual(loc, builder);
// Handle procedure arguments (procedure pointers should go through
// prepareProcedurePointerActualArgument).
if (hlfir::isFortranProcedureValue(dummyType)) {
// Procedure pointer or function returns procedure pointer actual to
// procedure dummy.
if (actual.isProcedurePointer()) {
actual = hlfir::derefPointersAndAllocatables(loc, builder, actual);
return PreparedDummyArgument{actual, /*cleanups=*/{}};
}
// Procedure actual to procedure dummy.
assert(actual.isProcedure());
// Do nothing if this is a procedure argument. It is already a
// fir.boxproc/fir.tuple<fir.boxproc, len> as it should.
if (!mlir::isa<fir::BoxProcType>(actual.getType()) &&
actual.getType() != dummyType)
// The actual argument may be a procedure that returns character (a
// fir.tuple<fir.boxproc, len>) while the dummy is not. Extract the tuple
// in that case.
actual = fixProcedureDummyMismatch(loc, builder, actual, dummyType);
return PreparedDummyArgument{actual, /*cleanups=*/{}};
}
const bool ignoreTKRtype = arg.testTKR(Fortran::common::IgnoreTKR::Type);
const bool passingPolymorphicToNonPolymorphic =
actual.isPolymorphic() && !fir::isPolymorphicType(dummyType) &&
!ignoreTKRtype;
// When passing a CLASS(T) to TYPE(T), only the "T" part must be
// passed. Unless the entity is a scalar passed by raw address, a
// new descriptor must be made using the dummy argument type as
// dynamic type. This must be done before any copy/copy-in because the
// dynamic type matters to determine the contiguity.
const bool mustSetDynamicTypeToDummyType =
passingPolymorphicToNonPolymorphic &&
(actual.isArray() || mlir::isa<fir::BaseBoxType>(dummyType));
// The simple contiguity of the actual is "lost" when passing a polymorphic
// to a non polymorphic entity because the dummy dynamic type matters for
// the contiguity.
const bool mustDoCopyInOut =
actual.isArray() && arg.mustBeMadeContiguous() &&
(passingPolymorphicToNonPolymorphic ||
!isSimplyContiguous(*arg.entity, foldingContext));
const bool actualIsAssumedRank = actual.isAssumedRank();
// Create dummy type with actual argument rank when the dummy is an assumed
// rank. That way, all the operation to create dummy descriptors are ranked if
// the actual argument is ranked, which allows simple code generation.
// Also do the same when the dummy is a sequence associated descriptor
// because the actual shape/rank may mismatch with the dummy, and the dummy
// may be an assumed-size array, so any descriptor manipulation should use the
// actual argument shape information. A descriptor with the dummy shape
// information will be created later when all actual arguments are ready.
mlir::Type dummyTypeWithActualRank = dummyType;
if (auto baseBoxDummy = mlir::dyn_cast<fir::BaseBoxType>(dummyType)) {
if (baseBoxDummy.isAssumedRank() ||
arg.testTKR(Fortran::common::IgnoreTKR::Rank) ||
arg.isSequenceAssociatedDescriptor()) {
mlir::Type actualTy =
hlfir::getFortranElementOrSequenceType(actual.getType());
dummyTypeWithActualRank = baseBoxDummy.getBoxTypeWithNewShape(actualTy);
}
}
// Preserve the actual type in the argument preparation in case IgnoreTKR(t)
// is set (descriptors must be created with the actual type in this case, and
// copy-in/copy-out should be driven by the contiguity with regard to the
// actual type).
if (ignoreTKRtype)
dummyTypeWithActualRank = fir::changeElementType(
dummyTypeWithActualRank, actual.getFortranElementType(),
actual.isPolymorphic());
PreparedDummyArgument preparedDummy;
// Helpers to generate hlfir.copy_in operation and register the related
// hlfir.copy_out creation.
auto genCopyIn = [&](hlfir::Entity var, bool doCopyOut) -> hlfir::Entity {
auto baseBoxTy = mlir::dyn_cast<fir::BaseBoxType>(var.getType());
assert(baseBoxTy && "expect non simply contiguous variables to be boxes");
// Create allocatable descriptor for the potential temporary.
mlir::Type tempBoxType = baseBoxTy.getBoxTypeWithNewAttr(
fir::BaseBoxType::Attribute::Allocatable);
mlir::Value tempBox = builder.createTemporary(loc, tempBoxType);
auto copyIn = builder.create<hlfir::CopyInOp>(
loc, var, tempBox, /*var_is_present=*/mlir::Value{});
// Register the copy-out after the call.
preparedDummy.pushCopyInCleanUp(copyIn.getTempBox(), copyIn.getWasCopied(),
doCopyOut ? copyIn.getVar()
: mlir::Value{});
return hlfir::Entity{copyIn.getCopiedIn()};
};
// Step 2: prepare the storage for the dummy arguments, ensuring that it
// matches the dummy requirements (e.g., must be contiguous or must be
// a temporary).
hlfir::Entity entity =
hlfir::derefPointersAndAllocatables(loc, builder, actual);
if (entity.isVariable()) {
if (mustSetDynamicTypeToDummyType) {
// Note: this is important to do this before any copy-in or copy so
// that the dummy is contiguous according to the dummy type.
mlir::Type boxType = fir::BoxType::get(
hlfir::getFortranElementOrSequenceType(dummyTypeWithActualRank));
if (actualIsAssumedRank) {
entity = hlfir::Entity{builder.create<fir::ReboxAssumedRankOp>(
loc, boxType, entity, fir::LowerBoundModifierAttribute::SetToOnes)};
} else {
entity = hlfir::Entity{builder.create<fir::ReboxOp>(
loc, boxType, entity, /*shape=*/mlir::Value{},
/*slice=*/mlir::Value{})};
}
}
if (arg.hasValueAttribute() ||
// Constant expressions might be lowered as variables with
// 'parameter' attribute. Even though the constant expressions
// are not definable and explicit assignments to them are not
// possible, we have to create a temporary copies when we pass
// them down the call stack.
entity.isParameter()) {
// Make a copy in a temporary.
auto copy = builder.create<hlfir::AsExprOp>(loc, entity);
mlir::Type storageType = entity.getType();
mlir::NamedAttribute byRefAttr = fir::getAdaptToByRefAttr(builder);
hlfir::AssociateOp associate = hlfir::genAssociateExpr(
loc, builder, hlfir::Entity{copy}, storageType, "", byRefAttr);
entity = hlfir::Entity{associate.getBase()};
// Register the temporary destruction after the call.
preparedDummy.pushExprAssociateCleanUp(associate);
} else if (mustDoCopyInOut) {
// Copy-in non contiguous variables.
if (actualIsAssumedRank)
TODO(loc, "copy-in and copy-out of assumed-rank arguments");
// TODO: for non-finalizable monomorphic derived type actual
// arguments associated with INTENT(OUT) dummy arguments
// we may avoid doing the copy and only allocate the temporary.
// The codegen would do a "mold" allocation instead of "sourced"
// allocation for the temp in this case. We can communicate
// this to the codegen via some CopyInOp flag.
// This is a performance concern.
entity = genCopyIn(entity, arg.mayBeModifiedByCall());
}
} else {
const Fortran::lower::SomeExpr *expr = arg.entity->UnwrapExpr();
assert(expr && "expression actual argument cannot be an assumed type");
// The actual is an expression value, place it into a temporary
// and register the temporary destruction after the call.
mlir::Type storageType = callContext.converter.genType(*expr);
mlir::NamedAttribute byRefAttr = fir::getAdaptToByRefAttr(builder);
hlfir::AssociateOp associate = hlfir::genAssociateExpr(
loc, builder, entity, storageType, "", byRefAttr);
entity = hlfir::Entity{associate.getBase()};
preparedDummy.pushExprAssociateCleanUp(associate);
if (mustSetDynamicTypeToDummyType) {
// Rebox the actual argument to the dummy argument's type, and make
// sure that we pass a contiguous entity (i.e. make copy-in,
// if needed).
//
// TODO: this can probably be optimized by associating the expression
// with properly typed temporary, but this needs either a new operation
// or making the hlfir.associate more complex.
assert(!actualIsAssumedRank && "only variables are assumed-rank");
mlir::Type boxType = fir::BoxType::get(
hlfir::getFortranElementOrSequenceType(dummyTypeWithActualRank));
entity = hlfir::Entity{builder.create<fir::ReboxOp>(
loc, boxType, entity, /*shape=*/mlir::Value{},
/*slice=*/mlir::Value{})};
entity = genCopyIn(entity, /*doCopyOut=*/false);
}
}
// Step 3: now that the dummy argument storage has been prepared, package
// it according to the interface.
mlir::Value addr;
if (mlir::isa<fir::BoxCharType>(dummyTypeWithActualRank)) {
addr = hlfir::genVariableBoxChar(loc, builder, entity);
} else if (mlir::isa<fir::BaseBoxType>(dummyTypeWithActualRank)) {
entity = hlfir::genVariableBox(loc, builder, entity);
// Ensures the box has the right attributes and that it holds an
// addendum if needed.
fir::BaseBoxType actualBoxType =
mlir::cast<fir::BaseBoxType>(entity.getType());
mlir::Type boxEleType = actualBoxType.getEleTy();
// For now, assume it is not OK to pass the allocatable/pointer
// descriptor to a non pointer/allocatable dummy. That is a strict
// interpretation of 18.3.6 point 4 that stipulates the descriptor
// has the dummy attributes in BIND(C) contexts.
const bool actualBoxHasAllocatableOrPointerFlag =
fir::isa_ref_type(boxEleType);
// Fortran 2018 18.5.3, pp3: BIND(C) non pointer allocatable descriptors
// must have zero lower bounds.
bool needsZeroLowerBounds = callContext.isBindcCall() && entity.isArray();
// On the callee side, the current code generated for unlimited
// polymorphic might unconditionally read the addendum. Intrinsic type
// descriptors may not have an addendum, the rebox below will create a
// descriptor with an addendum in such case.
const bool actualBoxHasAddendum = fir::boxHasAddendum(actualBoxType);
const bool needToAddAddendum =
fir::isUnlimitedPolymorphicType(dummyTypeWithActualRank) &&
!actualBoxHasAddendum;
if (needToAddAddendum || actualBoxHasAllocatableOrPointerFlag ||
needsZeroLowerBounds) {
if (actualIsAssumedRank) {
auto lbModifier = needsZeroLowerBounds
? fir::LowerBoundModifierAttribute::SetToZeroes
: fir::LowerBoundModifierAttribute::SetToOnes;
entity = hlfir::Entity{builder.create<fir::ReboxAssumedRankOp>(
loc, dummyTypeWithActualRank, entity, lbModifier)};
} else {
mlir::Value shift{};
if (needsZeroLowerBounds)
shift = getZeroLowerBounds(loc, builder, entity);
entity = hlfir::Entity{builder.create<fir::ReboxOp>(
loc, dummyTypeWithActualRank, entity, /*shape=*/shift,
/*slice=*/mlir::Value{})};
}
}
addr = entity;
} else {
addr = hlfir::genVariableRawAddress(loc, builder, entity);
}
// For ranked actual passed to assumed-rank dummy, the cast to assumed-rank
// box is inserted when building the fir.call op. Inserting it here would
// cause the fir.if results to be assumed-rank in case of OPTIONAL dummy,
// causing extra runtime costs due to the unknown runtime size of assumed-rank
// descriptors.
preparedDummy.dummy =
builder.createConvert(loc, dummyTypeWithActualRank, addr);
return preparedDummy;
}
/// When dummy is not ALLOCATABLE, POINTER and is not passed in register,
/// prepare the actual argument according to the interface, taking care
/// of any optional aspect.
static PreparedDummyArgument prepareUserCallActualArgument(
mlir::Location loc, fir::FirOpBuilder &builder,
const Fortran::lower::PreparedActualArgument &preparedActual,
mlir::Type dummyType,
const Fortran::lower::CallerInterface::PassedEntity &arg,
CallContext &callContext) {
if (!preparedActual.handleDynamicOptional())
return preparePresentUserCallActualArgument(loc, builder, preparedActual,
dummyType, arg, callContext);
// Conditional dummy argument preparation. The actual may be absent
// at runtime, causing any addressing, copy, and packaging to have
// undefined behavior.
// To simplify the handling of this case, the "normal" dummy preparation
// helper is used, except its generated code is wrapped inside a
// fir.if(present).
mlir::Value isPresent = preparedActual.getIsPresent();
mlir::OpBuilder::InsertPoint insertPt = builder.saveInsertionPoint();
// Code generated in a preparation block that will become the
// "then" block in "if (present) then {} else {}". The reason
// for this unusual if/then/else generation is that the number
// and types of the if results will depend on how the argument
// is prepared, and forecasting that here would be brittle.
auto badIfOp = builder.create<fir::IfOp>(loc, dummyType, isPresent,
/*withElseRegion=*/false);
mlir::Block *preparationBlock = &badIfOp.getThenRegion().front();
builder.setInsertionPointToStart(preparationBlock);
PreparedDummyArgument unconditionalDummy =
preparePresentUserCallActualArgument(loc, builder, preparedActual,
dummyType, arg, callContext);
builder.restoreInsertionPoint(insertPt);
// TODO: when forwarding an optional to an optional of the same kind
// (i.e, unconditionalDummy.dummy was not created in preparationBlock),
// the if/then/else generation could be skipped to improve the generated
// code.
// Now that the result types of the ifOp can be deduced, generate
// the "real" ifOp (operation result types cannot be changed, so
// badIfOp cannot be modified and used here).
llvm::SmallVector<mlir::Type> ifOpResultTypes;
ConditionallyPreparedDummy conditionalDummy(unconditionalDummy);
auto ifOp = builder.create<fir::IfOp>(loc, conditionalDummy.getIfResulTypes(),
isPresent,
/*withElseRegion=*/true);
// Move "preparationBlock" into the "then" of the new
// fir.if operation and create fir.result propagating
// unconditionalDummy.
preparationBlock->moveBefore(&ifOp.getThenRegion().back());
ifOp.getThenRegion().back().erase();
builder.setInsertionPointToEnd(&ifOp.getThenRegion().front());
conditionalDummy.genThenResult(loc, builder);
// Generate "else" branch with returning absent values.
builder.setInsertionPointToStart(&ifOp.getElseRegion().front());
conditionalDummy.genElseResult(loc, builder);
// Build dummy from IfOpResults.
builder.setInsertionPointAfter(ifOp);
PreparedDummyArgument result =
conditionalDummy.getPreparedDummy(ifOp, unconditionalDummy);
badIfOp->erase();
return result;
}
/// Prepare actual argument for a procedure pointer dummy.
static PreparedDummyArgument prepareProcedurePointerActualArgument(
mlir::Location loc, fir::FirOpBuilder &builder,
const Fortran::lower::PreparedActualArgument &preparedActual,
mlir::Type dummyType,
const Fortran::lower::CallerInterface::PassedEntity &arg,
CallContext &callContext) {
// NULL() actual to procedure pointer dummy
if (Fortran::evaluate::UnwrapExpr<Fortran::evaluate::NullPointer>(
*arg.entity) &&
fir::isBoxProcAddressType(dummyType)) {
auto boxTy{Fortran::lower::getUntypedBoxProcType(builder.getContext())};
auto tempBoxProc{builder.createTemporary(loc, boxTy)};
hlfir::Entity nullBoxProc(
fir::factory::createNullBoxProc(builder, loc, boxTy));
builder.create<fir::StoreOp>(loc, nullBoxProc, tempBoxProc);
return PreparedDummyArgument{tempBoxProc, /*cleanups=*/{}};
}
hlfir::Entity actual = preparedActual.getActual(loc, builder);
if (actual.isProcedurePointer())
return PreparedDummyArgument{actual, /*cleanups=*/{}};
assert(actual.isProcedure());
// Procedure actual to procedure pointer dummy.
auto tempBoxProc{builder.createTemporary(loc, actual.getType())};
builder.create<fir::StoreOp>(loc, actual, tempBoxProc);
return PreparedDummyArgument{tempBoxProc, /*cleanups=*/{}};
}
/// Prepare arguments of calls to user procedures with actual arguments that
/// have been pre-lowered but not yet prepared according to the interface.
void prepareUserCallArguments(
Fortran::lower::PreparedActualArguments &loweredActuals,
Fortran::lower::CallerInterface &caller, mlir::FunctionType callSiteType,
CallContext &callContext, llvm::SmallVector<CallCleanUp> &callCleanUps) {
using PassBy = Fortran::lower::CallerInterface::PassEntityBy;
mlir::Location loc = callContext.loc;
bool mustRemapActualToDummyDescriptors = false;
fir::FirOpBuilder &builder = callContext.getBuilder();
for (auto [preparedActual, arg] :
llvm::zip(loweredActuals, caller.getPassedArguments())) {
mlir::Type argTy = callSiteType.getInput(arg.firArgument);
if (!preparedActual) {
// Optional dummy argument for which there is no actual argument.
caller.placeInput(arg, builder.genAbsentOp(loc, argTy));
continue;
}
switch (arg.passBy) {
case PassBy::Value: {
// True pass-by-value semantics.
assert(!preparedActual->handleDynamicOptional() && "cannot be optional");
hlfir::Entity actual = preparedActual->getActual(loc, builder);
hlfir::Entity value = hlfir::loadTrivialScalar(loc, builder, actual);
mlir::Type eleTy = value.getFortranElementType();
if (fir::isa_builtin_cptr_type(eleTy)) {
// Pass-by-value argument of type(C_PTR/C_FUNPTR).
// Load the __address component and pass it by value.
if (value.isValue()) {
auto associate = hlfir::genAssociateExpr(loc, builder, value, eleTy,
"adapt.cptrbyval");
value = hlfir::Entity{genRecordCPtrValueArg(
builder, loc, associate.getFirBase(), eleTy)};
builder.create<hlfir::EndAssociateOp>(loc, associate);
} else {
value =
hlfir::Entity{genRecordCPtrValueArg(builder, loc, value, eleTy)};
}
} else if (fir::isa_derived(value.getFortranElementType()) ||
value.isCharacter()) {
// BIND(C), VALUE derived type or character. The value must really
// be loaded here.
auto [exv, cleanup] = hlfir::convertToValue(loc, builder, value);
mlir::Value loadedValue = fir::getBase(exv);
// Character actual arguments may have unknown length or a length longer
// than one. Cast the memory ref to the dummy type so that the load is
// valid and only loads what is needed.
if (mlir::Type baseTy = fir::dyn_cast_ptrEleTy(loadedValue.getType()))
if (fir::isa_char(baseTy))
loadedValue = builder.createConvert(
loc, fir::ReferenceType::get(argTy), loadedValue);
if (fir::isa_ref_type(loadedValue.getType()))
loadedValue = builder.create<fir::LoadOp>(loc, loadedValue);
caller.placeInput(arg, loadedValue);
if (cleanup)
(*cleanup)();
break;
}
caller.placeInput(arg, builder.createConvert(loc, argTy, value));
} break;
case PassBy::BaseAddressValueAttribute:
case PassBy::CharBoxValueAttribute:
case PassBy::Box:
case PassBy::BaseAddress:
case PassBy::BoxChar: {
PreparedDummyArgument preparedDummy = prepareUserCallActualArgument(
loc, builder, *preparedActual, argTy, arg, callContext);
callCleanUps.append(preparedDummy.cleanups.rbegin(),
preparedDummy.cleanups.rend());
caller.placeInput(arg, preparedDummy.dummy);
if (arg.passBy == PassBy::Box)
mustRemapActualToDummyDescriptors |=
arg.isSequenceAssociatedDescriptor();
} break;
case PassBy::BoxProcRef: {
PreparedDummyArgument preparedDummy =
prepareProcedurePointerActualArgument(loc, builder, *preparedActual,
argTy, arg, callContext);
callCleanUps.append(preparedDummy.cleanups.rbegin(),
preparedDummy.cleanups.rend());
caller.placeInput(arg, preparedDummy.dummy);
} break;
case PassBy::AddressAndLength:
// PassBy::AddressAndLength is only used for character results. Results
// are not handled here.
fir::emitFatalError(
loc, "unexpected PassBy::AddressAndLength for actual arguments");
break;
case PassBy::CharProcTuple: {
hlfir::Entity actual = preparedActual->getActual(loc, builder);
if (actual.isProcedurePointer())
actual = hlfir::derefPointersAndAllocatables(loc, builder, actual);
if (!fir::isCharacterProcedureTuple(actual.getType()))
actual = fixProcedureDummyMismatch(loc, builder, actual, argTy);
caller.placeInput(arg, actual);
} break;
case PassBy::MutableBox: {
const Fortran::lower::SomeExpr *expr = arg.entity->UnwrapExpr();
// C709 and C710.
assert(expr && "cannot pass TYPE(*) to POINTER or ALLOCATABLE");
hlfir::Entity actual = preparedActual->getActual(loc, builder);
if (Fortran::evaluate::UnwrapExpr<Fortran::evaluate::NullPointer>(
*expr)) {
// If expr is NULL(), the mutableBox created must be a deallocated
// pointer with the dummy argument characteristics (see table 16.5
// in Fortran 2018 standard).
// No length parameters are set for the created box because any non
// deferred type parameters of the dummy will be evaluated on the
// callee side, and it is illegal to use NULL without a MOLD if any
// dummy length parameters are assumed.
mlir::Type boxTy = fir::dyn_cast_ptrEleTy(argTy);
assert(boxTy && mlir::isa<fir::BaseBoxType>(boxTy) &&
"must be a fir.box type");
mlir::Value boxStorage =
fir::factory::genNullBoxStorage(builder, loc, boxTy);
caller.placeInput(arg, boxStorage);
continue;
}
if (fir::isPointerType(argTy) &&
!Fortran::evaluate::IsObjectPointer(*expr)) {
// Passing a non POINTER actual argument to a POINTER dummy argument.
// Create a pointer of the dummy argument type and assign the actual
// argument to it.
auto dataTy = llvm::cast<fir::BaseBoxType>(fir::unwrapRefType(argTy));
fir::ExtendedValue actualExv = Fortran::lower::convertToAddress(
loc, callContext.converter, actual, callContext.stmtCtx,
hlfir::getFortranElementType(dataTy));
// If the dummy is an assumed-rank pointer, allocate a pointer
// descriptor with the actual argument rank (if it is not assumed-rank
// itself).
if (dataTy.isAssumedRank()) {
dataTy =
dataTy.getBoxTypeWithNewShape(fir::getBase(actualExv).getType());
if (dataTy.isAssumedRank())
TODO(loc, "associating assumed-rank target to pointer assumed-rank "
"argument");
}
mlir::Value irBox = builder.createTemporary(loc, dataTy);
fir::MutableBoxValue ptrBox(irBox,
/*nonDeferredParams=*/mlir::ValueRange{},
/*mutableProperties=*/{});
fir::factory::associateMutableBox(builder, loc, ptrBox, actualExv,
/*lbounds=*/std::nullopt);
caller.placeInput(arg, irBox);
continue;
}
// Passing a POINTER to a POINTER, or an ALLOCATABLE to an ALLOCATABLE.
assert(actual.isMutableBox() && "actual must be a mutable box");
if (fir::isAllocatableType(argTy) && arg.isIntentOut() &&
callContext.isBindcCall()) {
// INTENT(OUT) allocatables are deallocated on the callee side,
// but BIND(C) procedures may be implemented in C, so deallocation is
// also done on the caller side (if the procedure is implemented in
// Fortran, the deallocation attempt in the callee will be a no-op).
auto [exv, cleanup] =
hlfir::translateToExtendedValue(loc, builder, actual);
const auto *mutableBox = exv.getBoxOf<fir::MutableBoxValue>();
assert(mutableBox && !cleanup && "expect allocatable");
Fortran::lower::genDeallocateIfAllocated(callContext.converter,
*mutableBox, loc);
}
caller.placeInput(arg, actual);
} break;
}
}
// Handle cases where caller must allocate the result or a fir.box for it.
if (mustRemapActualToDummyDescriptors)
remapActualToDummyDescriptors(loc, callContext.converter,
callContext.symMap, loweredActuals, caller,
callContext.isBindcCall());
}
/// Lower calls to user procedures with actual arguments that have been
/// pre-lowered but not yet prepared according to the interface.
/// This can be called for elemental procedures, but only with scalar
/// arguments: if there are array arguments, it must be provided with
/// the array argument elements value and will return the corresponding
/// scalar result value.
static std::optional<hlfir::EntityWithAttributes>
genUserCall(Fortran::lower::PreparedActualArguments &loweredActuals,
Fortran::lower::CallerInterface &caller,
mlir::FunctionType callSiteType, CallContext &callContext) {
mlir::Location loc = callContext.loc;
llvm::SmallVector<CallCleanUp> callCleanUps;
fir::FirOpBuilder &builder = callContext.getBuilder();
prepareUserCallArguments(loweredActuals, caller, callSiteType, callContext,
callCleanUps);
// Prepare lowered arguments according to the interface
// and map the lowered values to the dummy
// arguments.
auto [result, resultIsFinalized] = Fortran::lower::genCallOpAndResult(
loc, callContext.converter, callContext.symMap, callContext.stmtCtx,
caller, callSiteType, callContext.resultType,
callContext.isElementalProcWithArrayArgs());
// For procedure pointer function result, just return the call.
if (callContext.resultType &&
mlir::isa<fir::BoxProcType>(*callContext.resultType))
return hlfir::EntityWithAttributes(fir::getBase(result));
/// Clean-up associations and copy-in.
for (auto cleanUp : callCleanUps)
cleanUp.genCleanUp(loc, builder);
if (!fir::getBase(result))
return std::nullopt; // subroutine call.
if (fir::isPointerType(fir::getBase(result).getType()))
return extendedValueToHlfirEntity(loc, builder, result, tempResultName);
if (!resultIsFinalized) {
hlfir::Entity resultEntity =
extendedValueToHlfirEntity(loc, builder, result, tempResultName);
resultEntity = loadTrivialScalar(loc, builder, resultEntity);
if (resultEntity.isVariable()) {
// If the result has no finalization, it can be moved into an expression.
// In such case, the expression should not be freed after its use since
// the result is stack allocated or deallocation (for allocatable results)
// was already inserted in genCallOpAndResult.
auto asExpr = builder.create<hlfir::AsExprOp>(
loc, resultEntity, /*mustFree=*/builder.createBool(loc, false));
return hlfir::EntityWithAttributes{asExpr.getResult()};
}
return hlfir::EntityWithAttributes{resultEntity};
}
// If the result has finalization, it cannot be moved because use of its
// value have been created in the statement context and may be emitted
// after the hlfir.expr destroy, so the result is kept as a variable in
// HLFIR. This may lead to copies when passing the result to an argument
// with VALUE, and this do not convey the fact that the result will not
// change, but is correct, and using hlfir.expr without the move would
// trigger a copy that may be avoided.
// Load allocatable results before emitting the hlfir.declare and drop its
// lower bounds: this is not a variable From the Fortran point of view, so
// the lower bounds are ones when inquired on the caller side.
const auto *allocatable = result.getBoxOf<fir::MutableBoxValue>();
fir::ExtendedValue loadedResult =
allocatable
? fir::factory::genMutableBoxRead(builder, loc, *allocatable,
/*mayBePolymorphic=*/true,
/*preserveLowerBounds=*/false)
: result;
return extendedValueToHlfirEntity(loc, builder, loadedResult, tempResultName);
}
/// Create an optional dummy argument value from an entity that may be
/// absent. \p actualGetter callback returns hlfir::Entity denoting
/// the lowered actual argument. \p actualGetter can only return numerical
/// or logical scalar entity.
/// If the entity is considered absent according to 15.5.2.12 point 1., the
/// returned value is zero (or false), otherwise it is the value of the entity.
/// \p eleType specifies the entity's Fortran element type.
template <typename T>
static ExvAndCleanup genOptionalValue(fir::FirOpBuilder &builder,
mlir::Location loc, mlir::Type eleType,
T actualGetter, mlir::Value isPresent) {
return {builder
.genIfOp(loc, {eleType}, isPresent,
/*withElseRegion=*/true)
.genThen([&]() {
hlfir::Entity entity = actualGetter(loc, builder);
assert(eleType == entity.getFortranElementType() &&
"result type mismatch in genOptionalValue");
assert(entity.isScalar() && fir::isa_trivial(eleType) &&
"must be a numerical or logical scalar");
mlir::Value val =
hlfir::loadTrivialScalar(loc, builder, entity);
builder.create<fir::ResultOp>(loc, val);
})
.genElse([&]() {
mlir::Value zero =
fir::factory::createZeroValue(builder, loc, eleType);
builder.create<fir::ResultOp>(loc, zero);
})
.getResults()[0],
std::nullopt};
}
/// Create an optional dummy argument address from \p entity that may be
/// absent. If \p entity is considered absent according to 15.5.2.12 point 1.,
/// the returned value is a null pointer, otherwise it is the address of \p
/// entity.
static ExvAndCleanup genOptionalAddr(fir::FirOpBuilder &builder,
mlir::Location loc, hlfir::Entity entity,
mlir::Value isPresent) {
auto [exv, cleanup] = hlfir::translateToExtendedValue(loc, builder, entity);
// If it is an exv pointer/allocatable, then it cannot be absent
// because it is passed to a non-pointer/non-allocatable.
if (const auto *box = exv.getBoxOf<fir::MutableBoxValue>())
return {fir::factory::genMutableBoxRead(builder, loc, *box), cleanup};
// If this is not a POINTER or ALLOCATABLE, then it is already an OPTIONAL
// address and can be passed directly.
return {exv, cleanup};
}
/// Create an optional dummy argument address from \p entity that may be
/// absent. If \p entity is considered absent according to 15.5.2.12 point 1.,
/// the returned value is an absent fir.box, otherwise it is a fir.box
/// describing \p entity.
static ExvAndCleanup genOptionalBox(fir::FirOpBuilder &builder,
mlir::Location loc, hlfir::Entity entity,
mlir::Value isPresent) {
auto [exv, cleanup] = hlfir::translateToExtendedValue(loc, builder, entity);
// Non allocatable/pointer optional box -> simply forward
if (exv.getBoxOf<fir::BoxValue>())
return {exv, cleanup};
fir::ExtendedValue newExv = exv;
// Optional allocatable/pointer -> Cannot be absent, but need to translate
// unallocated/diassociated into absent fir.box.
if (const auto *box = exv.getBoxOf<fir::MutableBoxValue>())
newExv = fir::factory::genMutableBoxRead(builder, loc, *box);
// createBox will not do create any invalid memory dereferences if exv is
// absent. The created fir.box will not be usable, but the SelectOp below
// ensures it won't be.
mlir::Value box = builder.createBox(loc, newExv);
mlir::Type boxType = box.getType();
auto absent = builder.create<fir::AbsentOp>(loc, boxType);
auto boxOrAbsent = builder.create<mlir::arith::SelectOp>(
loc, boxType, isPresent, box, absent);
return {fir::BoxValue(boxOrAbsent), cleanup};
}
/// Lower calls to intrinsic procedures with custom optional handling where the
/// actual arguments have been pre-lowered
static std::optional<hlfir::EntityWithAttributes> genCustomIntrinsicRefCore(
Fortran::lower::PreparedActualArguments &loweredActuals,
const Fortran::evaluate::SpecificIntrinsic *intrinsic,
CallContext &callContext) {
auto &builder = callContext.getBuilder();
const auto &loc = callContext.loc;
assert(intrinsic &&
Fortran::lower::intrinsicRequiresCustomOptionalHandling(
callContext.procRef, *intrinsic, callContext.converter));
// helper to get a particular prepared argument
auto getArgument = [&](std::size_t i, bool loadArg) -> fir::ExtendedValue {
if (!loweredActuals[i])
return fir::getAbsentIntrinsicArgument();
hlfir::Entity actual = loweredActuals[i]->getActual(loc, builder);
if (loadArg && fir::conformsWithPassByRef(actual.getType())) {
return hlfir::loadTrivialScalar(loc, builder, actual);
}
return Fortran::lower::translateToExtendedValue(loc, builder, actual,
callContext.stmtCtx);
};
// helper to get the isPresent flag for a particular prepared argument
auto isPresent = [&](std::size_t i) -> std::optional<mlir::Value> {
if (!loweredActuals[i])
return {builder.createBool(loc, false)};
if (loweredActuals[i]->handleDynamicOptional())
return {loweredActuals[i]->getIsPresent()};
return std::nullopt;
};
assert(callContext.resultType &&
"the elemental intrinsics with custom handling are all functions");
// if callContext.resultType is an array then this was originally an elemental
// call. What we are lowering here is inside the kernel of the hlfir.elemental
// so we should return the scalar type. If the return type is already a scalar
// then it should be unchanged here.
mlir::Type resTy = hlfir::getFortranElementType(*callContext.resultType);
fir::ExtendedValue result = Fortran::lower::lowerCustomIntrinsic(
builder, loc, callContext.getProcedureName(), resTy, isPresent,
getArgument, loweredActuals.size(), callContext.stmtCtx);
return {hlfir::EntityWithAttributes{extendedValueToHlfirEntity(
loc, builder, result, ".tmp.custom_intrinsic_result")}};
}
/// Lower calls to intrinsic procedures with actual arguments that have been
/// pre-lowered but have not yet been prepared according to the interface.
static std::optional<hlfir::EntityWithAttributes>
genIntrinsicRefCore(Fortran::lower::PreparedActualArguments &loweredActuals,
const Fortran::evaluate::SpecificIntrinsic *intrinsic,
const fir::IntrinsicArgumentLoweringRules *argLowering,
CallContext &callContext) {
auto &converter = callContext.converter;
if (intrinsic && Fortran::lower::intrinsicRequiresCustomOptionalHandling(
callContext.procRef, *intrinsic, converter))
return genCustomIntrinsicRefCore(loweredActuals, intrinsic, callContext);
llvm::SmallVector<fir::ExtendedValue> operands;
llvm::SmallVector<hlfir::CleanupFunction> cleanupFns;
auto addToCleanups = [&cleanupFns](std::optional<hlfir::CleanupFunction> fn) {
if (fn)
cleanupFns.emplace_back(std::move(*fn));
};
auto &stmtCtx = callContext.stmtCtx;
fir::FirOpBuilder &builder = callContext.getBuilder();
mlir::Location loc = callContext.loc;
for (auto arg : llvm::enumerate(loweredActuals)) {
if (!arg.value()) {
operands.emplace_back(fir::getAbsentIntrinsicArgument());
continue;
}
if (!argLowering) {
// No argument lowering instruction, lower by value.
assert(!arg.value()->handleDynamicOptional() &&
"should use genOptionalValue");
hlfir::Entity actual = arg.value()->getActual(loc, builder);
operands.emplace_back(
Fortran::lower::convertToValue(loc, converter, actual, stmtCtx));
continue;
}
// Helper to get the type of the Fortran expression in case it is a
// computed value that must be placed in memory (logicals are computed as
// i1, but must be placed in memory as fir.logical).
auto getActualFortranElementType = [&]() -> mlir::Type {
if (const Fortran::lower::SomeExpr *expr =
callContext.procRef.UnwrapArgExpr(arg.index())) {
mlir::Type type = converter.genType(*expr);
return hlfir::getFortranElementType(type);
}
// TYPE(*): is already in memory anyway. Can return none
// here.
return builder.getNoneType();
};
// Ad-hoc argument lowering handling.
fir::ArgLoweringRule argRules =
fir::lowerIntrinsicArgumentAs(*argLowering, arg.index());
if (arg.value()->handleDynamicOptional()) {
mlir::Value isPresent = arg.value()->getIsPresent();
switch (argRules.lowerAs) {
case fir::LowerIntrinsicArgAs::Value: {
// In case of elemental call, getActual() may produce
// a designator denoting the array element to be passed
// to the subprogram. If the actual array is dynamically
// optional the designator must be generated under
// isPresent check, because the box bounds reads will be
// generated in the codegen. These reads are illegal,
// if the dynamically optional argument is absent.
auto getActualCb = [&](mlir::Location loc,
fir::FirOpBuilder &builder) -> hlfir::Entity {
return arg.value()->getActual(loc, builder);
};
auto [exv, cleanup] =
genOptionalValue(builder, loc, getActualFortranElementType(),
getActualCb, isPresent);
addToCleanups(std::move(cleanup));
operands.emplace_back(exv);
continue;
}
case fir::LowerIntrinsicArgAs::Addr: {
hlfir::Entity actual = arg.value()->getActual(loc, builder);
auto [exv, cleanup] = genOptionalAddr(builder, loc, actual, isPresent);
addToCleanups(std::move(cleanup));
operands.emplace_back(exv);
continue;
}
case fir::LowerIntrinsicArgAs::Box: {
hlfir::Entity actual = arg.value()->getActual(loc, builder);
auto [exv, cleanup] = genOptionalBox(builder, loc, actual, isPresent);
addToCleanups(std::move(cleanup));
operands.emplace_back(exv);
continue;
}
case fir::LowerIntrinsicArgAs::Inquired: {
hlfir::Entity actual = arg.value()->getActual(loc, builder);
auto [exv, cleanup] =
hlfir::translateToExtendedValue(loc, builder, actual);
addToCleanups(std::move(cleanup));
operands.emplace_back(exv);
continue;
}
}
llvm_unreachable("bad switch");
}
hlfir::Entity actual = arg.value()->getActual(loc, builder);
switch (argRules.lowerAs) {
case fir::LowerIntrinsicArgAs::Value:
operands.emplace_back(
Fortran::lower::convertToValue(loc, converter, actual, stmtCtx));
continue;
case fir::LowerIntrinsicArgAs::Addr:
operands.emplace_back(Fortran::lower::convertToAddress(
loc, converter, actual, stmtCtx, getActualFortranElementType()));
continue;
case fir::LowerIntrinsicArgAs::Box:
operands.emplace_back(Fortran::lower::convertToBox(
loc, converter, actual, stmtCtx, getActualFortranElementType()));
continue;
case fir::LowerIntrinsicArgAs::Inquired:
if (const Fortran::lower::SomeExpr *expr =
callContext.procRef.UnwrapArgExpr(arg.index())) {
if (Fortran::evaluate::UnwrapExpr<Fortran::evaluate::NullPointer>(
*expr)) {
// NULL() pointer without a MOLD must be passed as a deallocated
// pointer (see table 16.5 in Fortran 2018 standard).
// !fir.box<!fir.ptr<none>> should always be valid in this context.
mlir::Type noneTy = mlir::NoneType::get(builder.getContext());
mlir::Type nullPtrTy = fir::PointerType::get(noneTy);
mlir::Type boxTy = fir::BoxType::get(nullPtrTy);
mlir::Value boxStorage =
fir::factory::genNullBoxStorage(builder, loc, boxTy);
hlfir::EntityWithAttributes nullBoxEntity =
extendedValueToHlfirEntity(loc, builder, boxStorage,
".tmp.null_box");
operands.emplace_back(Fortran::lower::translateToExtendedValue(
loc, builder, nullBoxEntity, stmtCtx));
continue;
}
}
// Place hlfir.expr in memory, and unbox fir.boxchar. Other entities
// are translated to fir::ExtendedValue without transformation (notably,
// pointers/allocatable are not dereferenced).
// TODO: once lowering to FIR retires, UBOUND and LBOUND can be simplified
// since the fir.box lowered here are now guaranteed to contain the local
// lower bounds thanks to the hlfir.declare (the extra rebox can be
// removed).
operands.emplace_back(Fortran::lower::translateToExtendedValue(
loc, builder, actual, stmtCtx));
continue;
}
llvm_unreachable("bad switch");
}
// genIntrinsicCall needs the scalar type, even if this is a transformational
// procedure returning an array.
std::optional<mlir::Type> scalarResultType;
if (callContext.resultType)
scalarResultType = hlfir::getFortranElementType(*callContext.resultType);
const std::string intrinsicName = callContext.getProcedureName();
// Let the intrinsic library lower the intrinsic procedure call.
auto [resultExv, mustBeFreed] = genIntrinsicCall(
builder, loc, intrinsicName, scalarResultType, operands, &converter);
for (const hlfir::CleanupFunction &fn : cleanupFns)
fn();
if (!fir::getBase(resultExv))
return std::nullopt;
hlfir::EntityWithAttributes resultEntity = extendedValueToHlfirEntity(
loc, builder, resultExv, ".tmp.intrinsic_result");
// Move result into memory into an hlfir.expr since they are immutable from
// that point, and the result storage is some temp. "Null" is special: it
// returns a null pointer variable that should not be transformed into a value
// (what matters is the memory address).
if (resultEntity.isVariable() && intrinsicName != "null") {
hlfir::AsExprOp asExpr;
// Character/Derived MERGE lowering returns one of its argument address
// (this is the only intrinsic implemented in that way so far). The
// ownership of this address cannot be taken here since it may not be a
// temp.
if (intrinsicName == "merge")
asExpr = builder.create<hlfir::AsExprOp>(loc, resultEntity);
else
asExpr = builder.create<hlfir::AsExprOp>(
loc, resultEntity, builder.createBool(loc, mustBeFreed));
resultEntity = hlfir::EntityWithAttributes{asExpr.getResult()};
}
return resultEntity;
}
/// Lower calls to intrinsic procedures with actual arguments that have been
/// pre-lowered but have not yet been prepared according to the interface.
static std::optional<hlfir::EntityWithAttributes> genHLFIRIntrinsicRefCore(
Fortran::lower::PreparedActualArguments &loweredActuals,
const Fortran::evaluate::SpecificIntrinsic *intrinsic,
const fir::IntrinsicArgumentLoweringRules *argLowering,
CallContext &callContext) {
if (!useHlfirIntrinsicOps)
return genIntrinsicRefCore(loweredActuals, intrinsic, argLowering,
callContext);
fir::FirOpBuilder &builder = callContext.getBuilder();
mlir::Location loc = callContext.loc;
const std::string intrinsicName = callContext.getProcedureName();
// transformational intrinsic ops always have a result type
if (callContext.resultType) {
std::optional<hlfir::EntityWithAttributes> res =
Fortran::lower::lowerHlfirIntrinsic(builder, loc, intrinsicName,
loweredActuals, argLowering,
*callContext.resultType);
if (res)
return res;
}
// fallback to calling the intrinsic via fir.call
return genIntrinsicRefCore(loweredActuals, intrinsic, argLowering,
callContext);
}
namespace {
template <typename ElementalCallBuilderImpl>
class ElementalCallBuilder {
public:
std::optional<hlfir::EntityWithAttributes>
genElementalCall(Fortran::lower::PreparedActualArguments &loweredActuals,
bool isImpure, CallContext &callContext) {
mlir::Location loc = callContext.loc;
fir::FirOpBuilder &builder = callContext.getBuilder();
unsigned numArgs = loweredActuals.size();
// Step 1: dereference pointers/allocatables and compute elemental shape.
mlir::Value shape;
Fortran::lower::PreparedActualArgument *optionalWithShape;
// 10.1.4 p5. Impure elemental procedures must be called in element order.
bool mustBeOrdered = isImpure;
for (unsigned i = 0; i < numArgs; ++i) {
auto &preparedActual = loweredActuals[i];
if (preparedActual) {
// Elemental procedure dummy arguments cannot be pointer/allocatables
// (C15100), so it is safe to dereference any pointer or allocatable
// actual argument now instead of doing this inside the elemental
// region.
preparedActual->derefPointersAndAllocatables(loc, builder);
// Better to load scalars outside of the loop when possible.
if (!preparedActual->handleDynamicOptional() &&
impl().canLoadActualArgumentBeforeLoop(i))
preparedActual->loadTrivialScalar(loc, builder);
// TODO: merge shape instead of using the first one.
if (!shape && preparedActual->isArray()) {
if (preparedActual->handleDynamicOptional())
optionalWithShape = &*preparedActual;
else
shape = preparedActual->genShape(loc, builder);
}
// 15.8.3 p1. Elemental procedure with intent(out)/intent(inout)
// arguments must be called in element order.
if (impl().argMayBeModifiedByCall(i))
mustBeOrdered = true;
}
}
if (!shape && optionalWithShape) {
// If all array operands appear in optional positions, then none of them
// is allowed to be absent as per 15.5.2.12 point 3. (6). Just pick the
// first operand.
shape = optionalWithShape->genShape(loc, builder);
// TODO: There is an opportunity to add a runtime check here that
// this array is present as required. Also, the optionality of all actual
// could be checked and reset given the Fortran requirement.
optionalWithShape->resetOptionalAspect();
}
assert(shape &&
"elemental array calls must have at least one array arguments");
// Evaluate the actual argument array expressions before the elemental
// call of an impure subprogram or a subprogram with intent(out) or
// intent(inout) arguments. Note that the scalar arguments are handled
// above.
if (mustBeOrdered) {
for (auto &preparedActual : loweredActuals) {
if (preparedActual) {
if (hlfir::AssociateOp associate =
preparedActual->associateIfArrayExpr(loc, builder)) {
fir::FirOpBuilder *bldr = &builder;
callContext.stmtCtx.attachCleanup(
[=]() { bldr->create<hlfir::EndAssociateOp>(loc, associate); });
}
}
}
}
// Push a new local scope so that any temps made inside the elemental
// iterations are cleaned up inside the iterations.
if (!callContext.resultType) {
// Subroutine case. Generate call inside loop nest.
hlfir::LoopNest loopNest =
hlfir::genLoopNest(loc, builder, shape, !mustBeOrdered);
mlir::ValueRange oneBasedIndices = loopNest.oneBasedIndices;
auto insPt = builder.saveInsertionPoint();
builder.setInsertionPointToStart(loopNest.innerLoop.getBody());
callContext.stmtCtx.pushScope();
for (auto &preparedActual : loweredActuals)
if (preparedActual)
preparedActual->setElementalIndices(oneBasedIndices);
impl().genElementalKernel(loweredActuals, callContext);
callContext.stmtCtx.finalizeAndPop();
builder.restoreInsertionPoint(insPt);
return std::nullopt;
}
// Function case: generate call inside hlfir.elemental
mlir::Type elementType =
hlfir::getFortranElementType(*callContext.resultType);
// Get result length parameters.
llvm::SmallVector<mlir::Value> typeParams;
if (mlir::isa<fir::CharacterType>(elementType) ||
fir::isRecordWithTypeParameters(elementType)) {
auto charType = mlir::dyn_cast<fir::CharacterType>(elementType);
if (charType && charType.hasConstantLen())
typeParams.push_back(builder.createIntegerConstant(
loc, builder.getIndexType(), charType.getLen()));
else if (charType)
typeParams.push_back(impl().computeDynamicCharacterResultLength(
loweredActuals, callContext));
else
TODO(
loc,
"compute elemental PDT function result length parameters in HLFIR");
}
auto genKernel = [&](mlir::Location l, fir::FirOpBuilder &b,
mlir::ValueRange oneBasedIndices) -> hlfir::Entity {
callContext.stmtCtx.pushScope();
for (auto &preparedActual : loweredActuals)
if (preparedActual)
preparedActual->setElementalIndices(oneBasedIndices);
auto res = *impl().genElementalKernel(loweredActuals, callContext);
callContext.stmtCtx.finalizeAndPop();
// Note that an hlfir.destroy is not emitted for the result since it
// is still used by the hlfir.yield_element that also marks its last
// use.
return res;
};
mlir::Value polymorphicMold;
if (fir::isPolymorphicType(*callContext.resultType))
polymorphicMold =
impl().getPolymorphicResultMold(loweredActuals, callContext);
mlir::Value elemental =
hlfir::genElementalOp(loc, builder, elementType, shape, typeParams,
genKernel, !mustBeOrdered, polymorphicMold);
// If the function result requires finalization, then it has to be done
// for the array result of the elemental call. We have to communicate
// this via the DestroyOp's attribute.
bool mustFinalizeExpr = impl().resultMayRequireFinalization(callContext);
fir::FirOpBuilder *bldr = &builder;
callContext.stmtCtx.attachCleanup([=]() {
bldr->create<hlfir::DestroyOp>(loc, elemental, mustFinalizeExpr);
});
return hlfir::EntityWithAttributes{elemental};
}
private:
ElementalCallBuilderImpl &impl() {
return *static_cast<ElementalCallBuilderImpl *>(this);
}
};
class ElementalUserCallBuilder
: public ElementalCallBuilder<ElementalUserCallBuilder> {
public:
ElementalUserCallBuilder(Fortran::lower::CallerInterface &caller,
mlir::FunctionType callSiteType)
: caller{caller}, callSiteType{callSiteType} {}
std::optional<hlfir::Entity>
genElementalKernel(Fortran::lower::PreparedActualArguments &loweredActuals,
CallContext &callContext) {
return genUserCall(loweredActuals, caller, callSiteType, callContext);
}
bool argMayBeModifiedByCall(unsigned argIdx) const {
assert(argIdx < caller.getPassedArguments().size() && "bad argument index");
return caller.getPassedArguments()[argIdx].mayBeModifiedByCall();
}
bool canLoadActualArgumentBeforeLoop(unsigned argIdx) const {
using PassBy = Fortran::lower::CallerInterface::PassEntityBy;
const auto &passedArgs{caller.getPassedArguments()};
assert(argIdx < passedArgs.size() && "bad argument index");
// If the actual argument does not need to be passed via an address,
// or will be passed in the address of a temporary copy, it can be loaded
// before the elemental loop nest.
const auto &arg{passedArgs[argIdx]};
return arg.passBy == PassBy::Value ||
arg.passBy == PassBy::BaseAddressValueAttribute;
}
mlir::Value computeDynamicCharacterResultLength(
Fortran::lower::PreparedActualArguments &loweredActuals,
CallContext &callContext) {
fir::FirOpBuilder &builder = callContext.getBuilder();
mlir::Location loc = callContext.loc;
auto &converter = callContext.converter;
mlir::Type idxTy = builder.getIndexType();
llvm::SmallVector<CallCleanUp> callCleanUps;
prepareUserCallArguments(loweredActuals, caller, callSiteType, callContext,
callCleanUps);
callContext.symMap.pushScope();
// Map prepared argument to dummy symbol to be able to lower spec expr.
for (const auto &arg : caller.getPassedArguments()) {
const Fortran::semantics::Symbol *sym = caller.getDummySymbol(arg);
assert(sym && "expect symbol for dummy argument");
auto input = caller.getInput(arg);
fir::ExtendedValue exv = Fortran::lower::translateToExtendedValue(
loc, builder, hlfir::Entity{input}, callContext.stmtCtx);
fir::FortranVariableOpInterface variableIface = hlfir::genDeclare(
loc, builder, exv, "dummy.tmp", fir::FortranVariableFlagsAttr{});
callContext.symMap.addVariableDefinition(*sym, variableIface);
}
auto lowerSpecExpr = [&](const auto &expr) -> mlir::Value {
mlir::Value convertExpr = builder.createConvert(
loc, idxTy,
fir::getBase(converter.genExprValue(expr, callContext.stmtCtx)));
return fir::factory::genMaxWithZero(builder, loc, convertExpr);
};
llvm::SmallVector<mlir::Value> lengths;
caller.walkResultLengths(
[&](const Fortran::lower::SomeExpr &e, bool isAssumedSizeExtent) {
assert(!isAssumedSizeExtent && "result cannot be assumed-size");
lengths.emplace_back(lowerSpecExpr(e));
});
callContext.symMap.popScope();
assert(lengths.size() == 1 && "expect 1 length parameter for the result");
return lengths[0];
}
mlir::Value getPolymorphicResultMold(
Fortran::lower::PreparedActualArguments &loweredActuals,
CallContext &callContext) {
fir::emitFatalError(callContext.loc,
"elemental function call with polymorphic result");
return {};
}
bool resultMayRequireFinalization(CallContext &callContext) const {
std::optional<Fortran::evaluate::DynamicType> retTy =
caller.getCallDescription().proc().GetType();
if (!retTy)
return false;
if (retTy->IsPolymorphic() || retTy->IsUnlimitedPolymorphic())
fir::emitFatalError(
callContext.loc,
"elemental function call with [unlimited-]polymorphic result");
if (retTy->category() == Fortran::common::TypeCategory::Derived) {
const Fortran::semantics::DerivedTypeSpec &typeSpec =
retTy->GetDerivedTypeSpec();
return Fortran::semantics::IsFinalizable(typeSpec);
}
return false;
}
private:
Fortran::lower::CallerInterface &caller;
mlir::FunctionType callSiteType;
};
class ElementalIntrinsicCallBuilder
: public ElementalCallBuilder<ElementalIntrinsicCallBuilder> {
public:
ElementalIntrinsicCallBuilder(
const Fortran::evaluate::SpecificIntrinsic *intrinsic,
const fir::IntrinsicArgumentLoweringRules *argLowering, bool isFunction)
: intrinsic{intrinsic}, argLowering{argLowering}, isFunction{isFunction} {
}
std::optional<hlfir::Entity>
genElementalKernel(Fortran::lower::PreparedActualArguments &loweredActuals,
CallContext &callContext) {
return genHLFIRIntrinsicRefCore(loweredActuals, intrinsic, argLowering,
callContext);
}
// Elemental intrinsic functions cannot modify their arguments.
bool argMayBeModifiedByCall(int) const { return !isFunction; }
bool canLoadActualArgumentBeforeLoop(int) const {
// Elemental intrinsic functions never need the actual addresses
// of their arguments.
return isFunction;
}
mlir::Value computeDynamicCharacterResultLength(
Fortran::lower::PreparedActualArguments &loweredActuals,
CallContext &callContext) {
if (intrinsic)
if (intrinsic->name == "adjustr" || intrinsic->name == "adjustl" ||
intrinsic->name == "merge")
return loweredActuals[0].value().genCharLength(
callContext.loc, callContext.getBuilder());
// Character MIN/MAX is the min/max of the arguments length that are
// present.
TODO(callContext.loc,
"compute elemental character min/max function result length in HLFIR");
}
mlir::Value getPolymorphicResultMold(
Fortran::lower::PreparedActualArguments &loweredActuals,
CallContext &callContext) {
if (!intrinsic)
return {};
if (intrinsic->name == "merge") {
// MERGE seems to be the only elemental function that can produce
// polymorphic result. The MERGE's result is polymorphic iff
// both TSOURCE and FSOURCE are polymorphic, and they also must have
// the same declared and dynamic types. So any of them can be used
// for the mold.
assert(!loweredActuals.empty());
return loweredActuals.front()->getPolymorphicMold(callContext.loc);
}
return {};
}
bool resultMayRequireFinalization(
[[maybe_unused]] CallContext &callContext) const {
// FIXME: need access to the CallerInterface's return type
// to check if the result may need finalization (e.g. the result
// of MERGE).
return false;
}
private:
const Fortran::evaluate::SpecificIntrinsic *intrinsic;
const fir::IntrinsicArgumentLoweringRules *argLowering;
const bool isFunction;
};
} // namespace
static std::optional<mlir::Value>
genIsPresentIfArgMaybeAbsent(mlir::Location loc, hlfir::Entity actual,
const Fortran::lower::SomeExpr &expr,
CallContext &callContext,
bool passAsAllocatableOrPointer) {
if (!Fortran::evaluate::MayBePassedAsAbsentOptional(expr))
return std::nullopt;
fir::FirOpBuilder &builder = callContext.getBuilder();
if (!passAsAllocatableOrPointer &&
Fortran::evaluate::IsAllocatableOrPointerObject(expr)) {
// Passing Allocatable/Pointer to non-pointer/non-allocatable OPTIONAL.
// Fortran 2018 15.5.2.12 point 1: If unallocated/disassociated, it is
// as if the argument was absent. The main care here is to not do a
// copy-in/copy-out because the temp address, even though pointing to a
// null size storage, would not be a nullptr and therefore the argument
// would not be considered absent on the callee side. Note: if the
// allocatable/pointer is also optional, it cannot be absent as per
// 15.5.2.12 point 7. and 8. We rely on this to un-conditionally read
// the allocatable/pointer descriptor here.
mlir::Value addr = genVariableRawAddress(loc, builder, actual);
return builder.genIsNotNullAddr(loc, addr);
}
// TODO: what if passing allocatable target to optional intent(in) pointer?
// May fall into the category above if the allocatable is not optional.
// Passing an optional to an optional.
return builder.create<fir::IsPresentOp>(loc, builder.getI1Type(), actual)
.getResult();
}
// Lower a reference to an elemental intrinsic procedure with array arguments
// and custom optional handling
static std::optional<hlfir::EntityWithAttributes>
genCustomElementalIntrinsicRef(
const Fortran::evaluate::SpecificIntrinsic *intrinsic,
CallContext &callContext) {
assert(callContext.isElementalProcWithArrayArgs() &&
"Use genCustomIntrinsicRef for scalar calls");
mlir::Location loc = callContext.loc;
auto &converter = callContext.converter;
Fortran::lower::PreparedActualArguments operands;
assert(intrinsic && Fortran::lower::intrinsicRequiresCustomOptionalHandling(
callContext.procRef, *intrinsic, converter));
// callback for optional arguments
auto prepareOptionalArg = [&](const Fortran::lower::SomeExpr &expr) {
hlfir::EntityWithAttributes actual = Fortran::lower::convertExprToHLFIR(
loc, converter, expr, callContext.symMap, callContext.stmtCtx);
std::optional<mlir::Value> isPresent =
genIsPresentIfArgMaybeAbsent(loc, actual, expr, callContext,
/*passAsAllocatableOrPointer=*/false);
operands.emplace_back(
Fortran::lower::PreparedActualArgument{actual, isPresent});
};
// callback for non-optional arguments
auto prepareOtherArg = [&](const Fortran::lower::SomeExpr &expr,
fir::LowerIntrinsicArgAs lowerAs) {
hlfir::EntityWithAttributes actual = Fortran::lower::convertExprToHLFIR(
loc, converter, expr, callContext.symMap, callContext.stmtCtx);
operands.emplace_back(Fortran::lower::PreparedActualArgument{
actual, /*isPresent=*/std::nullopt});
};
Fortran::lower::prepareCustomIntrinsicArgument(
callContext.procRef, *intrinsic, callContext.resultType,
prepareOptionalArg, prepareOtherArg, converter);
const fir::IntrinsicArgumentLoweringRules *argLowering =
fir::getIntrinsicArgumentLowering(callContext.getProcedureName());
// All of the custom intrinsic elementals with custom handling are pure
// functions
return ElementalIntrinsicCallBuilder{intrinsic, argLowering,
/*isFunction=*/true}
.genElementalCall(operands, /*isImpure=*/false, callContext);
}
// Lower a reference to an intrinsic procedure with custom optional handling
static std::optional<hlfir::EntityWithAttributes>
genCustomIntrinsicRef(const Fortran::evaluate::SpecificIntrinsic *intrinsic,
CallContext &callContext) {
assert(!callContext.isElementalProcWithArrayArgs() &&
"Needs to be run through ElementalIntrinsicCallBuilder first");
mlir::Location loc = callContext.loc;
fir::FirOpBuilder &builder = callContext.getBuilder();
auto &converter = callContext.converter;
auto &stmtCtx = callContext.stmtCtx;
assert(intrinsic && Fortran::lower::intrinsicRequiresCustomOptionalHandling(
callContext.procRef, *intrinsic, converter));
Fortran::lower::PreparedActualArguments loweredActuals;
// callback for optional arguments
auto prepareOptionalArg = [&](const Fortran::lower::SomeExpr &expr) {
hlfir::EntityWithAttributes actual = Fortran::lower::convertExprToHLFIR(
loc, converter, expr, callContext.symMap, callContext.stmtCtx);
mlir::Value isPresent =
genIsPresentIfArgMaybeAbsent(loc, actual, expr, callContext,
/*passAsAllocatableOrPointer*/ false)
.value();
loweredActuals.emplace_back(
Fortran::lower::PreparedActualArgument{actual, {isPresent}});
};
// callback for non-optional arguments
auto prepareOtherArg = [&](const Fortran::lower::SomeExpr &expr,
fir::LowerIntrinsicArgAs lowerAs) {
auto getActualFortranElementType = [&]() -> mlir::Type {
return hlfir::getFortranElementType(converter.genType(expr));
};
hlfir::EntityWithAttributes actual = Fortran::lower::convertExprToHLFIR(
loc, converter, expr, callContext.symMap, callContext.stmtCtx);
std::optional<fir::ExtendedValue> exv;
switch (lowerAs) {
case fir::LowerIntrinsicArgAs::Value:
exv = Fortran::lower::convertToValue(loc, converter, actual, stmtCtx);
break;
case fir::LowerIntrinsicArgAs::Addr:
exv = Fortran::lower::convertToAddress(loc, converter, actual, stmtCtx,
getActualFortranElementType());
break;
case fir::LowerIntrinsicArgAs::Box:
exv = Fortran::lower::convertToBox(loc, converter, actual, stmtCtx,
getActualFortranElementType());
break;
case fir::LowerIntrinsicArgAs::Inquired:
exv = Fortran::lower::translateToExtendedValue(loc, builder, actual,
stmtCtx);
break;
}
if (!exv)
llvm_unreachable("bad switch");
actual = extendedValueToHlfirEntity(loc, builder, exv.value(),
"tmp.custom_intrinsic_arg");
loweredActuals.emplace_back(Fortran::lower::PreparedActualArgument{
actual, /*isPresent=*/std::nullopt});
};
Fortran::lower::prepareCustomIntrinsicArgument(
callContext.procRef, *intrinsic, callContext.resultType,
prepareOptionalArg, prepareOtherArg, converter);
return genCustomIntrinsicRefCore(loweredActuals, intrinsic, callContext);
}
/// Lower an intrinsic procedure reference.
/// \p intrinsic is null if this is an intrinsic module procedure that must be
/// lowered as if it were an intrinsic module procedure (like C_LOC which is a
/// procedure from intrinsic module iso_c_binding). Otherwise, \p intrinsic
/// must not be null.
static std::optional<hlfir::EntityWithAttributes>
genIntrinsicRef(const Fortran::evaluate::SpecificIntrinsic *intrinsic,
CallContext &callContext) {
mlir::Location loc = callContext.loc;
auto &converter = callContext.converter;
if (intrinsic && Fortran::lower::intrinsicRequiresCustomOptionalHandling(
callContext.procRef, *intrinsic, converter)) {
if (callContext.isElementalProcWithArrayArgs())
return genCustomElementalIntrinsicRef(intrinsic, callContext);
return genCustomIntrinsicRef(intrinsic, callContext);
}
Fortran::lower::PreparedActualArguments loweredActuals;
const fir::IntrinsicArgumentLoweringRules *argLowering =
fir::getIntrinsicArgumentLowering(callContext.getProcedureName());
for (const auto &arg : llvm::enumerate(callContext.procRef.arguments())) {
if (!arg.value()) {
// Absent optional.
loweredActuals.push_back(std::nullopt);
continue;
}
auto *expr =
Fortran::evaluate::UnwrapExpr<Fortran::lower::SomeExpr>(arg.value());
if (!expr) {
// TYPE(*) dummy. They are only allowed as argument of a few intrinsics
// that do not take optional arguments: see Fortran 2018 standard C710.
const Fortran::evaluate::Symbol *assumedTypeSym =
arg.value()->GetAssumedTypeDummy();
if (!assumedTypeSym)
fir::emitFatalError(loc,
"expected assumed-type symbol as actual argument");
std::optional<fir::FortranVariableOpInterface> var =
callContext.symMap.lookupVariableDefinition(*assumedTypeSym);
if (!var)
fir::emitFatalError(loc, "assumed-type symbol was not lowered");
assert(
(!argLowering ||
!fir::lowerIntrinsicArgumentAs(*argLowering, arg.index())
.handleDynamicOptional) &&
"TYPE(*) are not expected to appear as optional intrinsic arguments");
loweredActuals.push_back(Fortran::lower::PreparedActualArgument{
hlfir::Entity{*var}, /*isPresent=*/std::nullopt});
continue;
}
auto loweredActual = Fortran::lower::convertExprToHLFIR(
loc, callContext.converter, *expr, callContext.symMap,
callContext.stmtCtx);
std::optional<mlir::Value> isPresent;
if (argLowering) {
fir::ArgLoweringRule argRules =
fir::lowerIntrinsicArgumentAs(*argLowering, arg.index());
if (argRules.handleDynamicOptional)
isPresent =
genIsPresentIfArgMaybeAbsent(loc, loweredActual, *expr, callContext,
/*passAsAllocatableOrPointer=*/false);
}
loweredActuals.push_back(
Fortran::lower::PreparedActualArgument{loweredActual, isPresent});
}
if (callContext.isElementalProcWithArrayArgs()) {
// All intrinsic elemental functions are pure.
const bool isFunction = callContext.resultType.has_value();
return ElementalIntrinsicCallBuilder{intrinsic, argLowering, isFunction}
.genElementalCall(loweredActuals, /*isImpure=*/!isFunction,
callContext);
}
std::optional<hlfir::EntityWithAttributes> result = genHLFIRIntrinsicRefCore(
loweredActuals, intrinsic, argLowering, callContext);
if (result && mlir::isa<hlfir::ExprType>(result->getType())) {
fir::FirOpBuilder *bldr = &callContext.getBuilder();
callContext.stmtCtx.attachCleanup(
[=]() { bldr->create<hlfir::DestroyOp>(loc, *result); });
}
return result;
}
/// Main entry point to lower procedure references, regardless of what they are.
static std::optional<hlfir::EntityWithAttributes>
genProcedureRef(CallContext &callContext) {
mlir::Location loc = callContext.loc;
if (auto *intrinsic = callContext.procRef.proc().GetSpecificIntrinsic())
return genIntrinsicRef(intrinsic, callContext);
// If it is an intrinsic module procedure reference - then treat as
// intrinsic unless it is bind(c) (since implementation is external from
// module).
if (Fortran::lower::isIntrinsicModuleProcRef(callContext.procRef) &&
!callContext.isBindcCall())
return genIntrinsicRef(nullptr, callContext);
if (callContext.isStatementFunctionCall())
return genStmtFunctionRef(loc, callContext.converter, callContext.symMap,
callContext.stmtCtx, callContext.procRef);
Fortran::lower::CallerInterface caller(callContext.procRef,
callContext.converter);
mlir::FunctionType callSiteType = caller.genFunctionType();
const bool isElemental = callContext.isElementalProcWithArrayArgs();
Fortran::lower::PreparedActualArguments loweredActuals;
// Lower the actual arguments
for (const Fortran::lower::CallInterface<
Fortran::lower::CallerInterface>::PassedEntity &arg :
caller.getPassedArguments())
if (const auto *actual = arg.entity) {
const auto *expr = actual->UnwrapExpr();
if (!expr) {
// TYPE(*) actual argument.
const Fortran::evaluate::Symbol *assumedTypeSym =
actual->GetAssumedTypeDummy();
if (!assumedTypeSym)
fir::emitFatalError(
loc, "expected assumed-type symbol as actual argument");
std::optional<fir::FortranVariableOpInterface> var =
callContext.symMap.lookupVariableDefinition(*assumedTypeSym);
if (!var)
fir::emitFatalError(loc, "assumed-type symbol was not lowered");
hlfir::Entity actual{*var};
std::optional<mlir::Value> isPresent;
if (arg.isOptional()) {
// Passing an optional TYPE(*) to an optional TYPE(*). Note that
// TYPE(*) cannot be ALLOCATABLE/POINTER (C709) so there is no
// need to cover the case of passing an ALLOCATABLE/POINTER to an
// OPTIONAL.
fir::FirOpBuilder &builder = callContext.getBuilder();
isPresent =
builder.create<fir::IsPresentOp>(loc, builder.getI1Type(), actual)
.getResult();
}
loweredActuals.push_back(Fortran::lower::PreparedActualArgument{
hlfir::Entity{*var}, isPresent});
continue;
}
if (Fortran::evaluate::UnwrapExpr<Fortran::evaluate::NullPointer>(
*expr)) {
if ((arg.passBy !=
Fortran::lower::CallerInterface::PassEntityBy::MutableBox) &&
(arg.passBy !=
Fortran::lower::CallerInterface::PassEntityBy::BoxProcRef)) {
assert(
arg.isOptional() &&
"NULL must be passed only to pointer, allocatable, or OPTIONAL");
// Trying to lower NULL() outside of any context would lead to
// trouble. NULL() here is equivalent to not providing the
// actual argument.
loweredActuals.emplace_back(std::nullopt);
continue;
}
}
if (isElemental && !arg.hasValueAttribute() &&
Fortran::evaluate::IsVariable(*expr) &&
Fortran::evaluate::HasVectorSubscript(*expr)) {
// Vector subscripted arguments are copied in calls, except in elemental
// calls without VALUE attribute where Fortran 2018 15.5.2.4 point 21
// does not apply and the address of each element must be passed.
hlfir::ElementalAddrOp elementalAddr =
Fortran::lower::convertVectorSubscriptedExprToElementalAddr(
loc, callContext.converter, *expr, callContext.symMap,
callContext.stmtCtx);
loweredActuals.emplace_back(
Fortran::lower::PreparedActualArgument{elementalAddr});
continue;
}
auto loweredActual = Fortran::lower::convertExprToHLFIR(
loc, callContext.converter, *expr, callContext.symMap,
callContext.stmtCtx);
std::optional<mlir::Value> isPresent;
if (arg.isOptional())
isPresent = genIsPresentIfArgMaybeAbsent(
loc, loweredActual, *expr, callContext,
arg.passBy ==
Fortran::lower::CallerInterface::PassEntityBy::MutableBox);
loweredActuals.emplace_back(
Fortran::lower::PreparedActualArgument{loweredActual, isPresent});
} else {
// Optional dummy argument for which there is no actual argument.
loweredActuals.emplace_back(std::nullopt);
}
if (isElemental) {
bool isImpure = false;
if (const Fortran::semantics::Symbol *procSym =
callContext.procRef.proc().GetSymbol())
isImpure = !Fortran::semantics::IsPureProcedure(*procSym);
return ElementalUserCallBuilder{caller, callSiteType}.genElementalCall(
loweredActuals, isImpure, callContext);
}
return genUserCall(loweredActuals, caller, callSiteType, callContext);
}
hlfir::Entity Fortran::lower::PreparedActualArgument::getActual(
mlir::Location loc, fir::FirOpBuilder &builder) const {
if (auto *actualEntity = std::get_if<hlfir::Entity>(&actual)) {
if (oneBasedElementalIndices)
return hlfir::getElementAt(loc, builder, *actualEntity,
*oneBasedElementalIndices);
return *actualEntity;
}
assert(oneBasedElementalIndices && "expect elemental context");
hlfir::ElementalAddrOp elementalAddr =
std::get<hlfir::ElementalAddrOp>(actual);
mlir::IRMapping mapper;
auto alwaysFalse = [](hlfir::ElementalOp) -> bool { return false; };
mlir::Value addr = hlfir::inlineElementalOp(
loc, builder, elementalAddr, *oneBasedElementalIndices, mapper,
/*mustRecursivelyInline=*/alwaysFalse);
assert(elementalAddr.getCleanup().empty() && "no clean-up expected");
elementalAddr.erase();
return hlfir::Entity{addr};
}
bool Fortran::lower::isIntrinsicModuleProcRef(
const Fortran::evaluate::ProcedureRef &procRef) {
const Fortran::semantics::Symbol *symbol = procRef.proc().GetSymbol();
if (!symbol)
return false;
const Fortran::semantics::Symbol *module =
symbol->GetUltimate().owner().GetSymbol();
return module && module->attrs().test(Fortran::semantics::Attr::INTRINSIC);
}
static bool isInWhereMaskedExpression(fir::FirOpBuilder &builder) {
// The MASK of the outer WHERE is not masked itself.
mlir::Operation *op = builder.getRegion().getParentOp();
return op && op->getParentOfType<hlfir::WhereOp>();
}
std::optional<hlfir::EntityWithAttributes> Fortran::lower::convertCallToHLFIR(
mlir::Location loc, Fortran::lower::AbstractConverter &converter,
const evaluate::ProcedureRef &procRef, std::optional<mlir::Type> resultType,
Fortran::lower::SymMap &symMap, Fortran::lower::StatementContext &stmtCtx) {
auto &builder = converter.getFirOpBuilder();
if (resultType && !procRef.IsElemental() &&
isInWhereMaskedExpression(builder) &&
!builder.getRegion().getParentOfType<hlfir::ExactlyOnceOp>()) {
// Non elemental calls inside a where-assignment-stmt must be executed
// exactly once without mask control. Lower them in a special region so that
// this can be enforced whenscheduling forall/where expression evaluations.
Fortran::lower::StatementContext localStmtCtx;
mlir::Type bogusType = builder.getIndexType();
auto exactlyOnce = builder.create<hlfir::ExactlyOnceOp>(loc, bogusType);
mlir::Block *block = builder.createBlock(&exactlyOnce.getBody());
builder.setInsertionPointToStart(block);
CallContext callContext(procRef, resultType, loc, converter, symMap,
localStmtCtx);
std::optional<hlfir::EntityWithAttributes> res =
genProcedureRef(callContext);
assert(res.has_value() && "must be a function");
auto yield = builder.create<hlfir::YieldOp>(loc, *res);
Fortran::lower::genCleanUpInRegionIfAny(loc, builder, yield.getCleanup(),
localStmtCtx);
builder.setInsertionPointAfter(exactlyOnce);
exactlyOnce->getResult(0).setType(res->getType());
if (hlfir::isFortranValue(exactlyOnce.getResult()))
return hlfir::EntityWithAttributes{exactlyOnce.getResult()};
// Create hlfir.declare for the result to satisfy
// hlfir::EntityWithAttributes requirements.
auto [exv, cleanup] = hlfir::translateToExtendedValue(
loc, builder, hlfir::Entity{exactlyOnce});
assert(!cleanup && "resut is a variable");
return hlfir::genDeclare(loc, builder, exv, ".func.pointer.result",
fir::FortranVariableFlagsAttr{});
}
CallContext callContext(procRef, resultType, loc, converter, symMap, stmtCtx);
return genProcedureRef(callContext);
}
void Fortran::lower::convertUserDefinedAssignmentToHLFIR(
mlir::Location loc, Fortran::lower::AbstractConverter &converter,
const evaluate::ProcedureRef &procRef, hlfir::Entity lhs, hlfir::Entity rhs,
Fortran::lower::SymMap &symMap) {
Fortran::lower::StatementContext definedAssignmentContext;
CallContext callContext(procRef, /*resultType=*/std::nullopt, loc, converter,
symMap, definedAssignmentContext);
Fortran::lower::CallerInterface caller(procRef, converter);
mlir::FunctionType callSiteType = caller.genFunctionType();
PreparedActualArgument preparedLhs{lhs, /*isPresent=*/std::nullopt};
PreparedActualArgument preparedRhs{rhs, /*isPresent=*/std::nullopt};
PreparedActualArguments loweredActuals{preparedLhs, preparedRhs};
genUserCall(loweredActuals, caller, callSiteType, callContext);
return;
}