
Part of the coverage-tracking feature, following #107279. In order for DebugLoc coverage testing to work, we firstly have to set annotations for intentionally-empty DebugLocs, and secondly we have to ensure that we do not drop these annotations as we propagate DebugLocs throughout compilation. As the annotations exist as part of the DebugLoc class, and not the underlying DILocation, they will not survive a DebugLoc->DILocation->DebugLoc roundtrip. Therefore this patch modifies a number of places in the compiler to propagate DebugLocs directly rather than via the underlying DILocation. This has no effect on the output of normal builds; it only ensures that during coverage builds, we do not drop incorrectly annotations and therefore create false positives. The bulk of these changes are in replacing DILocation::getMergedLocation(s) with a DebugLoc equivalent, and in changing the IRBuilder to store a DebugLoc directly rather than storing DILocations in its general Metadata array. We also use a new function, `DebugLoc::orElse`, which selects the "best" DebugLoc out of a pair (valid location > annotated > empty), preferring the current DebugLoc on a tie - this encapsulates the existing behaviour at a few sites where we _may_ assign a DebugLoc to an existing instruction, while extending the logic to handle annotation DebugLocs at the same time.
5797 lines
221 KiB
C++
5797 lines
221 KiB
C++
//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// InstructionCombining - Combine instructions to form fewer, simple
|
|
// instructions. This pass does not modify the CFG. This pass is where
|
|
// algebraic simplification happens.
|
|
//
|
|
// This pass combines things like:
|
|
// %Y = add i32 %X, 1
|
|
// %Z = add i32 %Y, 1
|
|
// into:
|
|
// %Z = add i32 %X, 2
|
|
//
|
|
// This is a simple worklist driven algorithm.
|
|
//
|
|
// This pass guarantees that the following canonicalizations are performed on
|
|
// the program:
|
|
// 1. If a binary operator has a constant operand, it is moved to the RHS
|
|
// 2. Bitwise operators with constant operands are always grouped so that
|
|
// shifts are performed first, then or's, then and's, then xor's.
|
|
// 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
|
|
// 4. All cmp instructions on boolean values are replaced with logical ops
|
|
// 5. add X, X is represented as (X*2) => (X << 1)
|
|
// 6. Multiplies with a power-of-two constant argument are transformed into
|
|
// shifts.
|
|
// ... etc.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "InstCombineInternal.h"
|
|
#include "llvm/ADT/APFloat.h"
|
|
#include "llvm/ADT/APInt.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/AssumptionCache.h"
|
|
#include "llvm/Analysis/BasicAliasAnalysis.h"
|
|
#include "llvm/Analysis/BlockFrequencyInfo.h"
|
|
#include "llvm/Analysis/CFG.h"
|
|
#include "llvm/Analysis/ConstantFolding.h"
|
|
#include "llvm/Analysis/GlobalsModRef.h"
|
|
#include "llvm/Analysis/InstructionSimplify.h"
|
|
#include "llvm/Analysis/LastRunTrackingAnalysis.h"
|
|
#include "llvm/Analysis/LazyBlockFrequencyInfo.h"
|
|
#include "llvm/Analysis/MemoryBuiltins.h"
|
|
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
|
|
#include "llvm/Analysis/ProfileSummaryInfo.h"
|
|
#include "llvm/Analysis/TargetFolder.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/Analysis/Utils/Local.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/Analysis/VectorUtils.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/CFG.h"
|
|
#include "llvm/IR/Constant.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DIBuilder.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DebugInfo.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/EHPersonalities.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/GetElementPtrTypeIterator.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/InstrTypes.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Intrinsics.h"
|
|
#include "llvm/IR/Metadata.h"
|
|
#include "llvm/IR/Operator.h"
|
|
#include "llvm/IR/PassManager.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/Use.h"
|
|
#include "llvm/IR/User.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/IR/ValueHandle.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/DebugCounter.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/KnownBits.h"
|
|
#include "llvm/Support/KnownFPClass.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/InstCombine/InstCombine.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <memory>
|
|
#include <optional>
|
|
#include <string>
|
|
#include <utility>
|
|
|
|
#define DEBUG_TYPE "instcombine"
|
|
#include "llvm/Transforms/Utils/InstructionWorklist.h"
|
|
#include <optional>
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::PatternMatch;
|
|
|
|
STATISTIC(NumWorklistIterations,
|
|
"Number of instruction combining iterations performed");
|
|
STATISTIC(NumOneIteration, "Number of functions with one iteration");
|
|
STATISTIC(NumTwoIterations, "Number of functions with two iterations");
|
|
STATISTIC(NumThreeIterations, "Number of functions with three iterations");
|
|
STATISTIC(NumFourOrMoreIterations,
|
|
"Number of functions with four or more iterations");
|
|
|
|
STATISTIC(NumCombined , "Number of insts combined");
|
|
STATISTIC(NumConstProp, "Number of constant folds");
|
|
STATISTIC(NumDeadInst , "Number of dead inst eliminated");
|
|
STATISTIC(NumSunkInst , "Number of instructions sunk");
|
|
STATISTIC(NumExpand, "Number of expansions");
|
|
STATISTIC(NumFactor , "Number of factorizations");
|
|
STATISTIC(NumReassoc , "Number of reassociations");
|
|
DEBUG_COUNTER(VisitCounter, "instcombine-visit",
|
|
"Controls which instructions are visited");
|
|
|
|
static cl::opt<bool>
|
|
EnableCodeSinking("instcombine-code-sinking", cl::desc("Enable code sinking"),
|
|
cl::init(true));
|
|
|
|
static cl::opt<unsigned> MaxSinkNumUsers(
|
|
"instcombine-max-sink-users", cl::init(32),
|
|
cl::desc("Maximum number of undroppable users for instruction sinking"));
|
|
|
|
static cl::opt<unsigned>
|
|
MaxArraySize("instcombine-maxarray-size", cl::init(1024),
|
|
cl::desc("Maximum array size considered when doing a combine"));
|
|
|
|
// FIXME: Remove this flag when it is no longer necessary to convert
|
|
// llvm.dbg.declare to avoid inaccurate debug info. Setting this to false
|
|
// increases variable availability at the cost of accuracy. Variables that
|
|
// cannot be promoted by mem2reg or SROA will be described as living in memory
|
|
// for their entire lifetime. However, passes like DSE and instcombine can
|
|
// delete stores to the alloca, leading to misleading and inaccurate debug
|
|
// information. This flag can be removed when those passes are fixed.
|
|
static cl::opt<unsigned> ShouldLowerDbgDeclare("instcombine-lower-dbg-declare",
|
|
cl::Hidden, cl::init(true));
|
|
|
|
std::optional<Instruction *>
|
|
InstCombiner::targetInstCombineIntrinsic(IntrinsicInst &II) {
|
|
// Handle target specific intrinsics
|
|
if (II.getCalledFunction()->isTargetIntrinsic()) {
|
|
return TTIForTargetIntrinsicsOnly.instCombineIntrinsic(*this, II);
|
|
}
|
|
return std::nullopt;
|
|
}
|
|
|
|
std::optional<Value *> InstCombiner::targetSimplifyDemandedUseBitsIntrinsic(
|
|
IntrinsicInst &II, APInt DemandedMask, KnownBits &Known,
|
|
bool &KnownBitsComputed) {
|
|
// Handle target specific intrinsics
|
|
if (II.getCalledFunction()->isTargetIntrinsic()) {
|
|
return TTIForTargetIntrinsicsOnly.simplifyDemandedUseBitsIntrinsic(
|
|
*this, II, DemandedMask, Known, KnownBitsComputed);
|
|
}
|
|
return std::nullopt;
|
|
}
|
|
|
|
std::optional<Value *> InstCombiner::targetSimplifyDemandedVectorEltsIntrinsic(
|
|
IntrinsicInst &II, APInt DemandedElts, APInt &PoisonElts,
|
|
APInt &PoisonElts2, APInt &PoisonElts3,
|
|
std::function<void(Instruction *, unsigned, APInt, APInt &)>
|
|
SimplifyAndSetOp) {
|
|
// Handle target specific intrinsics
|
|
if (II.getCalledFunction()->isTargetIntrinsic()) {
|
|
return TTIForTargetIntrinsicsOnly.simplifyDemandedVectorEltsIntrinsic(
|
|
*this, II, DemandedElts, PoisonElts, PoisonElts2, PoisonElts3,
|
|
SimplifyAndSetOp);
|
|
}
|
|
return std::nullopt;
|
|
}
|
|
|
|
bool InstCombiner::isValidAddrSpaceCast(unsigned FromAS, unsigned ToAS) const {
|
|
// Approved exception for TTI use: This queries a legality property of the
|
|
// target, not an profitability heuristic. Ideally this should be part of
|
|
// DataLayout instead.
|
|
return TTIForTargetIntrinsicsOnly.isValidAddrSpaceCast(FromAS, ToAS);
|
|
}
|
|
|
|
Value *InstCombinerImpl::EmitGEPOffset(GEPOperator *GEP, bool RewriteGEP) {
|
|
if (!RewriteGEP)
|
|
return llvm::emitGEPOffset(&Builder, DL, GEP);
|
|
|
|
IRBuilderBase::InsertPointGuard Guard(Builder);
|
|
auto *Inst = dyn_cast<Instruction>(GEP);
|
|
if (Inst)
|
|
Builder.SetInsertPoint(Inst);
|
|
|
|
Value *Offset = EmitGEPOffset(GEP);
|
|
// If a non-trivial GEP has other uses, rewrite it to avoid duplicating
|
|
// the offset arithmetic.
|
|
if (Inst && !GEP->hasOneUse() && !GEP->hasAllConstantIndices() &&
|
|
!GEP->getSourceElementType()->isIntegerTy(8)) {
|
|
replaceInstUsesWith(
|
|
*Inst, Builder.CreateGEP(Builder.getInt8Ty(), GEP->getPointerOperand(),
|
|
Offset, "", GEP->getNoWrapFlags()));
|
|
eraseInstFromFunction(*Inst);
|
|
}
|
|
return Offset;
|
|
}
|
|
|
|
/// Legal integers and common types are considered desirable. This is used to
|
|
/// avoid creating instructions with types that may not be supported well by the
|
|
/// the backend.
|
|
/// NOTE: This treats i8, i16 and i32 specially because they are common
|
|
/// types in frontend languages.
|
|
bool InstCombinerImpl::isDesirableIntType(unsigned BitWidth) const {
|
|
switch (BitWidth) {
|
|
case 8:
|
|
case 16:
|
|
case 32:
|
|
return true;
|
|
default:
|
|
return DL.isLegalInteger(BitWidth);
|
|
}
|
|
}
|
|
|
|
/// Return true if it is desirable to convert an integer computation from a
|
|
/// given bit width to a new bit width.
|
|
/// We don't want to convert from a legal or desirable type (like i8) to an
|
|
/// illegal type or from a smaller to a larger illegal type. A width of '1'
|
|
/// is always treated as a desirable type because i1 is a fundamental type in
|
|
/// IR, and there are many specialized optimizations for i1 types.
|
|
/// Common/desirable widths are equally treated as legal to convert to, in
|
|
/// order to open up more combining opportunities.
|
|
bool InstCombinerImpl::shouldChangeType(unsigned FromWidth,
|
|
unsigned ToWidth) const {
|
|
bool FromLegal = FromWidth == 1 || DL.isLegalInteger(FromWidth);
|
|
bool ToLegal = ToWidth == 1 || DL.isLegalInteger(ToWidth);
|
|
|
|
// Convert to desirable widths even if they are not legal types.
|
|
// Only shrink types, to prevent infinite loops.
|
|
if (ToWidth < FromWidth && isDesirableIntType(ToWidth))
|
|
return true;
|
|
|
|
// If this is a legal or desiable integer from type, and the result would be
|
|
// an illegal type, don't do the transformation.
|
|
if ((FromLegal || isDesirableIntType(FromWidth)) && !ToLegal)
|
|
return false;
|
|
|
|
// Otherwise, if both are illegal, do not increase the size of the result. We
|
|
// do allow things like i160 -> i64, but not i64 -> i160.
|
|
if (!FromLegal && !ToLegal && ToWidth > FromWidth)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Return true if it is desirable to convert a computation from 'From' to 'To'.
|
|
/// We don't want to convert from a legal to an illegal type or from a smaller
|
|
/// to a larger illegal type. i1 is always treated as a legal type because it is
|
|
/// a fundamental type in IR, and there are many specialized optimizations for
|
|
/// i1 types.
|
|
bool InstCombinerImpl::shouldChangeType(Type *From, Type *To) const {
|
|
// TODO: This could be extended to allow vectors. Datalayout changes might be
|
|
// needed to properly support that.
|
|
if (!From->isIntegerTy() || !To->isIntegerTy())
|
|
return false;
|
|
|
|
unsigned FromWidth = From->getPrimitiveSizeInBits();
|
|
unsigned ToWidth = To->getPrimitiveSizeInBits();
|
|
return shouldChangeType(FromWidth, ToWidth);
|
|
}
|
|
|
|
// Return true, if No Signed Wrap should be maintained for I.
|
|
// The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
|
|
// where both B and C should be ConstantInts, results in a constant that does
|
|
// not overflow. This function only handles the Add/Sub/Mul opcodes. For
|
|
// all other opcodes, the function conservatively returns false.
|
|
static bool maintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
|
|
auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
|
|
if (!OBO || !OBO->hasNoSignedWrap())
|
|
return false;
|
|
|
|
const APInt *BVal, *CVal;
|
|
if (!match(B, m_APInt(BVal)) || !match(C, m_APInt(CVal)))
|
|
return false;
|
|
|
|
// We reason about Add/Sub/Mul Only.
|
|
bool Overflow = false;
|
|
switch (I.getOpcode()) {
|
|
case Instruction::Add:
|
|
(void)BVal->sadd_ov(*CVal, Overflow);
|
|
break;
|
|
case Instruction::Sub:
|
|
(void)BVal->ssub_ov(*CVal, Overflow);
|
|
break;
|
|
case Instruction::Mul:
|
|
(void)BVal->smul_ov(*CVal, Overflow);
|
|
break;
|
|
default:
|
|
// Conservatively return false for other opcodes.
|
|
return false;
|
|
}
|
|
return !Overflow;
|
|
}
|
|
|
|
static bool hasNoUnsignedWrap(BinaryOperator &I) {
|
|
auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
|
|
return OBO && OBO->hasNoUnsignedWrap();
|
|
}
|
|
|
|
static bool hasNoSignedWrap(BinaryOperator &I) {
|
|
auto *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
|
|
return OBO && OBO->hasNoSignedWrap();
|
|
}
|
|
|
|
/// Conservatively clears subclassOptionalData after a reassociation or
|
|
/// commutation. We preserve fast-math flags when applicable as they can be
|
|
/// preserved.
|
|
static void ClearSubclassDataAfterReassociation(BinaryOperator &I) {
|
|
FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I);
|
|
if (!FPMO) {
|
|
I.clearSubclassOptionalData();
|
|
return;
|
|
}
|
|
|
|
FastMathFlags FMF = I.getFastMathFlags();
|
|
I.clearSubclassOptionalData();
|
|
I.setFastMathFlags(FMF);
|
|
}
|
|
|
|
/// Combine constant operands of associative operations either before or after a
|
|
/// cast to eliminate one of the associative operations:
|
|
/// (op (cast (op X, C2)), C1) --> (cast (op X, op (C1, C2)))
|
|
/// (op (cast (op X, C2)), C1) --> (op (cast X), op (C1, C2))
|
|
static bool simplifyAssocCastAssoc(BinaryOperator *BinOp1,
|
|
InstCombinerImpl &IC) {
|
|
auto *Cast = dyn_cast<CastInst>(BinOp1->getOperand(0));
|
|
if (!Cast || !Cast->hasOneUse())
|
|
return false;
|
|
|
|
// TODO: Enhance logic for other casts and remove this check.
|
|
auto CastOpcode = Cast->getOpcode();
|
|
if (CastOpcode != Instruction::ZExt)
|
|
return false;
|
|
|
|
// TODO: Enhance logic for other BinOps and remove this check.
|
|
if (!BinOp1->isBitwiseLogicOp())
|
|
return false;
|
|
|
|
auto AssocOpcode = BinOp1->getOpcode();
|
|
auto *BinOp2 = dyn_cast<BinaryOperator>(Cast->getOperand(0));
|
|
if (!BinOp2 || !BinOp2->hasOneUse() || BinOp2->getOpcode() != AssocOpcode)
|
|
return false;
|
|
|
|
Constant *C1, *C2;
|
|
if (!match(BinOp1->getOperand(1), m_Constant(C1)) ||
|
|
!match(BinOp2->getOperand(1), m_Constant(C2)))
|
|
return false;
|
|
|
|
// TODO: This assumes a zext cast.
|
|
// Eg, if it was a trunc, we'd cast C1 to the source type because casting C2
|
|
// to the destination type might lose bits.
|
|
|
|
// Fold the constants together in the destination type:
|
|
// (op (cast (op X, C2)), C1) --> (op (cast X), FoldedC)
|
|
const DataLayout &DL = IC.getDataLayout();
|
|
Type *DestTy = C1->getType();
|
|
Constant *CastC2 = ConstantFoldCastOperand(CastOpcode, C2, DestTy, DL);
|
|
if (!CastC2)
|
|
return false;
|
|
Constant *FoldedC = ConstantFoldBinaryOpOperands(AssocOpcode, C1, CastC2, DL);
|
|
if (!FoldedC)
|
|
return false;
|
|
|
|
IC.replaceOperand(*Cast, 0, BinOp2->getOperand(0));
|
|
IC.replaceOperand(*BinOp1, 1, FoldedC);
|
|
BinOp1->dropPoisonGeneratingFlags();
|
|
Cast->dropPoisonGeneratingFlags();
|
|
return true;
|
|
}
|
|
|
|
// Simplifies IntToPtr/PtrToInt RoundTrip Cast.
|
|
// inttoptr ( ptrtoint (x) ) --> x
|
|
Value *InstCombinerImpl::simplifyIntToPtrRoundTripCast(Value *Val) {
|
|
auto *IntToPtr = dyn_cast<IntToPtrInst>(Val);
|
|
if (IntToPtr && DL.getTypeSizeInBits(IntToPtr->getDestTy()) ==
|
|
DL.getTypeSizeInBits(IntToPtr->getSrcTy())) {
|
|
auto *PtrToInt = dyn_cast<PtrToIntInst>(IntToPtr->getOperand(0));
|
|
Type *CastTy = IntToPtr->getDestTy();
|
|
if (PtrToInt &&
|
|
CastTy->getPointerAddressSpace() ==
|
|
PtrToInt->getSrcTy()->getPointerAddressSpace() &&
|
|
DL.getTypeSizeInBits(PtrToInt->getSrcTy()) ==
|
|
DL.getTypeSizeInBits(PtrToInt->getDestTy()))
|
|
return PtrToInt->getOperand(0);
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
/// This performs a few simplifications for operators that are associative or
|
|
/// commutative:
|
|
///
|
|
/// Commutative operators:
|
|
///
|
|
/// 1. Order operands such that they are listed from right (least complex) to
|
|
/// left (most complex). This puts constants before unary operators before
|
|
/// binary operators.
|
|
///
|
|
/// Associative operators:
|
|
///
|
|
/// 2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
|
|
/// 3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
|
|
///
|
|
/// Associative and commutative operators:
|
|
///
|
|
/// 4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
|
|
/// 5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
|
|
/// 6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
|
|
/// if C1 and C2 are constants.
|
|
bool InstCombinerImpl::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
|
|
Instruction::BinaryOps Opcode = I.getOpcode();
|
|
bool Changed = false;
|
|
|
|
do {
|
|
// Order operands such that they are listed from right (least complex) to
|
|
// left (most complex). This puts constants before unary operators before
|
|
// binary operators.
|
|
if (I.isCommutative() && getComplexity(I.getOperand(0)) <
|
|
getComplexity(I.getOperand(1)))
|
|
Changed = !I.swapOperands();
|
|
|
|
if (I.isCommutative()) {
|
|
if (auto Pair = matchSymmetricPair(I.getOperand(0), I.getOperand(1))) {
|
|
replaceOperand(I, 0, Pair->first);
|
|
replaceOperand(I, 1, Pair->second);
|
|
Changed = true;
|
|
}
|
|
}
|
|
|
|
BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
|
|
BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
|
|
|
|
if (I.isAssociative()) {
|
|
// Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
|
|
if (Op0 && Op0->getOpcode() == Opcode) {
|
|
Value *A = Op0->getOperand(0);
|
|
Value *B = Op0->getOperand(1);
|
|
Value *C = I.getOperand(1);
|
|
|
|
// Does "B op C" simplify?
|
|
if (Value *V = simplifyBinOp(Opcode, B, C, SQ.getWithInstruction(&I))) {
|
|
// It simplifies to V. Form "A op V".
|
|
replaceOperand(I, 0, A);
|
|
replaceOperand(I, 1, V);
|
|
bool IsNUW = hasNoUnsignedWrap(I) && hasNoUnsignedWrap(*Op0);
|
|
bool IsNSW = maintainNoSignedWrap(I, B, C) && hasNoSignedWrap(*Op0);
|
|
|
|
// Conservatively clear all optional flags since they may not be
|
|
// preserved by the reassociation. Reset nsw/nuw based on the above
|
|
// analysis.
|
|
ClearSubclassDataAfterReassociation(I);
|
|
|
|
// Note: this is only valid because SimplifyBinOp doesn't look at
|
|
// the operands to Op0.
|
|
if (IsNUW)
|
|
I.setHasNoUnsignedWrap(true);
|
|
|
|
if (IsNSW)
|
|
I.setHasNoSignedWrap(true);
|
|
|
|
Changed = true;
|
|
++NumReassoc;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
|
|
if (Op1 && Op1->getOpcode() == Opcode) {
|
|
Value *A = I.getOperand(0);
|
|
Value *B = Op1->getOperand(0);
|
|
Value *C = Op1->getOperand(1);
|
|
|
|
// Does "A op B" simplify?
|
|
if (Value *V = simplifyBinOp(Opcode, A, B, SQ.getWithInstruction(&I))) {
|
|
// It simplifies to V. Form "V op C".
|
|
replaceOperand(I, 0, V);
|
|
replaceOperand(I, 1, C);
|
|
// Conservatively clear the optional flags, since they may not be
|
|
// preserved by the reassociation.
|
|
ClearSubclassDataAfterReassociation(I);
|
|
Changed = true;
|
|
++NumReassoc;
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (I.isAssociative() && I.isCommutative()) {
|
|
if (simplifyAssocCastAssoc(&I, *this)) {
|
|
Changed = true;
|
|
++NumReassoc;
|
|
continue;
|
|
}
|
|
|
|
// Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
|
|
if (Op0 && Op0->getOpcode() == Opcode) {
|
|
Value *A = Op0->getOperand(0);
|
|
Value *B = Op0->getOperand(1);
|
|
Value *C = I.getOperand(1);
|
|
|
|
// Does "C op A" simplify?
|
|
if (Value *V = simplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
|
|
// It simplifies to V. Form "V op B".
|
|
replaceOperand(I, 0, V);
|
|
replaceOperand(I, 1, B);
|
|
// Conservatively clear the optional flags, since they may not be
|
|
// preserved by the reassociation.
|
|
ClearSubclassDataAfterReassociation(I);
|
|
Changed = true;
|
|
++NumReassoc;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
|
|
if (Op1 && Op1->getOpcode() == Opcode) {
|
|
Value *A = I.getOperand(0);
|
|
Value *B = Op1->getOperand(0);
|
|
Value *C = Op1->getOperand(1);
|
|
|
|
// Does "C op A" simplify?
|
|
if (Value *V = simplifyBinOp(Opcode, C, A, SQ.getWithInstruction(&I))) {
|
|
// It simplifies to V. Form "B op V".
|
|
replaceOperand(I, 0, B);
|
|
replaceOperand(I, 1, V);
|
|
// Conservatively clear the optional flags, since they may not be
|
|
// preserved by the reassociation.
|
|
ClearSubclassDataAfterReassociation(I);
|
|
Changed = true;
|
|
++NumReassoc;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
|
|
// if C1 and C2 are constants.
|
|
Value *A, *B;
|
|
Constant *C1, *C2, *CRes;
|
|
if (Op0 && Op1 &&
|
|
Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
|
|
match(Op0, m_OneUse(m_BinOp(m_Value(A), m_Constant(C1)))) &&
|
|
match(Op1, m_OneUse(m_BinOp(m_Value(B), m_Constant(C2)))) &&
|
|
(CRes = ConstantFoldBinaryOpOperands(Opcode, C1, C2, DL))) {
|
|
bool IsNUW = hasNoUnsignedWrap(I) &&
|
|
hasNoUnsignedWrap(*Op0) &&
|
|
hasNoUnsignedWrap(*Op1);
|
|
BinaryOperator *NewBO = (IsNUW && Opcode == Instruction::Add) ?
|
|
BinaryOperator::CreateNUW(Opcode, A, B) :
|
|
BinaryOperator::Create(Opcode, A, B);
|
|
|
|
if (isa<FPMathOperator>(NewBO)) {
|
|
FastMathFlags Flags = I.getFastMathFlags() &
|
|
Op0->getFastMathFlags() &
|
|
Op1->getFastMathFlags();
|
|
NewBO->setFastMathFlags(Flags);
|
|
}
|
|
InsertNewInstWith(NewBO, I.getIterator());
|
|
NewBO->takeName(Op1);
|
|
replaceOperand(I, 0, NewBO);
|
|
replaceOperand(I, 1, CRes);
|
|
// Conservatively clear the optional flags, since they may not be
|
|
// preserved by the reassociation.
|
|
ClearSubclassDataAfterReassociation(I);
|
|
if (IsNUW)
|
|
I.setHasNoUnsignedWrap(true);
|
|
|
|
Changed = true;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// No further simplifications.
|
|
return Changed;
|
|
} while (true);
|
|
}
|
|
|
|
/// Return whether "X LOp (Y ROp Z)" is always equal to
|
|
/// "(X LOp Y) ROp (X LOp Z)".
|
|
static bool leftDistributesOverRight(Instruction::BinaryOps LOp,
|
|
Instruction::BinaryOps ROp) {
|
|
// X & (Y | Z) <--> (X & Y) | (X & Z)
|
|
// X & (Y ^ Z) <--> (X & Y) ^ (X & Z)
|
|
if (LOp == Instruction::And)
|
|
return ROp == Instruction::Or || ROp == Instruction::Xor;
|
|
|
|
// X | (Y & Z) <--> (X | Y) & (X | Z)
|
|
if (LOp == Instruction::Or)
|
|
return ROp == Instruction::And;
|
|
|
|
// X * (Y + Z) <--> (X * Y) + (X * Z)
|
|
// X * (Y - Z) <--> (X * Y) - (X * Z)
|
|
if (LOp == Instruction::Mul)
|
|
return ROp == Instruction::Add || ROp == Instruction::Sub;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Return whether "(X LOp Y) ROp Z" is always equal to
|
|
/// "(X ROp Z) LOp (Y ROp Z)".
|
|
static bool rightDistributesOverLeft(Instruction::BinaryOps LOp,
|
|
Instruction::BinaryOps ROp) {
|
|
if (Instruction::isCommutative(ROp))
|
|
return leftDistributesOverRight(ROp, LOp);
|
|
|
|
// (X {&|^} Y) >> Z <--> (X >> Z) {&|^} (Y >> Z) for all shifts.
|
|
return Instruction::isBitwiseLogicOp(LOp) && Instruction::isShift(ROp);
|
|
|
|
// TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
|
|
// but this requires knowing that the addition does not overflow and other
|
|
// such subtleties.
|
|
}
|
|
|
|
/// This function returns identity value for given opcode, which can be used to
|
|
/// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1).
|
|
static Value *getIdentityValue(Instruction::BinaryOps Opcode, Value *V) {
|
|
if (isa<Constant>(V))
|
|
return nullptr;
|
|
|
|
return ConstantExpr::getBinOpIdentity(Opcode, V->getType());
|
|
}
|
|
|
|
/// This function predicates factorization using distributive laws. By default,
|
|
/// it just returns the 'Op' inputs. But for special-cases like
|
|
/// 'add(shl(X, 5), ...)', this function will have TopOpcode == Instruction::Add
|
|
/// and Op = shl(X, 5). The 'shl' is treated as the more general 'mul X, 32' to
|
|
/// allow more factorization opportunities.
|
|
static Instruction::BinaryOps
|
|
getBinOpsForFactorization(Instruction::BinaryOps TopOpcode, BinaryOperator *Op,
|
|
Value *&LHS, Value *&RHS, BinaryOperator *OtherOp) {
|
|
assert(Op && "Expected a binary operator");
|
|
LHS = Op->getOperand(0);
|
|
RHS = Op->getOperand(1);
|
|
if (TopOpcode == Instruction::Add || TopOpcode == Instruction::Sub) {
|
|
Constant *C;
|
|
if (match(Op, m_Shl(m_Value(), m_ImmConstant(C)))) {
|
|
// X << C --> X * (1 << C)
|
|
RHS = ConstantFoldBinaryInstruction(
|
|
Instruction::Shl, ConstantInt::get(Op->getType(), 1), C);
|
|
assert(RHS && "Constant folding of immediate constants failed");
|
|
return Instruction::Mul;
|
|
}
|
|
// TODO: We can add other conversions e.g. shr => div etc.
|
|
}
|
|
if (Instruction::isBitwiseLogicOp(TopOpcode)) {
|
|
if (OtherOp && OtherOp->getOpcode() == Instruction::AShr &&
|
|
match(Op, m_LShr(m_NonNegative(), m_Value()))) {
|
|
// lshr nneg C, X --> ashr nneg C, X
|
|
return Instruction::AShr;
|
|
}
|
|
}
|
|
return Op->getOpcode();
|
|
}
|
|
|
|
/// This tries to simplify binary operations by factorizing out common terms
|
|
/// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
|
|
static Value *tryFactorization(BinaryOperator &I, const SimplifyQuery &SQ,
|
|
InstCombiner::BuilderTy &Builder,
|
|
Instruction::BinaryOps InnerOpcode, Value *A,
|
|
Value *B, Value *C, Value *D) {
|
|
assert(A && B && C && D && "All values must be provided");
|
|
|
|
Value *V = nullptr;
|
|
Value *RetVal = nullptr;
|
|
Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
|
|
Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
|
|
|
|
// Does "X op' Y" always equal "Y op' X"?
|
|
bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
|
|
|
|
// Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
|
|
if (leftDistributesOverRight(InnerOpcode, TopLevelOpcode)) {
|
|
// Does the instruction have the form "(A op' B) op (A op' D)" or, in the
|
|
// commutative case, "(A op' B) op (C op' A)"?
|
|
if (A == C || (InnerCommutative && A == D)) {
|
|
if (A != C)
|
|
std::swap(C, D);
|
|
// Consider forming "A op' (B op D)".
|
|
// If "B op D" simplifies then it can be formed with no cost.
|
|
V = simplifyBinOp(TopLevelOpcode, B, D, SQ.getWithInstruction(&I));
|
|
|
|
// If "B op D" doesn't simplify then only go on if one of the existing
|
|
// operations "A op' B" and "C op' D" will be zapped as no longer used.
|
|
if (!V && (LHS->hasOneUse() || RHS->hasOneUse()))
|
|
V = Builder.CreateBinOp(TopLevelOpcode, B, D, RHS->getName());
|
|
if (V)
|
|
RetVal = Builder.CreateBinOp(InnerOpcode, A, V);
|
|
}
|
|
}
|
|
|
|
// Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
|
|
if (!RetVal && rightDistributesOverLeft(TopLevelOpcode, InnerOpcode)) {
|
|
// Does the instruction have the form "(A op' B) op (C op' B)" or, in the
|
|
// commutative case, "(A op' B) op (B op' D)"?
|
|
if (B == D || (InnerCommutative && B == C)) {
|
|
if (B != D)
|
|
std::swap(C, D);
|
|
// Consider forming "(A op C) op' B".
|
|
// If "A op C" simplifies then it can be formed with no cost.
|
|
V = simplifyBinOp(TopLevelOpcode, A, C, SQ.getWithInstruction(&I));
|
|
|
|
// If "A op C" doesn't simplify then only go on if one of the existing
|
|
// operations "A op' B" and "C op' D" will be zapped as no longer used.
|
|
if (!V && (LHS->hasOneUse() || RHS->hasOneUse()))
|
|
V = Builder.CreateBinOp(TopLevelOpcode, A, C, LHS->getName());
|
|
if (V)
|
|
RetVal = Builder.CreateBinOp(InnerOpcode, V, B);
|
|
}
|
|
}
|
|
|
|
if (!RetVal)
|
|
return nullptr;
|
|
|
|
++NumFactor;
|
|
RetVal->takeName(&I);
|
|
|
|
// Try to add no-overflow flags to the final value.
|
|
if (isa<BinaryOperator>(RetVal)) {
|
|
bool HasNSW = false;
|
|
bool HasNUW = false;
|
|
if (isa<OverflowingBinaryOperator>(&I)) {
|
|
HasNSW = I.hasNoSignedWrap();
|
|
HasNUW = I.hasNoUnsignedWrap();
|
|
}
|
|
if (auto *LOBO = dyn_cast<OverflowingBinaryOperator>(LHS)) {
|
|
HasNSW &= LOBO->hasNoSignedWrap();
|
|
HasNUW &= LOBO->hasNoUnsignedWrap();
|
|
}
|
|
|
|
if (auto *ROBO = dyn_cast<OverflowingBinaryOperator>(RHS)) {
|
|
HasNSW &= ROBO->hasNoSignedWrap();
|
|
HasNUW &= ROBO->hasNoUnsignedWrap();
|
|
}
|
|
|
|
if (TopLevelOpcode == Instruction::Add && InnerOpcode == Instruction::Mul) {
|
|
// We can propagate 'nsw' if we know that
|
|
// %Y = mul nsw i16 %X, C
|
|
// %Z = add nsw i16 %Y, %X
|
|
// =>
|
|
// %Z = mul nsw i16 %X, C+1
|
|
//
|
|
// iff C+1 isn't INT_MIN
|
|
const APInt *CInt;
|
|
if (match(V, m_APInt(CInt)) && !CInt->isMinSignedValue())
|
|
cast<Instruction>(RetVal)->setHasNoSignedWrap(HasNSW);
|
|
|
|
// nuw can be propagated with any constant or nuw value.
|
|
cast<Instruction>(RetVal)->setHasNoUnsignedWrap(HasNUW);
|
|
}
|
|
}
|
|
return RetVal;
|
|
}
|
|
|
|
// If `I` has one Const operand and the other matches `(ctpop (not x))`,
|
|
// replace `(ctpop (not x))` with `(sub nuw nsw BitWidth(x), (ctpop x))`.
|
|
// This is only useful is the new subtract can fold so we only handle the
|
|
// following cases:
|
|
// 1) (add/sub/disjoint_or C, (ctpop (not x))
|
|
// -> (add/sub/disjoint_or C', (ctpop x))
|
|
// 1) (cmp pred C, (ctpop (not x))
|
|
// -> (cmp pred C', (ctpop x))
|
|
Instruction *InstCombinerImpl::tryFoldInstWithCtpopWithNot(Instruction *I) {
|
|
unsigned Opc = I->getOpcode();
|
|
unsigned ConstIdx = 1;
|
|
switch (Opc) {
|
|
default:
|
|
return nullptr;
|
|
// (ctpop (not x)) <-> (sub nuw nsw BitWidth(x) - (ctpop x))
|
|
// We can fold the BitWidth(x) with add/sub/icmp as long the other operand
|
|
// is constant.
|
|
case Instruction::Sub:
|
|
ConstIdx = 0;
|
|
break;
|
|
case Instruction::ICmp:
|
|
// Signed predicates aren't correct in some edge cases like for i2 types, as
|
|
// well since (ctpop x) is known [0, log2(BitWidth(x))] almost all signed
|
|
// comparisons against it are simplfied to unsigned.
|
|
if (cast<ICmpInst>(I)->isSigned())
|
|
return nullptr;
|
|
break;
|
|
case Instruction::Or:
|
|
if (!match(I, m_DisjointOr(m_Value(), m_Value())))
|
|
return nullptr;
|
|
[[fallthrough]];
|
|
case Instruction::Add:
|
|
break;
|
|
}
|
|
|
|
Value *Op;
|
|
// Find ctpop.
|
|
if (!match(I->getOperand(1 - ConstIdx),
|
|
m_OneUse(m_Intrinsic<Intrinsic::ctpop>(m_Value(Op)))))
|
|
return nullptr;
|
|
|
|
Constant *C;
|
|
// Check other operand is ImmConstant.
|
|
if (!match(I->getOperand(ConstIdx), m_ImmConstant(C)))
|
|
return nullptr;
|
|
|
|
Type *Ty = Op->getType();
|
|
Constant *BitWidthC = ConstantInt::get(Ty, Ty->getScalarSizeInBits());
|
|
// Need extra check for icmp. Note if this check is true, it generally means
|
|
// the icmp will simplify to true/false.
|
|
if (Opc == Instruction::ICmp && !cast<ICmpInst>(I)->isEquality()) {
|
|
Constant *Cmp =
|
|
ConstantFoldCompareInstOperands(ICmpInst::ICMP_UGT, C, BitWidthC, DL);
|
|
if (!Cmp || !Cmp->isZeroValue())
|
|
return nullptr;
|
|
}
|
|
|
|
// Check we can invert `(not x)` for free.
|
|
bool Consumes = false;
|
|
if (!isFreeToInvert(Op, Op->hasOneUse(), Consumes) || !Consumes)
|
|
return nullptr;
|
|
Value *NotOp = getFreelyInverted(Op, Op->hasOneUse(), &Builder);
|
|
assert(NotOp != nullptr &&
|
|
"Desync between isFreeToInvert and getFreelyInverted");
|
|
|
|
Value *CtpopOfNotOp = Builder.CreateIntrinsic(Ty, Intrinsic::ctpop, NotOp);
|
|
|
|
Value *R = nullptr;
|
|
|
|
// Do the transformation here to avoid potentially introducing an infinite
|
|
// loop.
|
|
switch (Opc) {
|
|
case Instruction::Sub:
|
|
R = Builder.CreateAdd(CtpopOfNotOp, ConstantExpr::getSub(C, BitWidthC));
|
|
break;
|
|
case Instruction::Or:
|
|
case Instruction::Add:
|
|
R = Builder.CreateSub(ConstantExpr::getAdd(C, BitWidthC), CtpopOfNotOp);
|
|
break;
|
|
case Instruction::ICmp:
|
|
R = Builder.CreateICmp(cast<ICmpInst>(I)->getSwappedPredicate(),
|
|
CtpopOfNotOp, ConstantExpr::getSub(BitWidthC, C));
|
|
break;
|
|
default:
|
|
llvm_unreachable("Unhandled Opcode");
|
|
}
|
|
assert(R != nullptr);
|
|
return replaceInstUsesWith(*I, R);
|
|
}
|
|
|
|
// (Binop1 (Binop2 (logic_shift X, C), C1), (logic_shift Y, C))
|
|
// IFF
|
|
// 1) the logic_shifts match
|
|
// 2) either both binops are binops and one is `and` or
|
|
// BinOp1 is `and`
|
|
// (logic_shift (inv_logic_shift C1, C), C) == C1 or
|
|
//
|
|
// -> (logic_shift (Binop1 (Binop2 X, inv_logic_shift(C1, C)), Y), C)
|
|
//
|
|
// (Binop1 (Binop2 (logic_shift X, Amt), Mask), (logic_shift Y, Amt))
|
|
// IFF
|
|
// 1) the logic_shifts match
|
|
// 2) BinOp1 == BinOp2 (if BinOp == `add`, then also requires `shl`).
|
|
//
|
|
// -> (BinOp (logic_shift (BinOp X, Y)), Mask)
|
|
//
|
|
// (Binop1 (Binop2 (arithmetic_shift X, Amt), Mask), (arithmetic_shift Y, Amt))
|
|
// IFF
|
|
// 1) Binop1 is bitwise logical operator `and`, `or` or `xor`
|
|
// 2) Binop2 is `not`
|
|
//
|
|
// -> (arithmetic_shift Binop1((not X), Y), Amt)
|
|
|
|
Instruction *InstCombinerImpl::foldBinOpShiftWithShift(BinaryOperator &I) {
|
|
const DataLayout &DL = I.getDataLayout();
|
|
auto IsValidBinOpc = [](unsigned Opc) {
|
|
switch (Opc) {
|
|
default:
|
|
return false;
|
|
case Instruction::And:
|
|
case Instruction::Or:
|
|
case Instruction::Xor:
|
|
case Instruction::Add:
|
|
// Skip Sub as we only match constant masks which will canonicalize to use
|
|
// add.
|
|
return true;
|
|
}
|
|
};
|
|
|
|
// Check if we can distribute binop arbitrarily. `add` + `lshr` has extra
|
|
// constraints.
|
|
auto IsCompletelyDistributable = [](unsigned BinOpc1, unsigned BinOpc2,
|
|
unsigned ShOpc) {
|
|
assert(ShOpc != Instruction::AShr);
|
|
return (BinOpc1 != Instruction::Add && BinOpc2 != Instruction::Add) ||
|
|
ShOpc == Instruction::Shl;
|
|
};
|
|
|
|
auto GetInvShift = [](unsigned ShOpc) {
|
|
assert(ShOpc != Instruction::AShr);
|
|
return ShOpc == Instruction::LShr ? Instruction::Shl : Instruction::LShr;
|
|
};
|
|
|
|
auto CanDistributeBinops = [&](unsigned BinOpc1, unsigned BinOpc2,
|
|
unsigned ShOpc, Constant *CMask,
|
|
Constant *CShift) {
|
|
// If the BinOp1 is `and` we don't need to check the mask.
|
|
if (BinOpc1 == Instruction::And)
|
|
return true;
|
|
|
|
// For all other possible transfers we need complete distributable
|
|
// binop/shift (anything but `add` + `lshr`).
|
|
if (!IsCompletelyDistributable(BinOpc1, BinOpc2, ShOpc))
|
|
return false;
|
|
|
|
// If BinOp2 is `and`, any mask works (this only really helps for non-splat
|
|
// vecs, otherwise the mask will be simplified and the following check will
|
|
// handle it).
|
|
if (BinOpc2 == Instruction::And)
|
|
return true;
|
|
|
|
// Otherwise, need mask that meets the below requirement.
|
|
// (logic_shift (inv_logic_shift Mask, ShAmt), ShAmt) == Mask
|
|
Constant *MaskInvShift =
|
|
ConstantFoldBinaryOpOperands(GetInvShift(ShOpc), CMask, CShift, DL);
|
|
return ConstantFoldBinaryOpOperands(ShOpc, MaskInvShift, CShift, DL) ==
|
|
CMask;
|
|
};
|
|
|
|
auto MatchBinOp = [&](unsigned ShOpnum) -> Instruction * {
|
|
Constant *CMask, *CShift;
|
|
Value *X, *Y, *ShiftedX, *Mask, *Shift;
|
|
if (!match(I.getOperand(ShOpnum),
|
|
m_OneUse(m_Shift(m_Value(Y), m_Value(Shift)))))
|
|
return nullptr;
|
|
if (!match(I.getOperand(1 - ShOpnum),
|
|
m_c_BinOp(m_CombineAnd(
|
|
m_OneUse(m_Shift(m_Value(X), m_Specific(Shift))),
|
|
m_Value(ShiftedX)),
|
|
m_Value(Mask))))
|
|
return nullptr;
|
|
// Make sure we are matching instruction shifts and not ConstantExpr
|
|
auto *IY = dyn_cast<Instruction>(I.getOperand(ShOpnum));
|
|
auto *IX = dyn_cast<Instruction>(ShiftedX);
|
|
if (!IY || !IX)
|
|
return nullptr;
|
|
|
|
// LHS and RHS need same shift opcode
|
|
unsigned ShOpc = IY->getOpcode();
|
|
if (ShOpc != IX->getOpcode())
|
|
return nullptr;
|
|
|
|
// Make sure binop is real instruction and not ConstantExpr
|
|
auto *BO2 = dyn_cast<Instruction>(I.getOperand(1 - ShOpnum));
|
|
if (!BO2)
|
|
return nullptr;
|
|
|
|
unsigned BinOpc = BO2->getOpcode();
|
|
// Make sure we have valid binops.
|
|
if (!IsValidBinOpc(I.getOpcode()) || !IsValidBinOpc(BinOpc))
|
|
return nullptr;
|
|
|
|
if (ShOpc == Instruction::AShr) {
|
|
if (Instruction::isBitwiseLogicOp(I.getOpcode()) &&
|
|
BinOpc == Instruction::Xor && match(Mask, m_AllOnes())) {
|
|
Value *NotX = Builder.CreateNot(X);
|
|
Value *NewBinOp = Builder.CreateBinOp(I.getOpcode(), Y, NotX);
|
|
return BinaryOperator::Create(
|
|
static_cast<Instruction::BinaryOps>(ShOpc), NewBinOp, Shift);
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
// If BinOp1 == BinOp2 and it's bitwise or shl with add, then just
|
|
// distribute to drop the shift irrelevant of constants.
|
|
if (BinOpc == I.getOpcode() &&
|
|
IsCompletelyDistributable(I.getOpcode(), BinOpc, ShOpc)) {
|
|
Value *NewBinOp2 = Builder.CreateBinOp(I.getOpcode(), X, Y);
|
|
Value *NewBinOp1 = Builder.CreateBinOp(
|
|
static_cast<Instruction::BinaryOps>(ShOpc), NewBinOp2, Shift);
|
|
return BinaryOperator::Create(I.getOpcode(), NewBinOp1, Mask);
|
|
}
|
|
|
|
// Otherwise we can only distribute by constant shifting the mask, so
|
|
// ensure we have constants.
|
|
if (!match(Shift, m_ImmConstant(CShift)))
|
|
return nullptr;
|
|
if (!match(Mask, m_ImmConstant(CMask)))
|
|
return nullptr;
|
|
|
|
// Check if we can distribute the binops.
|
|
if (!CanDistributeBinops(I.getOpcode(), BinOpc, ShOpc, CMask, CShift))
|
|
return nullptr;
|
|
|
|
Constant *NewCMask =
|
|
ConstantFoldBinaryOpOperands(GetInvShift(ShOpc), CMask, CShift, DL);
|
|
Value *NewBinOp2 = Builder.CreateBinOp(
|
|
static_cast<Instruction::BinaryOps>(BinOpc), X, NewCMask);
|
|
Value *NewBinOp1 = Builder.CreateBinOp(I.getOpcode(), Y, NewBinOp2);
|
|
return BinaryOperator::Create(static_cast<Instruction::BinaryOps>(ShOpc),
|
|
NewBinOp1, CShift);
|
|
};
|
|
|
|
if (Instruction *R = MatchBinOp(0))
|
|
return R;
|
|
return MatchBinOp(1);
|
|
}
|
|
|
|
// (Binop (zext C), (select C, T, F))
|
|
// -> (select C, (binop 1, T), (binop 0, F))
|
|
//
|
|
// (Binop (sext C), (select C, T, F))
|
|
// -> (select C, (binop -1, T), (binop 0, F))
|
|
//
|
|
// Attempt to simplify binary operations into a select with folded args, when
|
|
// one operand of the binop is a select instruction and the other operand is a
|
|
// zext/sext extension, whose value is the select condition.
|
|
Instruction *
|
|
InstCombinerImpl::foldBinOpOfSelectAndCastOfSelectCondition(BinaryOperator &I) {
|
|
// TODO: this simplification may be extended to any speculatable instruction,
|
|
// not just binops, and would possibly be handled better in FoldOpIntoSelect.
|
|
Instruction::BinaryOps Opc = I.getOpcode();
|
|
Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
|
|
Value *A, *CondVal, *TrueVal, *FalseVal;
|
|
Value *CastOp;
|
|
|
|
auto MatchSelectAndCast = [&](Value *CastOp, Value *SelectOp) {
|
|
return match(CastOp, m_ZExtOrSExt(m_Value(A))) &&
|
|
A->getType()->getScalarSizeInBits() == 1 &&
|
|
match(SelectOp, m_Select(m_Value(CondVal), m_Value(TrueVal),
|
|
m_Value(FalseVal)));
|
|
};
|
|
|
|
// Make sure one side of the binop is a select instruction, and the other is a
|
|
// zero/sign extension operating on a i1.
|
|
if (MatchSelectAndCast(LHS, RHS))
|
|
CastOp = LHS;
|
|
else if (MatchSelectAndCast(RHS, LHS))
|
|
CastOp = RHS;
|
|
else
|
|
return nullptr;
|
|
|
|
auto NewFoldedConst = [&](bool IsTrueArm, Value *V) {
|
|
bool IsCastOpRHS = (CastOp == RHS);
|
|
bool IsZExt = isa<ZExtInst>(CastOp);
|
|
Constant *C;
|
|
|
|
if (IsTrueArm) {
|
|
C = Constant::getNullValue(V->getType());
|
|
} else if (IsZExt) {
|
|
unsigned BitWidth = V->getType()->getScalarSizeInBits();
|
|
C = Constant::getIntegerValue(V->getType(), APInt(BitWidth, 1));
|
|
} else {
|
|
C = Constant::getAllOnesValue(V->getType());
|
|
}
|
|
|
|
return IsCastOpRHS ? Builder.CreateBinOp(Opc, V, C)
|
|
: Builder.CreateBinOp(Opc, C, V);
|
|
};
|
|
|
|
// If the value used in the zext/sext is the select condition, or the negated
|
|
// of the select condition, the binop can be simplified.
|
|
if (CondVal == A) {
|
|
Value *NewTrueVal = NewFoldedConst(false, TrueVal);
|
|
return SelectInst::Create(CondVal, NewTrueVal,
|
|
NewFoldedConst(true, FalseVal));
|
|
}
|
|
|
|
if (match(A, m_Not(m_Specific(CondVal)))) {
|
|
Value *NewTrueVal = NewFoldedConst(true, TrueVal);
|
|
return SelectInst::Create(CondVal, NewTrueVal,
|
|
NewFoldedConst(false, FalseVal));
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
Value *InstCombinerImpl::tryFactorizationFolds(BinaryOperator &I) {
|
|
Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
|
|
BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
|
|
BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
|
|
Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
|
|
Value *A, *B, *C, *D;
|
|
Instruction::BinaryOps LHSOpcode, RHSOpcode;
|
|
|
|
if (Op0)
|
|
LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B, Op1);
|
|
if (Op1)
|
|
RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D, Op0);
|
|
|
|
// The instruction has the form "(A op' B) op (C op' D)". Try to factorize
|
|
// a common term.
|
|
if (Op0 && Op1 && LHSOpcode == RHSOpcode)
|
|
if (Value *V = tryFactorization(I, SQ, Builder, LHSOpcode, A, B, C, D))
|
|
return V;
|
|
|
|
// The instruction has the form "(A op' B) op (C)". Try to factorize common
|
|
// term.
|
|
if (Op0)
|
|
if (Value *Ident = getIdentityValue(LHSOpcode, RHS))
|
|
if (Value *V =
|
|
tryFactorization(I, SQ, Builder, LHSOpcode, A, B, RHS, Ident))
|
|
return V;
|
|
|
|
// The instruction has the form "(B) op (C op' D)". Try to factorize common
|
|
// term.
|
|
if (Op1)
|
|
if (Value *Ident = getIdentityValue(RHSOpcode, LHS))
|
|
if (Value *V =
|
|
tryFactorization(I, SQ, Builder, RHSOpcode, LHS, Ident, C, D))
|
|
return V;
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// This tries to simplify binary operations which some other binary operation
|
|
/// distributes over either by factorizing out common terms
|
|
/// (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this results in
|
|
/// simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is a win).
|
|
/// Returns the simplified value, or null if it didn't simplify.
|
|
Value *InstCombinerImpl::foldUsingDistributiveLaws(BinaryOperator &I) {
|
|
Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
|
|
BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
|
|
BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
|
|
Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
|
|
|
|
// Factorization.
|
|
if (Value *R = tryFactorizationFolds(I))
|
|
return R;
|
|
|
|
// Expansion.
|
|
if (Op0 && rightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
|
|
// The instruction has the form "(A op' B) op C". See if expanding it out
|
|
// to "(A op C) op' (B op C)" results in simplifications.
|
|
Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
|
|
Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
|
|
|
|
// Disable the use of undef because it's not safe to distribute undef.
|
|
auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef();
|
|
Value *L = simplifyBinOp(TopLevelOpcode, A, C, SQDistributive);
|
|
Value *R = simplifyBinOp(TopLevelOpcode, B, C, SQDistributive);
|
|
|
|
// Do "A op C" and "B op C" both simplify?
|
|
if (L && R) {
|
|
// They do! Return "L op' R".
|
|
++NumExpand;
|
|
C = Builder.CreateBinOp(InnerOpcode, L, R);
|
|
C->takeName(&I);
|
|
return C;
|
|
}
|
|
|
|
// Does "A op C" simplify to the identity value for the inner opcode?
|
|
if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
|
|
// They do! Return "B op C".
|
|
++NumExpand;
|
|
C = Builder.CreateBinOp(TopLevelOpcode, B, C);
|
|
C->takeName(&I);
|
|
return C;
|
|
}
|
|
|
|
// Does "B op C" simplify to the identity value for the inner opcode?
|
|
if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
|
|
// They do! Return "A op C".
|
|
++NumExpand;
|
|
C = Builder.CreateBinOp(TopLevelOpcode, A, C);
|
|
C->takeName(&I);
|
|
return C;
|
|
}
|
|
}
|
|
|
|
if (Op1 && leftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
|
|
// The instruction has the form "A op (B op' C)". See if expanding it out
|
|
// to "(A op B) op' (A op C)" results in simplifications.
|
|
Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
|
|
Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
|
|
|
|
// Disable the use of undef because it's not safe to distribute undef.
|
|
auto SQDistributive = SQ.getWithInstruction(&I).getWithoutUndef();
|
|
Value *L = simplifyBinOp(TopLevelOpcode, A, B, SQDistributive);
|
|
Value *R = simplifyBinOp(TopLevelOpcode, A, C, SQDistributive);
|
|
|
|
// Do "A op B" and "A op C" both simplify?
|
|
if (L && R) {
|
|
// They do! Return "L op' R".
|
|
++NumExpand;
|
|
A = Builder.CreateBinOp(InnerOpcode, L, R);
|
|
A->takeName(&I);
|
|
return A;
|
|
}
|
|
|
|
// Does "A op B" simplify to the identity value for the inner opcode?
|
|
if (L && L == ConstantExpr::getBinOpIdentity(InnerOpcode, L->getType())) {
|
|
// They do! Return "A op C".
|
|
++NumExpand;
|
|
A = Builder.CreateBinOp(TopLevelOpcode, A, C);
|
|
A->takeName(&I);
|
|
return A;
|
|
}
|
|
|
|
// Does "A op C" simplify to the identity value for the inner opcode?
|
|
if (R && R == ConstantExpr::getBinOpIdentity(InnerOpcode, R->getType())) {
|
|
// They do! Return "A op B".
|
|
++NumExpand;
|
|
A = Builder.CreateBinOp(TopLevelOpcode, A, B);
|
|
A->takeName(&I);
|
|
return A;
|
|
}
|
|
}
|
|
|
|
return SimplifySelectsFeedingBinaryOp(I, LHS, RHS);
|
|
}
|
|
|
|
static std::optional<std::pair<Value *, Value *>>
|
|
matchSymmetricPhiNodesPair(PHINode *LHS, PHINode *RHS) {
|
|
if (LHS->getParent() != RHS->getParent())
|
|
return std::nullopt;
|
|
|
|
if (LHS->getNumIncomingValues() < 2)
|
|
return std::nullopt;
|
|
|
|
if (!equal(LHS->blocks(), RHS->blocks()))
|
|
return std::nullopt;
|
|
|
|
Value *L0 = LHS->getIncomingValue(0);
|
|
Value *R0 = RHS->getIncomingValue(0);
|
|
|
|
for (unsigned I = 1, E = LHS->getNumIncomingValues(); I != E; ++I) {
|
|
Value *L1 = LHS->getIncomingValue(I);
|
|
Value *R1 = RHS->getIncomingValue(I);
|
|
|
|
if ((L0 == L1 && R0 == R1) || (L0 == R1 && R0 == L1))
|
|
continue;
|
|
|
|
return std::nullopt;
|
|
}
|
|
|
|
return std::optional(std::pair(L0, R0));
|
|
}
|
|
|
|
std::optional<std::pair<Value *, Value *>>
|
|
InstCombinerImpl::matchSymmetricPair(Value *LHS, Value *RHS) {
|
|
Instruction *LHSInst = dyn_cast<Instruction>(LHS);
|
|
Instruction *RHSInst = dyn_cast<Instruction>(RHS);
|
|
if (!LHSInst || !RHSInst || LHSInst->getOpcode() != RHSInst->getOpcode())
|
|
return std::nullopt;
|
|
switch (LHSInst->getOpcode()) {
|
|
case Instruction::PHI:
|
|
return matchSymmetricPhiNodesPair(cast<PHINode>(LHS), cast<PHINode>(RHS));
|
|
case Instruction::Select: {
|
|
Value *Cond = LHSInst->getOperand(0);
|
|
Value *TrueVal = LHSInst->getOperand(1);
|
|
Value *FalseVal = LHSInst->getOperand(2);
|
|
if (Cond == RHSInst->getOperand(0) && TrueVal == RHSInst->getOperand(2) &&
|
|
FalseVal == RHSInst->getOperand(1))
|
|
return std::pair(TrueVal, FalseVal);
|
|
return std::nullopt;
|
|
}
|
|
case Instruction::Call: {
|
|
// Match min(a, b) and max(a, b)
|
|
MinMaxIntrinsic *LHSMinMax = dyn_cast<MinMaxIntrinsic>(LHSInst);
|
|
MinMaxIntrinsic *RHSMinMax = dyn_cast<MinMaxIntrinsic>(RHSInst);
|
|
if (LHSMinMax && RHSMinMax &&
|
|
LHSMinMax->getPredicate() ==
|
|
ICmpInst::getSwappedPredicate(RHSMinMax->getPredicate()) &&
|
|
((LHSMinMax->getLHS() == RHSMinMax->getLHS() &&
|
|
LHSMinMax->getRHS() == RHSMinMax->getRHS()) ||
|
|
(LHSMinMax->getLHS() == RHSMinMax->getRHS() &&
|
|
LHSMinMax->getRHS() == RHSMinMax->getLHS())))
|
|
return std::pair(LHSMinMax->getLHS(), LHSMinMax->getRHS());
|
|
return std::nullopt;
|
|
}
|
|
default:
|
|
return std::nullopt;
|
|
}
|
|
}
|
|
|
|
Value *InstCombinerImpl::SimplifySelectsFeedingBinaryOp(BinaryOperator &I,
|
|
Value *LHS,
|
|
Value *RHS) {
|
|
Value *A, *B, *C, *D, *E, *F;
|
|
bool LHSIsSelect = match(LHS, m_Select(m_Value(A), m_Value(B), m_Value(C)));
|
|
bool RHSIsSelect = match(RHS, m_Select(m_Value(D), m_Value(E), m_Value(F)));
|
|
if (!LHSIsSelect && !RHSIsSelect)
|
|
return nullptr;
|
|
|
|
FastMathFlags FMF;
|
|
BuilderTy::FastMathFlagGuard Guard(Builder);
|
|
if (isa<FPMathOperator>(&I)) {
|
|
FMF = I.getFastMathFlags();
|
|
Builder.setFastMathFlags(FMF);
|
|
}
|
|
|
|
Instruction::BinaryOps Opcode = I.getOpcode();
|
|
SimplifyQuery Q = SQ.getWithInstruction(&I);
|
|
|
|
Value *Cond, *True = nullptr, *False = nullptr;
|
|
|
|
// Special-case for add/negate combination. Replace the zero in the negation
|
|
// with the trailing add operand:
|
|
// (Cond ? TVal : -N) + Z --> Cond ? True : (Z - N)
|
|
// (Cond ? -N : FVal) + Z --> Cond ? (Z - N) : False
|
|
auto foldAddNegate = [&](Value *TVal, Value *FVal, Value *Z) -> Value * {
|
|
// We need an 'add' and exactly 1 arm of the select to have been simplified.
|
|
if (Opcode != Instruction::Add || (!True && !False) || (True && False))
|
|
return nullptr;
|
|
|
|
Value *N;
|
|
if (True && match(FVal, m_Neg(m_Value(N)))) {
|
|
Value *Sub = Builder.CreateSub(Z, N);
|
|
return Builder.CreateSelect(Cond, True, Sub, I.getName());
|
|
}
|
|
if (False && match(TVal, m_Neg(m_Value(N)))) {
|
|
Value *Sub = Builder.CreateSub(Z, N);
|
|
return Builder.CreateSelect(Cond, Sub, False, I.getName());
|
|
}
|
|
return nullptr;
|
|
};
|
|
|
|
if (LHSIsSelect && RHSIsSelect && A == D) {
|
|
// (A ? B : C) op (A ? E : F) -> A ? (B op E) : (C op F)
|
|
Cond = A;
|
|
True = simplifyBinOp(Opcode, B, E, FMF, Q);
|
|
False = simplifyBinOp(Opcode, C, F, FMF, Q);
|
|
|
|
if (LHS->hasOneUse() && RHS->hasOneUse()) {
|
|
if (False && !True)
|
|
True = Builder.CreateBinOp(Opcode, B, E);
|
|
else if (True && !False)
|
|
False = Builder.CreateBinOp(Opcode, C, F);
|
|
}
|
|
} else if (LHSIsSelect && LHS->hasOneUse()) {
|
|
// (A ? B : C) op Y -> A ? (B op Y) : (C op Y)
|
|
Cond = A;
|
|
True = simplifyBinOp(Opcode, B, RHS, FMF, Q);
|
|
False = simplifyBinOp(Opcode, C, RHS, FMF, Q);
|
|
if (Value *NewSel = foldAddNegate(B, C, RHS))
|
|
return NewSel;
|
|
} else if (RHSIsSelect && RHS->hasOneUse()) {
|
|
// X op (D ? E : F) -> D ? (X op E) : (X op F)
|
|
Cond = D;
|
|
True = simplifyBinOp(Opcode, LHS, E, FMF, Q);
|
|
False = simplifyBinOp(Opcode, LHS, F, FMF, Q);
|
|
if (Value *NewSel = foldAddNegate(E, F, LHS))
|
|
return NewSel;
|
|
}
|
|
|
|
if (!True || !False)
|
|
return nullptr;
|
|
|
|
Value *SI = Builder.CreateSelect(Cond, True, False);
|
|
SI->takeName(&I);
|
|
return SI;
|
|
}
|
|
|
|
/// Freely adapt every user of V as-if V was changed to !V.
|
|
/// WARNING: only if canFreelyInvertAllUsersOf() said this can be done.
|
|
void InstCombinerImpl::freelyInvertAllUsersOf(Value *I, Value *IgnoredUser) {
|
|
assert(!isa<Constant>(I) && "Shouldn't invert users of constant");
|
|
for (User *U : make_early_inc_range(I->users())) {
|
|
if (U == IgnoredUser)
|
|
continue; // Don't consider this user.
|
|
switch (cast<Instruction>(U)->getOpcode()) {
|
|
case Instruction::Select: {
|
|
auto *SI = cast<SelectInst>(U);
|
|
SI->swapValues();
|
|
SI->swapProfMetadata();
|
|
break;
|
|
}
|
|
case Instruction::Br: {
|
|
BranchInst *BI = cast<BranchInst>(U);
|
|
BI->swapSuccessors(); // swaps prof metadata too
|
|
if (BPI)
|
|
BPI->swapSuccEdgesProbabilities(BI->getParent());
|
|
break;
|
|
}
|
|
case Instruction::Xor:
|
|
replaceInstUsesWith(cast<Instruction>(*U), I);
|
|
// Add to worklist for DCE.
|
|
addToWorklist(cast<Instruction>(U));
|
|
break;
|
|
default:
|
|
llvm_unreachable("Got unexpected user - out of sync with "
|
|
"canFreelyInvertAllUsersOf() ?");
|
|
}
|
|
}
|
|
|
|
// Update pre-existing debug value uses.
|
|
SmallVector<DbgValueInst *, 4> DbgValues;
|
|
SmallVector<DbgVariableRecord *, 4> DbgVariableRecords;
|
|
llvm::findDbgValues(DbgValues, I, &DbgVariableRecords);
|
|
|
|
auto InvertDbgValueUse = [&](auto *DbgVal) {
|
|
SmallVector<uint64_t, 1> Ops = {dwarf::DW_OP_not};
|
|
for (unsigned Idx = 0, End = DbgVal->getNumVariableLocationOps();
|
|
Idx != End; ++Idx)
|
|
if (DbgVal->getVariableLocationOp(Idx) == I)
|
|
DbgVal->setExpression(
|
|
DIExpression::appendOpsToArg(DbgVal->getExpression(), Ops, Idx));
|
|
};
|
|
|
|
for (DbgValueInst *DVI : DbgValues)
|
|
InvertDbgValueUse(DVI);
|
|
|
|
for (DbgVariableRecord *DVR : DbgVariableRecords)
|
|
InvertDbgValueUse(DVR);
|
|
}
|
|
|
|
/// Given a 'sub' instruction, return the RHS of the instruction if the LHS is a
|
|
/// constant zero (which is the 'negate' form).
|
|
Value *InstCombinerImpl::dyn_castNegVal(Value *V) const {
|
|
Value *NegV;
|
|
if (match(V, m_Neg(m_Value(NegV))))
|
|
return NegV;
|
|
|
|
// Constants can be considered to be negated values if they can be folded.
|
|
if (ConstantInt *C = dyn_cast<ConstantInt>(V))
|
|
return ConstantExpr::getNeg(C);
|
|
|
|
if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
|
|
if (C->getType()->getElementType()->isIntegerTy())
|
|
return ConstantExpr::getNeg(C);
|
|
|
|
if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
|
|
for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
|
|
Constant *Elt = CV->getAggregateElement(i);
|
|
if (!Elt)
|
|
return nullptr;
|
|
|
|
if (isa<UndefValue>(Elt))
|
|
continue;
|
|
|
|
if (!isa<ConstantInt>(Elt))
|
|
return nullptr;
|
|
}
|
|
return ConstantExpr::getNeg(CV);
|
|
}
|
|
|
|
// Negate integer vector splats.
|
|
if (auto *CV = dyn_cast<Constant>(V))
|
|
if (CV->getType()->isVectorTy() &&
|
|
CV->getType()->getScalarType()->isIntegerTy() && CV->getSplatValue())
|
|
return ConstantExpr::getNeg(CV);
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
// Try to fold:
|
|
// 1) (fp_binop ({s|u}itofp x), ({s|u}itofp y))
|
|
// -> ({s|u}itofp (int_binop x, y))
|
|
// 2) (fp_binop ({s|u}itofp x), FpC)
|
|
// -> ({s|u}itofp (int_binop x, (fpto{s|u}i FpC)))
|
|
//
|
|
// Assuming the sign of the cast for x/y is `OpsFromSigned`.
|
|
Instruction *InstCombinerImpl::foldFBinOpOfIntCastsFromSign(
|
|
BinaryOperator &BO, bool OpsFromSigned, std::array<Value *, 2> IntOps,
|
|
Constant *Op1FpC, SmallVectorImpl<WithCache<const Value *>> &OpsKnown) {
|
|
|
|
Type *FPTy = BO.getType();
|
|
Type *IntTy = IntOps[0]->getType();
|
|
|
|
unsigned IntSz = IntTy->getScalarSizeInBits();
|
|
// This is the maximum number of inuse bits by the integer where the int -> fp
|
|
// casts are exact.
|
|
unsigned MaxRepresentableBits =
|
|
APFloat::semanticsPrecision(FPTy->getScalarType()->getFltSemantics());
|
|
|
|
// Preserve known number of leading bits. This can allow us to trivial nsw/nuw
|
|
// checks later on.
|
|
unsigned NumUsedLeadingBits[2] = {IntSz, IntSz};
|
|
|
|
// NB: This only comes up if OpsFromSigned is true, so there is no need to
|
|
// cache if between calls to `foldFBinOpOfIntCastsFromSign`.
|
|
auto IsNonZero = [&](unsigned OpNo) -> bool {
|
|
if (OpsKnown[OpNo].hasKnownBits() &&
|
|
OpsKnown[OpNo].getKnownBits(SQ).isNonZero())
|
|
return true;
|
|
return isKnownNonZero(IntOps[OpNo], SQ);
|
|
};
|
|
|
|
auto IsNonNeg = [&](unsigned OpNo) -> bool {
|
|
// NB: This matches the impl in ValueTracking, we just try to use cached
|
|
// knownbits here. If we ever start supporting WithCache for
|
|
// `isKnownNonNegative`, change this to an explicit call.
|
|
return OpsKnown[OpNo].getKnownBits(SQ).isNonNegative();
|
|
};
|
|
|
|
// Check if we know for certain that ({s|u}itofp op) is exact.
|
|
auto IsValidPromotion = [&](unsigned OpNo) -> bool {
|
|
// Can we treat this operand as the desired sign?
|
|
if (OpsFromSigned != isa<SIToFPInst>(BO.getOperand(OpNo)) &&
|
|
!IsNonNeg(OpNo))
|
|
return false;
|
|
|
|
// If fp precision >= bitwidth(op) then its exact.
|
|
// NB: This is slightly conservative for `sitofp`. For signed conversion, we
|
|
// can handle `MaxRepresentableBits == IntSz - 1` as the sign bit will be
|
|
// handled specially. We can't, however, increase the bound arbitrarily for
|
|
// `sitofp` as for larger sizes, it won't sign extend.
|
|
if (MaxRepresentableBits < IntSz) {
|
|
// Otherwise if its signed cast check that fp precisions >= bitwidth(op) -
|
|
// numSignBits(op).
|
|
// TODO: If we add support for `WithCache` in `ComputeNumSignBits`, change
|
|
// `IntOps[OpNo]` arguments to `KnownOps[OpNo]`.
|
|
if (OpsFromSigned)
|
|
NumUsedLeadingBits[OpNo] = IntSz - ComputeNumSignBits(IntOps[OpNo]);
|
|
// Finally for unsigned check that fp precision >= bitwidth(op) -
|
|
// numLeadingZeros(op).
|
|
else {
|
|
NumUsedLeadingBits[OpNo] =
|
|
IntSz - OpsKnown[OpNo].getKnownBits(SQ).countMinLeadingZeros();
|
|
}
|
|
}
|
|
// NB: We could also check if op is known to be a power of 2 or zero (which
|
|
// will always be representable). Its unlikely, however, that is we are
|
|
// unable to bound op in any way we will be able to pass the overflow checks
|
|
// later on.
|
|
|
|
if (MaxRepresentableBits < NumUsedLeadingBits[OpNo])
|
|
return false;
|
|
// Signed + Mul also requires that op is non-zero to avoid -0 cases.
|
|
return !OpsFromSigned || BO.getOpcode() != Instruction::FMul ||
|
|
IsNonZero(OpNo);
|
|
};
|
|
|
|
// If we have a constant rhs, see if we can losslessly convert it to an int.
|
|
if (Op1FpC != nullptr) {
|
|
// Signed + Mul req non-zero
|
|
if (OpsFromSigned && BO.getOpcode() == Instruction::FMul &&
|
|
!match(Op1FpC, m_NonZeroFP()))
|
|
return nullptr;
|
|
|
|
Constant *Op1IntC = ConstantFoldCastOperand(
|
|
OpsFromSigned ? Instruction::FPToSI : Instruction::FPToUI, Op1FpC,
|
|
IntTy, DL);
|
|
if (Op1IntC == nullptr)
|
|
return nullptr;
|
|
if (ConstantFoldCastOperand(OpsFromSigned ? Instruction::SIToFP
|
|
: Instruction::UIToFP,
|
|
Op1IntC, FPTy, DL) != Op1FpC)
|
|
return nullptr;
|
|
|
|
// First try to keep sign of cast the same.
|
|
IntOps[1] = Op1IntC;
|
|
}
|
|
|
|
// Ensure lhs/rhs integer types match.
|
|
if (IntTy != IntOps[1]->getType())
|
|
return nullptr;
|
|
|
|
if (Op1FpC == nullptr) {
|
|
if (!IsValidPromotion(1))
|
|
return nullptr;
|
|
}
|
|
if (!IsValidPromotion(0))
|
|
return nullptr;
|
|
|
|
// Final we check if the integer version of the binop will not overflow.
|
|
BinaryOperator::BinaryOps IntOpc;
|
|
// Because of the precision check, we can often rule out overflows.
|
|
bool NeedsOverflowCheck = true;
|
|
// Try to conservatively rule out overflow based on the already done precision
|
|
// checks.
|
|
unsigned OverflowMaxOutputBits = OpsFromSigned ? 2 : 1;
|
|
unsigned OverflowMaxCurBits =
|
|
std::max(NumUsedLeadingBits[0], NumUsedLeadingBits[1]);
|
|
bool OutputSigned = OpsFromSigned;
|
|
switch (BO.getOpcode()) {
|
|
case Instruction::FAdd:
|
|
IntOpc = Instruction::Add;
|
|
OverflowMaxOutputBits += OverflowMaxCurBits;
|
|
break;
|
|
case Instruction::FSub:
|
|
IntOpc = Instruction::Sub;
|
|
OverflowMaxOutputBits += OverflowMaxCurBits;
|
|
break;
|
|
case Instruction::FMul:
|
|
IntOpc = Instruction::Mul;
|
|
OverflowMaxOutputBits += OverflowMaxCurBits * 2;
|
|
break;
|
|
default:
|
|
llvm_unreachable("Unsupported binop");
|
|
}
|
|
// The precision check may have already ruled out overflow.
|
|
if (OverflowMaxOutputBits < IntSz) {
|
|
NeedsOverflowCheck = false;
|
|
// We can bound unsigned overflow from sub to in range signed value (this is
|
|
// what allows us to avoid the overflow check for sub).
|
|
if (IntOpc == Instruction::Sub)
|
|
OutputSigned = true;
|
|
}
|
|
|
|
// Precision check did not rule out overflow, so need to check.
|
|
// TODO: If we add support for `WithCache` in `willNotOverflow`, change
|
|
// `IntOps[...]` arguments to `KnownOps[...]`.
|
|
if (NeedsOverflowCheck &&
|
|
!willNotOverflow(IntOpc, IntOps[0], IntOps[1], BO, OutputSigned))
|
|
return nullptr;
|
|
|
|
Value *IntBinOp = Builder.CreateBinOp(IntOpc, IntOps[0], IntOps[1]);
|
|
if (auto *IntBO = dyn_cast<BinaryOperator>(IntBinOp)) {
|
|
IntBO->setHasNoSignedWrap(OutputSigned);
|
|
IntBO->setHasNoUnsignedWrap(!OutputSigned);
|
|
}
|
|
if (OutputSigned)
|
|
return new SIToFPInst(IntBinOp, FPTy);
|
|
return new UIToFPInst(IntBinOp, FPTy);
|
|
}
|
|
|
|
// Try to fold:
|
|
// 1) (fp_binop ({s|u}itofp x), ({s|u}itofp y))
|
|
// -> ({s|u}itofp (int_binop x, y))
|
|
// 2) (fp_binop ({s|u}itofp x), FpC)
|
|
// -> ({s|u}itofp (int_binop x, (fpto{s|u}i FpC)))
|
|
Instruction *InstCombinerImpl::foldFBinOpOfIntCasts(BinaryOperator &BO) {
|
|
std::array<Value *, 2> IntOps = {nullptr, nullptr};
|
|
Constant *Op1FpC = nullptr;
|
|
// Check for:
|
|
// 1) (binop ({s|u}itofp x), ({s|u}itofp y))
|
|
// 2) (binop ({s|u}itofp x), FpC)
|
|
if (!match(BO.getOperand(0), m_SIToFP(m_Value(IntOps[0]))) &&
|
|
!match(BO.getOperand(0), m_UIToFP(m_Value(IntOps[0]))))
|
|
return nullptr;
|
|
|
|
if (!match(BO.getOperand(1), m_Constant(Op1FpC)) &&
|
|
!match(BO.getOperand(1), m_SIToFP(m_Value(IntOps[1]))) &&
|
|
!match(BO.getOperand(1), m_UIToFP(m_Value(IntOps[1]))))
|
|
return nullptr;
|
|
|
|
// Cache KnownBits a bit to potentially save some analysis.
|
|
SmallVector<WithCache<const Value *>, 2> OpsKnown = {IntOps[0], IntOps[1]};
|
|
|
|
// Try treating x/y as coming from both `uitofp` and `sitofp`. There are
|
|
// different constraints depending on the sign of the cast.
|
|
// NB: `(uitofp nneg X)` == `(sitofp nneg X)`.
|
|
if (Instruction *R = foldFBinOpOfIntCastsFromSign(BO, /*OpsFromSigned=*/false,
|
|
IntOps, Op1FpC, OpsKnown))
|
|
return R;
|
|
return foldFBinOpOfIntCastsFromSign(BO, /*OpsFromSigned=*/true, IntOps,
|
|
Op1FpC, OpsKnown);
|
|
}
|
|
|
|
/// A binop with a constant operand and a sign-extended boolean operand may be
|
|
/// converted into a select of constants by applying the binary operation to
|
|
/// the constant with the two possible values of the extended boolean (0 or -1).
|
|
Instruction *InstCombinerImpl::foldBinopOfSextBoolToSelect(BinaryOperator &BO) {
|
|
// TODO: Handle non-commutative binop (constant is operand 0).
|
|
// TODO: Handle zext.
|
|
// TODO: Peek through 'not' of cast.
|
|
Value *BO0 = BO.getOperand(0);
|
|
Value *BO1 = BO.getOperand(1);
|
|
Value *X;
|
|
Constant *C;
|
|
if (!match(BO0, m_SExt(m_Value(X))) || !match(BO1, m_ImmConstant(C)) ||
|
|
!X->getType()->isIntOrIntVectorTy(1))
|
|
return nullptr;
|
|
|
|
// bo (sext i1 X), C --> select X, (bo -1, C), (bo 0, C)
|
|
Constant *Ones = ConstantInt::getAllOnesValue(BO.getType());
|
|
Constant *Zero = ConstantInt::getNullValue(BO.getType());
|
|
Value *TVal = Builder.CreateBinOp(BO.getOpcode(), Ones, C);
|
|
Value *FVal = Builder.CreateBinOp(BO.getOpcode(), Zero, C);
|
|
return SelectInst::Create(X, TVal, FVal);
|
|
}
|
|
|
|
static Value *simplifyOperationIntoSelectOperand(Instruction &I, SelectInst *SI,
|
|
bool IsTrueArm) {
|
|
SmallVector<Value *> Ops;
|
|
for (Value *Op : I.operands()) {
|
|
Value *V = nullptr;
|
|
if (Op == SI) {
|
|
V = IsTrueArm ? SI->getTrueValue() : SI->getFalseValue();
|
|
} else if (match(SI->getCondition(),
|
|
m_SpecificICmp(IsTrueArm ? ICmpInst::ICMP_EQ
|
|
: ICmpInst::ICMP_NE,
|
|
m_Specific(Op), m_Value(V))) &&
|
|
isGuaranteedNotToBeUndefOrPoison(V)) {
|
|
// Pass
|
|
} else {
|
|
V = Op;
|
|
}
|
|
Ops.push_back(V);
|
|
}
|
|
|
|
return simplifyInstructionWithOperands(&I, Ops, I.getDataLayout());
|
|
}
|
|
|
|
static Value *foldOperationIntoSelectOperand(Instruction &I, SelectInst *SI,
|
|
Value *NewOp, InstCombiner &IC) {
|
|
Instruction *Clone = I.clone();
|
|
Clone->replaceUsesOfWith(SI, NewOp);
|
|
Clone->dropUBImplyingAttrsAndMetadata();
|
|
IC.InsertNewInstBefore(Clone, I.getIterator());
|
|
return Clone;
|
|
}
|
|
|
|
Instruction *InstCombinerImpl::FoldOpIntoSelect(Instruction &Op, SelectInst *SI,
|
|
bool FoldWithMultiUse) {
|
|
// Don't modify shared select instructions unless set FoldWithMultiUse
|
|
if (!SI->hasOneUse() && !FoldWithMultiUse)
|
|
return nullptr;
|
|
|
|
Value *TV = SI->getTrueValue();
|
|
Value *FV = SI->getFalseValue();
|
|
|
|
// Bool selects with constant operands can be folded to logical ops.
|
|
if (SI->getType()->isIntOrIntVectorTy(1))
|
|
return nullptr;
|
|
|
|
// Test if a FCmpInst instruction is used exclusively by a select as
|
|
// part of a minimum or maximum operation. If so, refrain from doing
|
|
// any other folding. This helps out other analyses which understand
|
|
// non-obfuscated minimum and maximum idioms. And in this case, at
|
|
// least one of the comparison operands has at least one user besides
|
|
// the compare (the select), which would often largely negate the
|
|
// benefit of folding anyway.
|
|
if (auto *CI = dyn_cast<FCmpInst>(SI->getCondition())) {
|
|
if (CI->hasOneUse()) {
|
|
Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1);
|
|
if (((TV == Op0 && FV == Op1) || (FV == Op0 && TV == Op1)) &&
|
|
!CI->isCommutative())
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
// Make sure that one of the select arms folds successfully.
|
|
Value *NewTV = simplifyOperationIntoSelectOperand(Op, SI, /*IsTrueArm=*/true);
|
|
Value *NewFV =
|
|
simplifyOperationIntoSelectOperand(Op, SI, /*IsTrueArm=*/false);
|
|
if (!NewTV && !NewFV)
|
|
return nullptr;
|
|
|
|
// Create an instruction for the arm that did not fold.
|
|
if (!NewTV)
|
|
NewTV = foldOperationIntoSelectOperand(Op, SI, TV, *this);
|
|
if (!NewFV)
|
|
NewFV = foldOperationIntoSelectOperand(Op, SI, FV, *this);
|
|
return SelectInst::Create(SI->getCondition(), NewTV, NewFV, "", nullptr, SI);
|
|
}
|
|
|
|
static Value *simplifyInstructionWithPHI(Instruction &I, PHINode *PN,
|
|
Value *InValue, BasicBlock *InBB,
|
|
const DataLayout &DL,
|
|
const SimplifyQuery SQ) {
|
|
// NB: It is a precondition of this transform that the operands be
|
|
// phi translatable!
|
|
SmallVector<Value *> Ops;
|
|
for (Value *Op : I.operands()) {
|
|
if (Op == PN)
|
|
Ops.push_back(InValue);
|
|
else
|
|
Ops.push_back(Op->DoPHITranslation(PN->getParent(), InBB));
|
|
}
|
|
|
|
// Don't consider the simplification successful if we get back a constant
|
|
// expression. That's just an instruction in hiding.
|
|
// Also reject the case where we simplify back to the phi node. We wouldn't
|
|
// be able to remove it in that case.
|
|
Value *NewVal = simplifyInstructionWithOperands(
|
|
&I, Ops, SQ.getWithInstruction(InBB->getTerminator()));
|
|
if (NewVal && NewVal != PN && !match(NewVal, m_ConstantExpr()))
|
|
return NewVal;
|
|
|
|
// Check if incoming PHI value can be replaced with constant
|
|
// based on implied condition.
|
|
BranchInst *TerminatorBI = dyn_cast<BranchInst>(InBB->getTerminator());
|
|
const ICmpInst *ICmp = dyn_cast<ICmpInst>(&I);
|
|
if (TerminatorBI && TerminatorBI->isConditional() &&
|
|
TerminatorBI->getSuccessor(0) != TerminatorBI->getSuccessor(1) && ICmp) {
|
|
bool LHSIsTrue = TerminatorBI->getSuccessor(0) == PN->getParent();
|
|
std::optional<bool> ImpliedCond = isImpliedCondition(
|
|
TerminatorBI->getCondition(), ICmp->getCmpPredicate(), Ops[0], Ops[1],
|
|
DL, LHSIsTrue);
|
|
if (ImpliedCond)
|
|
return ConstantInt::getBool(I.getType(), ImpliedCond.value());
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
Instruction *InstCombinerImpl::foldOpIntoPhi(Instruction &I, PHINode *PN,
|
|
bool AllowMultipleUses) {
|
|
unsigned NumPHIValues = PN->getNumIncomingValues();
|
|
if (NumPHIValues == 0)
|
|
return nullptr;
|
|
|
|
// We normally only transform phis with a single use. However, if a PHI has
|
|
// multiple uses and they are all the same operation, we can fold *all* of the
|
|
// uses into the PHI.
|
|
bool OneUse = PN->hasOneUse();
|
|
bool IdenticalUsers = false;
|
|
if (!AllowMultipleUses && !OneUse) {
|
|
// Walk the use list for the instruction, comparing them to I.
|
|
for (User *U : PN->users()) {
|
|
Instruction *UI = cast<Instruction>(U);
|
|
if (UI != &I && !I.isIdenticalTo(UI))
|
|
return nullptr;
|
|
}
|
|
// Otherwise, we can replace *all* users with the new PHI we form.
|
|
IdenticalUsers = true;
|
|
}
|
|
|
|
// Check that all operands are phi-translatable.
|
|
for (Value *Op : I.operands()) {
|
|
if (Op == PN)
|
|
continue;
|
|
|
|
// Non-instructions never require phi-translation.
|
|
auto *I = dyn_cast<Instruction>(Op);
|
|
if (!I)
|
|
continue;
|
|
|
|
// Phi-translate can handle phi nodes in the same block.
|
|
if (isa<PHINode>(I))
|
|
if (I->getParent() == PN->getParent())
|
|
continue;
|
|
|
|
// Operand dominates the block, no phi-translation necessary.
|
|
if (DT.dominates(I, PN->getParent()))
|
|
continue;
|
|
|
|
// Not phi-translatable, bail out.
|
|
return nullptr;
|
|
}
|
|
|
|
// Check to see whether the instruction can be folded into each phi operand.
|
|
// If there is one operand that does not fold, remember the BB it is in.
|
|
SmallVector<Value *> NewPhiValues;
|
|
SmallVector<unsigned int> OpsToMoveUseToIncomingBB;
|
|
bool SeenNonSimplifiedInVal = false;
|
|
for (unsigned i = 0; i != NumPHIValues; ++i) {
|
|
Value *InVal = PN->getIncomingValue(i);
|
|
BasicBlock *InBB = PN->getIncomingBlock(i);
|
|
|
|
if (auto *NewVal = simplifyInstructionWithPHI(I, PN, InVal, InBB, DL, SQ)) {
|
|
NewPhiValues.push_back(NewVal);
|
|
continue;
|
|
}
|
|
|
|
// Handle some cases that can't be fully simplified, but where we know that
|
|
// the two instructions will fold into one.
|
|
auto WillFold = [&]() {
|
|
if (!InVal->hasUseList() || !InVal->hasOneUser())
|
|
return false;
|
|
|
|
// icmp of ucmp/scmp with constant will fold to icmp.
|
|
const APInt *Ignored;
|
|
if (isa<CmpIntrinsic>(InVal) &&
|
|
match(&I, m_ICmp(m_Specific(PN), m_APInt(Ignored))))
|
|
return true;
|
|
|
|
// icmp eq zext(bool), 0 will fold to !bool.
|
|
if (isa<ZExtInst>(InVal) &&
|
|
cast<ZExtInst>(InVal)->getSrcTy()->isIntOrIntVectorTy(1) &&
|
|
match(&I,
|
|
m_SpecificICmp(ICmpInst::ICMP_EQ, m_Specific(PN), m_Zero())))
|
|
return true;
|
|
|
|
return false;
|
|
};
|
|
|
|
if (WillFold()) {
|
|
OpsToMoveUseToIncomingBB.push_back(i);
|
|
NewPhiValues.push_back(nullptr);
|
|
continue;
|
|
}
|
|
|
|
if (!OneUse && !IdenticalUsers)
|
|
return nullptr;
|
|
|
|
if (SeenNonSimplifiedInVal)
|
|
return nullptr; // More than one non-simplified value.
|
|
SeenNonSimplifiedInVal = true;
|
|
|
|
// If there is exactly one non-simplified value, we can insert a copy of the
|
|
// operation in that block. However, if this is a critical edge, we would
|
|
// be inserting the computation on some other paths (e.g. inside a loop).
|
|
// Only do this if the pred block is unconditionally branching into the phi
|
|
// block. Also, make sure that the pred block is not dead code.
|
|
BranchInst *BI = dyn_cast<BranchInst>(InBB->getTerminator());
|
|
if (!BI || !BI->isUnconditional() || !DT.isReachableFromEntry(InBB))
|
|
return nullptr;
|
|
|
|
NewPhiValues.push_back(nullptr);
|
|
OpsToMoveUseToIncomingBB.push_back(i);
|
|
|
|
// If the InVal is an invoke at the end of the pred block, then we can't
|
|
// insert a computation after it without breaking the edge.
|
|
if (isa<InvokeInst>(InVal))
|
|
if (cast<Instruction>(InVal)->getParent() == InBB)
|
|
return nullptr;
|
|
|
|
// Do not push the operation across a loop backedge. This could result in
|
|
// an infinite combine loop, and is generally non-profitable (especially
|
|
// if the operation was originally outside the loop).
|
|
if (isBackEdge(InBB, PN->getParent()))
|
|
return nullptr;
|
|
}
|
|
|
|
// Clone the instruction that uses the phi node and move it into the incoming
|
|
// BB because we know that the next iteration of InstCombine will simplify it.
|
|
SmallDenseMap<BasicBlock *, Instruction *> Clones;
|
|
for (auto OpIndex : OpsToMoveUseToIncomingBB) {
|
|
Value *Op = PN->getIncomingValue(OpIndex);
|
|
BasicBlock *OpBB = PN->getIncomingBlock(OpIndex);
|
|
|
|
Instruction *Clone = Clones.lookup(OpBB);
|
|
if (!Clone) {
|
|
Clone = I.clone();
|
|
for (Use &U : Clone->operands()) {
|
|
if (U == PN)
|
|
U = Op;
|
|
else
|
|
U = U->DoPHITranslation(PN->getParent(), OpBB);
|
|
}
|
|
Clone = InsertNewInstBefore(Clone, OpBB->getTerminator()->getIterator());
|
|
Clones.insert({OpBB, Clone});
|
|
}
|
|
|
|
NewPhiValues[OpIndex] = Clone;
|
|
}
|
|
|
|
// Okay, we can do the transformation: create the new PHI node.
|
|
PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
|
|
InsertNewInstBefore(NewPN, PN->getIterator());
|
|
NewPN->takeName(PN);
|
|
NewPN->setDebugLoc(PN->getDebugLoc());
|
|
|
|
for (unsigned i = 0; i != NumPHIValues; ++i)
|
|
NewPN->addIncoming(NewPhiValues[i], PN->getIncomingBlock(i));
|
|
|
|
if (IdenticalUsers) {
|
|
for (User *U : make_early_inc_range(PN->users())) {
|
|
Instruction *User = cast<Instruction>(U);
|
|
if (User == &I)
|
|
continue;
|
|
replaceInstUsesWith(*User, NewPN);
|
|
eraseInstFromFunction(*User);
|
|
}
|
|
OneUse = true;
|
|
}
|
|
|
|
if (OneUse) {
|
|
replaceAllDbgUsesWith(const_cast<PHINode &>(*PN),
|
|
const_cast<PHINode &>(*NewPN),
|
|
const_cast<PHINode &>(*PN), DT);
|
|
}
|
|
return replaceInstUsesWith(I, NewPN);
|
|
}
|
|
|
|
Instruction *InstCombinerImpl::foldBinopWithPhiOperands(BinaryOperator &BO) {
|
|
// TODO: This should be similar to the incoming values check in foldOpIntoPhi:
|
|
// we are guarding against replicating the binop in >1 predecessor.
|
|
// This could miss matching a phi with 2 constant incoming values.
|
|
auto *Phi0 = dyn_cast<PHINode>(BO.getOperand(0));
|
|
auto *Phi1 = dyn_cast<PHINode>(BO.getOperand(1));
|
|
if (!Phi0 || !Phi1 || !Phi0->hasOneUse() || !Phi1->hasOneUse() ||
|
|
Phi0->getNumOperands() != Phi1->getNumOperands())
|
|
return nullptr;
|
|
|
|
// TODO: Remove the restriction for binop being in the same block as the phis.
|
|
if (BO.getParent() != Phi0->getParent() ||
|
|
BO.getParent() != Phi1->getParent())
|
|
return nullptr;
|
|
|
|
// Fold if there is at least one specific constant value in phi0 or phi1's
|
|
// incoming values that comes from the same block and this specific constant
|
|
// value can be used to do optimization for specific binary operator.
|
|
// For example:
|
|
// %phi0 = phi i32 [0, %bb0], [%i, %bb1]
|
|
// %phi1 = phi i32 [%j, %bb0], [0, %bb1]
|
|
// %add = add i32 %phi0, %phi1
|
|
// ==>
|
|
// %add = phi i32 [%j, %bb0], [%i, %bb1]
|
|
Constant *C = ConstantExpr::getBinOpIdentity(BO.getOpcode(), BO.getType(),
|
|
/*AllowRHSConstant*/ false);
|
|
if (C) {
|
|
SmallVector<Value *, 4> NewIncomingValues;
|
|
auto CanFoldIncomingValuePair = [&](std::tuple<Use &, Use &> T) {
|
|
auto &Phi0Use = std::get<0>(T);
|
|
auto &Phi1Use = std::get<1>(T);
|
|
if (Phi0->getIncomingBlock(Phi0Use) != Phi1->getIncomingBlock(Phi1Use))
|
|
return false;
|
|
Value *Phi0UseV = Phi0Use.get();
|
|
Value *Phi1UseV = Phi1Use.get();
|
|
if (Phi0UseV == C)
|
|
NewIncomingValues.push_back(Phi1UseV);
|
|
else if (Phi1UseV == C)
|
|
NewIncomingValues.push_back(Phi0UseV);
|
|
else
|
|
return false;
|
|
return true;
|
|
};
|
|
|
|
if (all_of(zip(Phi0->operands(), Phi1->operands()),
|
|
CanFoldIncomingValuePair)) {
|
|
PHINode *NewPhi =
|
|
PHINode::Create(Phi0->getType(), Phi0->getNumOperands());
|
|
assert(NewIncomingValues.size() == Phi0->getNumOperands() &&
|
|
"The number of collected incoming values should equal the number "
|
|
"of the original PHINode operands!");
|
|
for (unsigned I = 0; I < Phi0->getNumOperands(); I++)
|
|
NewPhi->addIncoming(NewIncomingValues[I], Phi0->getIncomingBlock(I));
|
|
return NewPhi;
|
|
}
|
|
}
|
|
|
|
if (Phi0->getNumOperands() != 2 || Phi1->getNumOperands() != 2)
|
|
return nullptr;
|
|
|
|
// Match a pair of incoming constants for one of the predecessor blocks.
|
|
BasicBlock *ConstBB, *OtherBB;
|
|
Constant *C0, *C1;
|
|
if (match(Phi0->getIncomingValue(0), m_ImmConstant(C0))) {
|
|
ConstBB = Phi0->getIncomingBlock(0);
|
|
OtherBB = Phi0->getIncomingBlock(1);
|
|
} else if (match(Phi0->getIncomingValue(1), m_ImmConstant(C0))) {
|
|
ConstBB = Phi0->getIncomingBlock(1);
|
|
OtherBB = Phi0->getIncomingBlock(0);
|
|
} else {
|
|
return nullptr;
|
|
}
|
|
if (!match(Phi1->getIncomingValueForBlock(ConstBB), m_ImmConstant(C1)))
|
|
return nullptr;
|
|
|
|
// The block that we are hoisting to must reach here unconditionally.
|
|
// Otherwise, we could be speculatively executing an expensive or
|
|
// non-speculative op.
|
|
auto *PredBlockBranch = dyn_cast<BranchInst>(OtherBB->getTerminator());
|
|
if (!PredBlockBranch || PredBlockBranch->isConditional() ||
|
|
!DT.isReachableFromEntry(OtherBB))
|
|
return nullptr;
|
|
|
|
// TODO: This check could be tightened to only apply to binops (div/rem) that
|
|
// are not safe to speculatively execute. But that could allow hoisting
|
|
// potentially expensive instructions (fdiv for example).
|
|
for (auto BBIter = BO.getParent()->begin(); &*BBIter != &BO; ++BBIter)
|
|
if (!isGuaranteedToTransferExecutionToSuccessor(&*BBIter))
|
|
return nullptr;
|
|
|
|
// Fold constants for the predecessor block with constant incoming values.
|
|
Constant *NewC = ConstantFoldBinaryOpOperands(BO.getOpcode(), C0, C1, DL);
|
|
if (!NewC)
|
|
return nullptr;
|
|
|
|
// Make a new binop in the predecessor block with the non-constant incoming
|
|
// values.
|
|
Builder.SetInsertPoint(PredBlockBranch);
|
|
Value *NewBO = Builder.CreateBinOp(BO.getOpcode(),
|
|
Phi0->getIncomingValueForBlock(OtherBB),
|
|
Phi1->getIncomingValueForBlock(OtherBB));
|
|
if (auto *NotFoldedNewBO = dyn_cast<BinaryOperator>(NewBO))
|
|
NotFoldedNewBO->copyIRFlags(&BO);
|
|
|
|
// Replace the binop with a phi of the new values. The old phis are dead.
|
|
PHINode *NewPhi = PHINode::Create(BO.getType(), 2);
|
|
NewPhi->addIncoming(NewBO, OtherBB);
|
|
NewPhi->addIncoming(NewC, ConstBB);
|
|
return NewPhi;
|
|
}
|
|
|
|
Instruction *InstCombinerImpl::foldBinOpIntoSelectOrPhi(BinaryOperator &I) {
|
|
if (!isa<Constant>(I.getOperand(1)))
|
|
return nullptr;
|
|
|
|
if (auto *Sel = dyn_cast<SelectInst>(I.getOperand(0))) {
|
|
if (Instruction *NewSel = FoldOpIntoSelect(I, Sel))
|
|
return NewSel;
|
|
} else if (auto *PN = dyn_cast<PHINode>(I.getOperand(0))) {
|
|
if (Instruction *NewPhi = foldOpIntoPhi(I, PN))
|
|
return NewPhi;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
|
|
// If this GEP has only 0 indices, it is the same pointer as
|
|
// Src. If Src is not a trivial GEP too, don't combine
|
|
// the indices.
|
|
if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
|
|
!Src.hasOneUse())
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/// Find a constant NewC that has property:
|
|
/// shuffle(NewC, ShMask) = C
|
|
/// Returns nullptr if such a constant does not exist e.g. ShMask=<0,0> C=<1,2>
|
|
///
|
|
/// A 1-to-1 mapping is not required. Example:
|
|
/// ShMask = <1,1,2,2> and C = <5,5,6,6> --> NewC = <poison,5,6,poison>
|
|
Constant *InstCombinerImpl::unshuffleConstant(ArrayRef<int> ShMask, Constant *C,
|
|
VectorType *NewCTy) {
|
|
if (isa<ScalableVectorType>(NewCTy)) {
|
|
Constant *Splat = C->getSplatValue();
|
|
if (!Splat)
|
|
return nullptr;
|
|
return ConstantVector::getSplat(NewCTy->getElementCount(), Splat);
|
|
}
|
|
|
|
if (cast<FixedVectorType>(NewCTy)->getNumElements() >
|
|
cast<FixedVectorType>(C->getType())->getNumElements())
|
|
return nullptr;
|
|
|
|
unsigned NewCNumElts = cast<FixedVectorType>(NewCTy)->getNumElements();
|
|
PoisonValue *PoisonScalar = PoisonValue::get(C->getType()->getScalarType());
|
|
SmallVector<Constant *, 16> NewVecC(NewCNumElts, PoisonScalar);
|
|
unsigned NumElts = cast<FixedVectorType>(C->getType())->getNumElements();
|
|
for (unsigned I = 0; I < NumElts; ++I) {
|
|
Constant *CElt = C->getAggregateElement(I);
|
|
if (ShMask[I] >= 0) {
|
|
assert(ShMask[I] < (int)NumElts && "Not expecting narrowing shuffle");
|
|
Constant *NewCElt = NewVecC[ShMask[I]];
|
|
// Bail out if:
|
|
// 1. The constant vector contains a constant expression.
|
|
// 2. The shuffle needs an element of the constant vector that can't
|
|
// be mapped to a new constant vector.
|
|
// 3. This is a widening shuffle that copies elements of V1 into the
|
|
// extended elements (extending with poison is allowed).
|
|
if (!CElt || (!isa<PoisonValue>(NewCElt) && NewCElt != CElt) ||
|
|
I >= NewCNumElts)
|
|
return nullptr;
|
|
NewVecC[ShMask[I]] = CElt;
|
|
}
|
|
}
|
|
return ConstantVector::get(NewVecC);
|
|
}
|
|
|
|
Instruction *InstCombinerImpl::foldVectorBinop(BinaryOperator &Inst) {
|
|
if (!isa<VectorType>(Inst.getType()))
|
|
return nullptr;
|
|
|
|
BinaryOperator::BinaryOps Opcode = Inst.getOpcode();
|
|
Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1);
|
|
assert(cast<VectorType>(LHS->getType())->getElementCount() ==
|
|
cast<VectorType>(Inst.getType())->getElementCount());
|
|
assert(cast<VectorType>(RHS->getType())->getElementCount() ==
|
|
cast<VectorType>(Inst.getType())->getElementCount());
|
|
|
|
// If both operands of the binop are vector concatenations, then perform the
|
|
// narrow binop on each pair of the source operands followed by concatenation
|
|
// of the results.
|
|
Value *L0, *L1, *R0, *R1;
|
|
ArrayRef<int> Mask;
|
|
if (match(LHS, m_Shuffle(m_Value(L0), m_Value(L1), m_Mask(Mask))) &&
|
|
match(RHS, m_Shuffle(m_Value(R0), m_Value(R1), m_SpecificMask(Mask))) &&
|
|
LHS->hasOneUse() && RHS->hasOneUse() &&
|
|
cast<ShuffleVectorInst>(LHS)->isConcat() &&
|
|
cast<ShuffleVectorInst>(RHS)->isConcat()) {
|
|
// This transform does not have the speculative execution constraint as
|
|
// below because the shuffle is a concatenation. The new binops are
|
|
// operating on exactly the same elements as the existing binop.
|
|
// TODO: We could ease the mask requirement to allow different undef lanes,
|
|
// but that requires an analysis of the binop-with-undef output value.
|
|
Value *NewBO0 = Builder.CreateBinOp(Opcode, L0, R0);
|
|
if (auto *BO = dyn_cast<BinaryOperator>(NewBO0))
|
|
BO->copyIRFlags(&Inst);
|
|
Value *NewBO1 = Builder.CreateBinOp(Opcode, L1, R1);
|
|
if (auto *BO = dyn_cast<BinaryOperator>(NewBO1))
|
|
BO->copyIRFlags(&Inst);
|
|
return new ShuffleVectorInst(NewBO0, NewBO1, Mask);
|
|
}
|
|
|
|
auto createBinOpReverse = [&](Value *X, Value *Y) {
|
|
Value *V = Builder.CreateBinOp(Opcode, X, Y, Inst.getName());
|
|
if (auto *BO = dyn_cast<BinaryOperator>(V))
|
|
BO->copyIRFlags(&Inst);
|
|
Module *M = Inst.getModule();
|
|
Function *F = Intrinsic::getOrInsertDeclaration(
|
|
M, Intrinsic::vector_reverse, V->getType());
|
|
return CallInst::Create(F, V);
|
|
};
|
|
|
|
// NOTE: Reverse shuffles don't require the speculative execution protection
|
|
// below because they don't affect which lanes take part in the computation.
|
|
|
|
Value *V1, *V2;
|
|
if (match(LHS, m_VecReverse(m_Value(V1)))) {
|
|
// Op(rev(V1), rev(V2)) -> rev(Op(V1, V2))
|
|
if (match(RHS, m_VecReverse(m_Value(V2))) &&
|
|
(LHS->hasOneUse() || RHS->hasOneUse() ||
|
|
(LHS == RHS && LHS->hasNUses(2))))
|
|
return createBinOpReverse(V1, V2);
|
|
|
|
// Op(rev(V1), RHSSplat)) -> rev(Op(V1, RHSSplat))
|
|
if (LHS->hasOneUse() && isSplatValue(RHS))
|
|
return createBinOpReverse(V1, RHS);
|
|
}
|
|
// Op(LHSSplat, rev(V2)) -> rev(Op(LHSSplat, V2))
|
|
else if (isSplatValue(LHS) && match(RHS, m_OneUse(m_VecReverse(m_Value(V2)))))
|
|
return createBinOpReverse(LHS, V2);
|
|
|
|
// It may not be safe to reorder shuffles and things like div, urem, etc.
|
|
// because we may trap when executing those ops on unknown vector elements.
|
|
// See PR20059.
|
|
if (!isSafeToSpeculativelyExecuteWithVariableReplaced(&Inst))
|
|
return nullptr;
|
|
|
|
auto createBinOpShuffle = [&](Value *X, Value *Y, ArrayRef<int> M) {
|
|
Value *XY = Builder.CreateBinOp(Opcode, X, Y);
|
|
if (auto *BO = dyn_cast<BinaryOperator>(XY))
|
|
BO->copyIRFlags(&Inst);
|
|
return new ShuffleVectorInst(XY, M);
|
|
};
|
|
|
|
// If both arguments of the binary operation are shuffles that use the same
|
|
// mask and shuffle within a single vector, move the shuffle after the binop.
|
|
if (match(LHS, m_Shuffle(m_Value(V1), m_Poison(), m_Mask(Mask))) &&
|
|
match(RHS, m_Shuffle(m_Value(V2), m_Poison(), m_SpecificMask(Mask))) &&
|
|
V1->getType() == V2->getType() &&
|
|
(LHS->hasOneUse() || RHS->hasOneUse() || LHS == RHS)) {
|
|
// Op(shuffle(V1, Mask), shuffle(V2, Mask)) -> shuffle(Op(V1, V2), Mask)
|
|
return createBinOpShuffle(V1, V2, Mask);
|
|
}
|
|
|
|
// If both arguments of a commutative binop are select-shuffles that use the
|
|
// same mask with commuted operands, the shuffles are unnecessary.
|
|
if (Inst.isCommutative() &&
|
|
match(LHS, m_Shuffle(m_Value(V1), m_Value(V2), m_Mask(Mask))) &&
|
|
match(RHS,
|
|
m_Shuffle(m_Specific(V2), m_Specific(V1), m_SpecificMask(Mask)))) {
|
|
auto *LShuf = cast<ShuffleVectorInst>(LHS);
|
|
auto *RShuf = cast<ShuffleVectorInst>(RHS);
|
|
// TODO: Allow shuffles that contain undefs in the mask?
|
|
// That is legal, but it reduces undef knowledge.
|
|
// TODO: Allow arbitrary shuffles by shuffling after binop?
|
|
// That might be legal, but we have to deal with poison.
|
|
if (LShuf->isSelect() &&
|
|
!is_contained(LShuf->getShuffleMask(), PoisonMaskElem) &&
|
|
RShuf->isSelect() &&
|
|
!is_contained(RShuf->getShuffleMask(), PoisonMaskElem)) {
|
|
// Example:
|
|
// LHS = shuffle V1, V2, <0, 5, 6, 3>
|
|
// RHS = shuffle V2, V1, <0, 5, 6, 3>
|
|
// LHS + RHS --> (V10+V20, V21+V11, V22+V12, V13+V23) --> V1 + V2
|
|
Instruction *NewBO = BinaryOperator::Create(Opcode, V1, V2);
|
|
NewBO->copyIRFlags(&Inst);
|
|
return NewBO;
|
|
}
|
|
}
|
|
|
|
// If one argument is a shuffle within one vector and the other is a constant,
|
|
// try moving the shuffle after the binary operation. This canonicalization
|
|
// intends to move shuffles closer to other shuffles and binops closer to
|
|
// other binops, so they can be folded. It may also enable demanded elements
|
|
// transforms.
|
|
Constant *C;
|
|
if (match(&Inst, m_c_BinOp(m_OneUse(m_Shuffle(m_Value(V1), m_Poison(),
|
|
m_Mask(Mask))),
|
|
m_ImmConstant(C)))) {
|
|
assert(Inst.getType()->getScalarType() == V1->getType()->getScalarType() &&
|
|
"Shuffle should not change scalar type");
|
|
|
|
bool ConstOp1 = isa<Constant>(RHS);
|
|
if (Constant *NewC =
|
|
unshuffleConstant(Mask, C, cast<VectorType>(V1->getType()))) {
|
|
// For fixed vectors, lanes of NewC not used by the shuffle will be poison
|
|
// which will cause UB for div/rem. Mask them with a safe constant.
|
|
if (isa<FixedVectorType>(V1->getType()) && Inst.isIntDivRem())
|
|
NewC = getSafeVectorConstantForBinop(Opcode, NewC, ConstOp1);
|
|
|
|
// Op(shuffle(V1, Mask), C) -> shuffle(Op(V1, NewC), Mask)
|
|
// Op(C, shuffle(V1, Mask)) -> shuffle(Op(NewC, V1), Mask)
|
|
Value *NewLHS = ConstOp1 ? V1 : NewC;
|
|
Value *NewRHS = ConstOp1 ? NewC : V1;
|
|
return createBinOpShuffle(NewLHS, NewRHS, Mask);
|
|
}
|
|
}
|
|
|
|
// Try to reassociate to sink a splat shuffle after a binary operation.
|
|
if (Inst.isAssociative() && Inst.isCommutative()) {
|
|
// Canonicalize shuffle operand as LHS.
|
|
if (isa<ShuffleVectorInst>(RHS))
|
|
std::swap(LHS, RHS);
|
|
|
|
Value *X;
|
|
ArrayRef<int> MaskC;
|
|
int SplatIndex;
|
|
Value *Y, *OtherOp;
|
|
if (!match(LHS,
|
|
m_OneUse(m_Shuffle(m_Value(X), m_Undef(), m_Mask(MaskC)))) ||
|
|
!match(MaskC, m_SplatOrPoisonMask(SplatIndex)) ||
|
|
X->getType() != Inst.getType() ||
|
|
!match(RHS, m_OneUse(m_BinOp(Opcode, m_Value(Y), m_Value(OtherOp)))))
|
|
return nullptr;
|
|
|
|
// FIXME: This may not be safe if the analysis allows undef elements. By
|
|
// moving 'Y' before the splat shuffle, we are implicitly assuming
|
|
// that it is not undef/poison at the splat index.
|
|
if (isSplatValue(OtherOp, SplatIndex)) {
|
|
std::swap(Y, OtherOp);
|
|
} else if (!isSplatValue(Y, SplatIndex)) {
|
|
return nullptr;
|
|
}
|
|
|
|
// X and Y are splatted values, so perform the binary operation on those
|
|
// values followed by a splat followed by the 2nd binary operation:
|
|
// bo (splat X), (bo Y, OtherOp) --> bo (splat (bo X, Y)), OtherOp
|
|
Value *NewBO = Builder.CreateBinOp(Opcode, X, Y);
|
|
SmallVector<int, 8> NewMask(MaskC.size(), SplatIndex);
|
|
Value *NewSplat = Builder.CreateShuffleVector(NewBO, NewMask);
|
|
Instruction *R = BinaryOperator::Create(Opcode, NewSplat, OtherOp);
|
|
|
|
// Intersect FMF on both new binops. Other (poison-generating) flags are
|
|
// dropped to be safe.
|
|
if (isa<FPMathOperator>(R)) {
|
|
R->copyFastMathFlags(&Inst);
|
|
R->andIRFlags(RHS);
|
|
}
|
|
if (auto *NewInstBO = dyn_cast<BinaryOperator>(NewBO))
|
|
NewInstBO->copyIRFlags(R);
|
|
return R;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// Try to narrow the width of a binop if at least 1 operand is an extend of
|
|
/// of a value. This requires a potentially expensive known bits check to make
|
|
/// sure the narrow op does not overflow.
|
|
Instruction *InstCombinerImpl::narrowMathIfNoOverflow(BinaryOperator &BO) {
|
|
// We need at least one extended operand.
|
|
Value *Op0 = BO.getOperand(0), *Op1 = BO.getOperand(1);
|
|
|
|
// If this is a sub, we swap the operands since we always want an extension
|
|
// on the RHS. The LHS can be an extension or a constant.
|
|
if (BO.getOpcode() == Instruction::Sub)
|
|
std::swap(Op0, Op1);
|
|
|
|
Value *X;
|
|
bool IsSext = match(Op0, m_SExt(m_Value(X)));
|
|
if (!IsSext && !match(Op0, m_ZExt(m_Value(X))))
|
|
return nullptr;
|
|
|
|
// If both operands are the same extension from the same source type and we
|
|
// can eliminate at least one (hasOneUse), this might work.
|
|
CastInst::CastOps CastOpc = IsSext ? Instruction::SExt : Instruction::ZExt;
|
|
Value *Y;
|
|
if (!(match(Op1, m_ZExtOrSExt(m_Value(Y))) && X->getType() == Y->getType() &&
|
|
cast<Operator>(Op1)->getOpcode() == CastOpc &&
|
|
(Op0->hasOneUse() || Op1->hasOneUse()))) {
|
|
// If that did not match, see if we have a suitable constant operand.
|
|
// Truncating and extending must produce the same constant.
|
|
Constant *WideC;
|
|
if (!Op0->hasOneUse() || !match(Op1, m_Constant(WideC)))
|
|
return nullptr;
|
|
Constant *NarrowC = getLosslessTrunc(WideC, X->getType(), CastOpc);
|
|
if (!NarrowC)
|
|
return nullptr;
|
|
Y = NarrowC;
|
|
}
|
|
|
|
// Swap back now that we found our operands.
|
|
if (BO.getOpcode() == Instruction::Sub)
|
|
std::swap(X, Y);
|
|
|
|
// Both operands have narrow versions. Last step: the math must not overflow
|
|
// in the narrow width.
|
|
if (!willNotOverflow(BO.getOpcode(), X, Y, BO, IsSext))
|
|
return nullptr;
|
|
|
|
// bo (ext X), (ext Y) --> ext (bo X, Y)
|
|
// bo (ext X), C --> ext (bo X, C')
|
|
Value *NarrowBO = Builder.CreateBinOp(BO.getOpcode(), X, Y, "narrow");
|
|
if (auto *NewBinOp = dyn_cast<BinaryOperator>(NarrowBO)) {
|
|
if (IsSext)
|
|
NewBinOp->setHasNoSignedWrap();
|
|
else
|
|
NewBinOp->setHasNoUnsignedWrap();
|
|
}
|
|
return CastInst::Create(CastOpc, NarrowBO, BO.getType());
|
|
}
|
|
|
|
/// Determine nowrap flags for (gep (gep p, x), y) to (gep p, (x + y))
|
|
/// transform.
|
|
static GEPNoWrapFlags getMergedGEPNoWrapFlags(GEPOperator &GEP1,
|
|
GEPOperator &GEP2) {
|
|
return GEP1.getNoWrapFlags().intersectForOffsetAdd(GEP2.getNoWrapFlags());
|
|
}
|
|
|
|
/// Thread a GEP operation with constant indices through the constant true/false
|
|
/// arms of a select.
|
|
static Instruction *foldSelectGEP(GetElementPtrInst &GEP,
|
|
InstCombiner::BuilderTy &Builder) {
|
|
if (!GEP.hasAllConstantIndices())
|
|
return nullptr;
|
|
|
|
Instruction *Sel;
|
|
Value *Cond;
|
|
Constant *TrueC, *FalseC;
|
|
if (!match(GEP.getPointerOperand(), m_Instruction(Sel)) ||
|
|
!match(Sel,
|
|
m_Select(m_Value(Cond), m_Constant(TrueC), m_Constant(FalseC))))
|
|
return nullptr;
|
|
|
|
// gep (select Cond, TrueC, FalseC), IndexC --> select Cond, TrueC', FalseC'
|
|
// Propagate 'inbounds' and metadata from existing instructions.
|
|
// Note: using IRBuilder to create the constants for efficiency.
|
|
SmallVector<Value *, 4> IndexC(GEP.indices());
|
|
GEPNoWrapFlags NW = GEP.getNoWrapFlags();
|
|
Type *Ty = GEP.getSourceElementType();
|
|
Value *NewTrueC = Builder.CreateGEP(Ty, TrueC, IndexC, "", NW);
|
|
Value *NewFalseC = Builder.CreateGEP(Ty, FalseC, IndexC, "", NW);
|
|
return SelectInst::Create(Cond, NewTrueC, NewFalseC, "", nullptr, Sel);
|
|
}
|
|
|
|
// Canonicalization:
|
|
// gep T, (gep i8, base, C1), (Index + C2) into
|
|
// gep T, (gep i8, base, C1 + C2 * sizeof(T)), Index
|
|
static Instruction *canonicalizeGEPOfConstGEPI8(GetElementPtrInst &GEP,
|
|
GEPOperator *Src,
|
|
InstCombinerImpl &IC) {
|
|
if (GEP.getNumIndices() != 1)
|
|
return nullptr;
|
|
auto &DL = IC.getDataLayout();
|
|
Value *Base;
|
|
const APInt *C1;
|
|
if (!match(Src, m_PtrAdd(m_Value(Base), m_APInt(C1))))
|
|
return nullptr;
|
|
Value *VarIndex;
|
|
const APInt *C2;
|
|
Type *PtrTy = Src->getType()->getScalarType();
|
|
unsigned IndexSizeInBits = DL.getIndexTypeSizeInBits(PtrTy);
|
|
if (!match(GEP.getOperand(1), m_AddLike(m_Value(VarIndex), m_APInt(C2))))
|
|
return nullptr;
|
|
if (C1->getBitWidth() != IndexSizeInBits ||
|
|
C2->getBitWidth() != IndexSizeInBits)
|
|
return nullptr;
|
|
Type *BaseType = GEP.getSourceElementType();
|
|
if (isa<ScalableVectorType>(BaseType))
|
|
return nullptr;
|
|
APInt TypeSize(IndexSizeInBits, DL.getTypeAllocSize(BaseType));
|
|
APInt NewOffset = TypeSize * *C2 + *C1;
|
|
if (NewOffset.isZero() ||
|
|
(Src->hasOneUse() && GEP.getOperand(1)->hasOneUse())) {
|
|
Value *GEPConst =
|
|
IC.Builder.CreatePtrAdd(Base, IC.Builder.getInt(NewOffset));
|
|
return GetElementPtrInst::Create(BaseType, GEPConst, VarIndex);
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
Instruction *InstCombinerImpl::visitGEPOfGEP(GetElementPtrInst &GEP,
|
|
GEPOperator *Src) {
|
|
// Combine Indices - If the source pointer to this getelementptr instruction
|
|
// is a getelementptr instruction with matching element type, combine the
|
|
// indices of the two getelementptr instructions into a single instruction.
|
|
if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
|
|
return nullptr;
|
|
|
|
if (auto *I = canonicalizeGEPOfConstGEPI8(GEP, Src, *this))
|
|
return I;
|
|
|
|
// For constant GEPs, use a more general offset-based folding approach.
|
|
Type *PtrTy = Src->getType()->getScalarType();
|
|
if (GEP.hasAllConstantIndices() &&
|
|
(Src->hasOneUse() || Src->hasAllConstantIndices())) {
|
|
// Split Src into a variable part and a constant suffix.
|
|
gep_type_iterator GTI = gep_type_begin(*Src);
|
|
Type *BaseType = GTI.getIndexedType();
|
|
bool IsFirstType = true;
|
|
unsigned NumVarIndices = 0;
|
|
for (auto Pair : enumerate(Src->indices())) {
|
|
if (!isa<ConstantInt>(Pair.value())) {
|
|
BaseType = GTI.getIndexedType();
|
|
IsFirstType = false;
|
|
NumVarIndices = Pair.index() + 1;
|
|
}
|
|
++GTI;
|
|
}
|
|
|
|
// Determine the offset for the constant suffix of Src.
|
|
APInt Offset(DL.getIndexTypeSizeInBits(PtrTy), 0);
|
|
if (NumVarIndices != Src->getNumIndices()) {
|
|
// FIXME: getIndexedOffsetInType() does not handled scalable vectors.
|
|
if (BaseType->isScalableTy())
|
|
return nullptr;
|
|
|
|
SmallVector<Value *> ConstantIndices;
|
|
if (!IsFirstType)
|
|
ConstantIndices.push_back(
|
|
Constant::getNullValue(Type::getInt32Ty(GEP.getContext())));
|
|
append_range(ConstantIndices, drop_begin(Src->indices(), NumVarIndices));
|
|
Offset += DL.getIndexedOffsetInType(BaseType, ConstantIndices);
|
|
}
|
|
|
|
// Add the offset for GEP (which is fully constant).
|
|
if (!GEP.accumulateConstantOffset(DL, Offset))
|
|
return nullptr;
|
|
|
|
// Convert the total offset back into indices.
|
|
SmallVector<APInt> ConstIndices =
|
|
DL.getGEPIndicesForOffset(BaseType, Offset);
|
|
if (!Offset.isZero() || (!IsFirstType && !ConstIndices[0].isZero()))
|
|
return nullptr;
|
|
|
|
GEPNoWrapFlags NW = getMergedGEPNoWrapFlags(*Src, *cast<GEPOperator>(&GEP));
|
|
SmallVector<Value *> Indices(
|
|
drop_end(Src->indices(), Src->getNumIndices() - NumVarIndices));
|
|
for (const APInt &Idx : drop_begin(ConstIndices, !IsFirstType)) {
|
|
Indices.push_back(ConstantInt::get(GEP.getContext(), Idx));
|
|
// Even if the total offset is inbounds, we may end up representing it
|
|
// by first performing a larger negative offset, and then a smaller
|
|
// positive one. The large negative offset might go out of bounds. Only
|
|
// preserve inbounds if all signs are the same.
|
|
if (Idx.isNonNegative() != ConstIndices[0].isNonNegative())
|
|
NW = NW.withoutNoUnsignedSignedWrap();
|
|
if (!Idx.isNonNegative())
|
|
NW = NW.withoutNoUnsignedWrap();
|
|
}
|
|
|
|
return replaceInstUsesWith(
|
|
GEP, Builder.CreateGEP(Src->getSourceElementType(), Src->getOperand(0),
|
|
Indices, "", NW));
|
|
}
|
|
|
|
if (Src->getResultElementType() != GEP.getSourceElementType())
|
|
return nullptr;
|
|
|
|
SmallVector<Value*, 8> Indices;
|
|
|
|
// Find out whether the last index in the source GEP is a sequential idx.
|
|
bool EndsWithSequential = false;
|
|
for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
|
|
I != E; ++I)
|
|
EndsWithSequential = I.isSequential();
|
|
|
|
// Can we combine the two pointer arithmetics offsets?
|
|
if (EndsWithSequential) {
|
|
// Replace: gep (gep %P, long B), long A, ...
|
|
// With: T = long A+B; gep %P, T, ...
|
|
Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
|
|
Value *GO1 = GEP.getOperand(1);
|
|
|
|
// If they aren't the same type, then the input hasn't been processed
|
|
// by the loop above yet (which canonicalizes sequential index types to
|
|
// intptr_t). Just avoid transforming this until the input has been
|
|
// normalized.
|
|
if (SO1->getType() != GO1->getType())
|
|
return nullptr;
|
|
|
|
Value *Sum =
|
|
simplifyAddInst(GO1, SO1, false, false, SQ.getWithInstruction(&GEP));
|
|
// Only do the combine when we are sure the cost after the
|
|
// merge is never more than that before the merge.
|
|
if (Sum == nullptr)
|
|
return nullptr;
|
|
|
|
Indices.append(Src->op_begin()+1, Src->op_end()-1);
|
|
Indices.push_back(Sum);
|
|
Indices.append(GEP.op_begin()+2, GEP.op_end());
|
|
} else if (isa<Constant>(*GEP.idx_begin()) &&
|
|
cast<Constant>(*GEP.idx_begin())->isNullValue() &&
|
|
Src->getNumOperands() != 1) {
|
|
// Otherwise we can do the fold if the first index of the GEP is a zero
|
|
Indices.append(Src->op_begin()+1, Src->op_end());
|
|
Indices.append(GEP.idx_begin()+1, GEP.idx_end());
|
|
}
|
|
|
|
if (!Indices.empty())
|
|
return replaceInstUsesWith(
|
|
GEP, Builder.CreateGEP(
|
|
Src->getSourceElementType(), Src->getOperand(0), Indices, "",
|
|
getMergedGEPNoWrapFlags(*Src, *cast<GEPOperator>(&GEP))));
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
Value *InstCombiner::getFreelyInvertedImpl(Value *V, bool WillInvertAllUses,
|
|
BuilderTy *Builder,
|
|
bool &DoesConsume, unsigned Depth) {
|
|
static Value *const NonNull = reinterpret_cast<Value *>(uintptr_t(1));
|
|
// ~(~(X)) -> X.
|
|
Value *A, *B;
|
|
if (match(V, m_Not(m_Value(A)))) {
|
|
DoesConsume = true;
|
|
return A;
|
|
}
|
|
|
|
Constant *C;
|
|
// Constants can be considered to be not'ed values.
|
|
if (match(V, m_ImmConstant(C)))
|
|
return ConstantExpr::getNot(C);
|
|
|
|
if (Depth++ >= MaxAnalysisRecursionDepth)
|
|
return nullptr;
|
|
|
|
// The rest of the cases require that we invert all uses so don't bother
|
|
// doing the analysis if we know we can't use the result.
|
|
if (!WillInvertAllUses)
|
|
return nullptr;
|
|
|
|
// Compares can be inverted if all of their uses are being modified to use
|
|
// the ~V.
|
|
if (auto *I = dyn_cast<CmpInst>(V)) {
|
|
if (Builder != nullptr)
|
|
return Builder->CreateCmp(I->getInversePredicate(), I->getOperand(0),
|
|
I->getOperand(1));
|
|
return NonNull;
|
|
}
|
|
|
|
// If `V` is of the form `A + B` then `-1 - V` can be folded into
|
|
// `(-1 - B) - A` if we are willing to invert all of the uses.
|
|
if (match(V, m_Add(m_Value(A), m_Value(B)))) {
|
|
if (auto *BV = getFreelyInvertedImpl(B, B->hasOneUse(), Builder,
|
|
DoesConsume, Depth))
|
|
return Builder ? Builder->CreateSub(BV, A) : NonNull;
|
|
if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
|
|
DoesConsume, Depth))
|
|
return Builder ? Builder->CreateSub(AV, B) : NonNull;
|
|
return nullptr;
|
|
}
|
|
|
|
// If `V` is of the form `A ^ ~B` then `~(A ^ ~B)` can be folded
|
|
// into `A ^ B` if we are willing to invert all of the uses.
|
|
if (match(V, m_Xor(m_Value(A), m_Value(B)))) {
|
|
if (auto *BV = getFreelyInvertedImpl(B, B->hasOneUse(), Builder,
|
|
DoesConsume, Depth))
|
|
return Builder ? Builder->CreateXor(A, BV) : NonNull;
|
|
if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
|
|
DoesConsume, Depth))
|
|
return Builder ? Builder->CreateXor(AV, B) : NonNull;
|
|
return nullptr;
|
|
}
|
|
|
|
// If `V` is of the form `B - A` then `-1 - V` can be folded into
|
|
// `A + (-1 - B)` if we are willing to invert all of the uses.
|
|
if (match(V, m_Sub(m_Value(A), m_Value(B)))) {
|
|
if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
|
|
DoesConsume, Depth))
|
|
return Builder ? Builder->CreateAdd(AV, B) : NonNull;
|
|
return nullptr;
|
|
}
|
|
|
|
// If `V` is of the form `(~A) s>> B` then `~((~A) s>> B)` can be folded
|
|
// into `A s>> B` if we are willing to invert all of the uses.
|
|
if (match(V, m_AShr(m_Value(A), m_Value(B)))) {
|
|
if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
|
|
DoesConsume, Depth))
|
|
return Builder ? Builder->CreateAShr(AV, B) : NonNull;
|
|
return nullptr;
|
|
}
|
|
|
|
Value *Cond;
|
|
// LogicOps are special in that we canonicalize them at the cost of an
|
|
// instruction.
|
|
bool IsSelect = match(V, m_Select(m_Value(Cond), m_Value(A), m_Value(B))) &&
|
|
!shouldAvoidAbsorbingNotIntoSelect(*cast<SelectInst>(V));
|
|
// Selects/min/max with invertible operands are freely invertible
|
|
if (IsSelect || match(V, m_MaxOrMin(m_Value(A), m_Value(B)))) {
|
|
bool LocalDoesConsume = DoesConsume;
|
|
if (!getFreelyInvertedImpl(B, B->hasOneUse(), /*Builder*/ nullptr,
|
|
LocalDoesConsume, Depth))
|
|
return nullptr;
|
|
if (Value *NotA = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
|
|
LocalDoesConsume, Depth)) {
|
|
DoesConsume = LocalDoesConsume;
|
|
if (Builder != nullptr) {
|
|
Value *NotB = getFreelyInvertedImpl(B, B->hasOneUse(), Builder,
|
|
DoesConsume, Depth);
|
|
assert(NotB != nullptr &&
|
|
"Unable to build inverted value for known freely invertable op");
|
|
if (auto *II = dyn_cast<IntrinsicInst>(V))
|
|
return Builder->CreateBinaryIntrinsic(
|
|
getInverseMinMaxIntrinsic(II->getIntrinsicID()), NotA, NotB);
|
|
return Builder->CreateSelect(Cond, NotA, NotB);
|
|
}
|
|
return NonNull;
|
|
}
|
|
}
|
|
|
|
if (PHINode *PN = dyn_cast<PHINode>(V)) {
|
|
bool LocalDoesConsume = DoesConsume;
|
|
SmallVector<std::pair<Value *, BasicBlock *>, 8> IncomingValues;
|
|
for (Use &U : PN->operands()) {
|
|
BasicBlock *IncomingBlock = PN->getIncomingBlock(U);
|
|
Value *NewIncomingVal = getFreelyInvertedImpl(
|
|
U.get(), /*WillInvertAllUses=*/false,
|
|
/*Builder=*/nullptr, LocalDoesConsume, MaxAnalysisRecursionDepth - 1);
|
|
if (NewIncomingVal == nullptr)
|
|
return nullptr;
|
|
// Make sure that we can safely erase the original PHI node.
|
|
if (NewIncomingVal == V)
|
|
return nullptr;
|
|
if (Builder != nullptr)
|
|
IncomingValues.emplace_back(NewIncomingVal, IncomingBlock);
|
|
}
|
|
|
|
DoesConsume = LocalDoesConsume;
|
|
if (Builder != nullptr) {
|
|
IRBuilderBase::InsertPointGuard Guard(*Builder);
|
|
Builder->SetInsertPoint(PN);
|
|
PHINode *NewPN =
|
|
Builder->CreatePHI(PN->getType(), PN->getNumIncomingValues());
|
|
for (auto [Val, Pred] : IncomingValues)
|
|
NewPN->addIncoming(Val, Pred);
|
|
return NewPN;
|
|
}
|
|
return NonNull;
|
|
}
|
|
|
|
if (match(V, m_SExtLike(m_Value(A)))) {
|
|
if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
|
|
DoesConsume, Depth))
|
|
return Builder ? Builder->CreateSExt(AV, V->getType()) : NonNull;
|
|
return nullptr;
|
|
}
|
|
|
|
if (match(V, m_Trunc(m_Value(A)))) {
|
|
if (auto *AV = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
|
|
DoesConsume, Depth))
|
|
return Builder ? Builder->CreateTrunc(AV, V->getType()) : NonNull;
|
|
return nullptr;
|
|
}
|
|
|
|
// De Morgan's Laws:
|
|
// (~(A | B)) -> (~A & ~B)
|
|
// (~(A & B)) -> (~A | ~B)
|
|
auto TryInvertAndOrUsingDeMorgan = [&](Instruction::BinaryOps Opcode,
|
|
bool IsLogical, Value *A,
|
|
Value *B) -> Value * {
|
|
bool LocalDoesConsume = DoesConsume;
|
|
if (!getFreelyInvertedImpl(B, B->hasOneUse(), /*Builder=*/nullptr,
|
|
LocalDoesConsume, Depth))
|
|
return nullptr;
|
|
if (auto *NotA = getFreelyInvertedImpl(A, A->hasOneUse(), Builder,
|
|
LocalDoesConsume, Depth)) {
|
|
auto *NotB = getFreelyInvertedImpl(B, B->hasOneUse(), Builder,
|
|
LocalDoesConsume, Depth);
|
|
DoesConsume = LocalDoesConsume;
|
|
if (IsLogical)
|
|
return Builder ? Builder->CreateLogicalOp(Opcode, NotA, NotB) : NonNull;
|
|
return Builder ? Builder->CreateBinOp(Opcode, NotA, NotB) : NonNull;
|
|
}
|
|
|
|
return nullptr;
|
|
};
|
|
|
|
if (match(V, m_Or(m_Value(A), m_Value(B))))
|
|
return TryInvertAndOrUsingDeMorgan(Instruction::And, /*IsLogical=*/false, A,
|
|
B);
|
|
|
|
if (match(V, m_And(m_Value(A), m_Value(B))))
|
|
return TryInvertAndOrUsingDeMorgan(Instruction::Or, /*IsLogical=*/false, A,
|
|
B);
|
|
|
|
if (match(V, m_LogicalOr(m_Value(A), m_Value(B))))
|
|
return TryInvertAndOrUsingDeMorgan(Instruction::And, /*IsLogical=*/true, A,
|
|
B);
|
|
|
|
if (match(V, m_LogicalAnd(m_Value(A), m_Value(B))))
|
|
return TryInvertAndOrUsingDeMorgan(Instruction::Or, /*IsLogical=*/true, A,
|
|
B);
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// Return true if we should canonicalize the gep to an i8 ptradd.
|
|
static bool shouldCanonicalizeGEPToPtrAdd(GetElementPtrInst &GEP) {
|
|
Value *PtrOp = GEP.getOperand(0);
|
|
Type *GEPEltType = GEP.getSourceElementType();
|
|
if (GEPEltType->isIntegerTy(8))
|
|
return false;
|
|
|
|
// Canonicalize scalable GEPs to an explicit offset using the llvm.vscale
|
|
// intrinsic. This has better support in BasicAA.
|
|
if (GEPEltType->isScalableTy())
|
|
return true;
|
|
|
|
// gep i32 p, mul(O, C) -> gep i8, p, mul(O, C*4) to fold the two multiplies
|
|
// together.
|
|
if (GEP.getNumIndices() == 1 &&
|
|
match(GEP.getOperand(1),
|
|
m_OneUse(m_CombineOr(m_Mul(m_Value(), m_ConstantInt()),
|
|
m_Shl(m_Value(), m_ConstantInt())))))
|
|
return true;
|
|
|
|
// gep (gep %p, C1), %x, C2 is expanded so the two constants can
|
|
// possibly be merged together.
|
|
auto PtrOpGep = dyn_cast<GEPOperator>(PtrOp);
|
|
return PtrOpGep && PtrOpGep->hasAllConstantIndices() &&
|
|
any_of(GEP.indices(), [](Value *V) {
|
|
const APInt *C;
|
|
return match(V, m_APInt(C)) && !C->isZero();
|
|
});
|
|
}
|
|
|
|
static Instruction *foldGEPOfPhi(GetElementPtrInst &GEP, PHINode *PN,
|
|
IRBuilderBase &Builder) {
|
|
auto *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0));
|
|
if (!Op1)
|
|
return nullptr;
|
|
|
|
// Don't fold a GEP into itself through a PHI node. This can only happen
|
|
// through the back-edge of a loop. Folding a GEP into itself means that
|
|
// the value of the previous iteration needs to be stored in the meantime,
|
|
// thus requiring an additional register variable to be live, but not
|
|
// actually achieving anything (the GEP still needs to be executed once per
|
|
// loop iteration).
|
|
if (Op1 == &GEP)
|
|
return nullptr;
|
|
GEPNoWrapFlags NW = Op1->getNoWrapFlags();
|
|
|
|
int DI = -1;
|
|
|
|
for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) {
|
|
auto *Op2 = dyn_cast<GetElementPtrInst>(*I);
|
|
if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands() ||
|
|
Op1->getSourceElementType() != Op2->getSourceElementType())
|
|
return nullptr;
|
|
|
|
// As for Op1 above, don't try to fold a GEP into itself.
|
|
if (Op2 == &GEP)
|
|
return nullptr;
|
|
|
|
// Keep track of the type as we walk the GEP.
|
|
Type *CurTy = nullptr;
|
|
|
|
for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) {
|
|
if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType())
|
|
return nullptr;
|
|
|
|
if (Op1->getOperand(J) != Op2->getOperand(J)) {
|
|
if (DI == -1) {
|
|
// We have not seen any differences yet in the GEPs feeding the
|
|
// PHI yet, so we record this one if it is allowed to be a
|
|
// variable.
|
|
|
|
// The first two arguments can vary for any GEP, the rest have to be
|
|
// static for struct slots
|
|
if (J > 1) {
|
|
assert(CurTy && "No current type?");
|
|
if (CurTy->isStructTy())
|
|
return nullptr;
|
|
}
|
|
|
|
DI = J;
|
|
} else {
|
|
// The GEP is different by more than one input. While this could be
|
|
// extended to support GEPs that vary by more than one variable it
|
|
// doesn't make sense since it greatly increases the complexity and
|
|
// would result in an R+R+R addressing mode which no backend
|
|
// directly supports and would need to be broken into several
|
|
// simpler instructions anyway.
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
// Sink down a layer of the type for the next iteration.
|
|
if (J > 0) {
|
|
if (J == 1) {
|
|
CurTy = Op1->getSourceElementType();
|
|
} else {
|
|
CurTy =
|
|
GetElementPtrInst::getTypeAtIndex(CurTy, Op1->getOperand(J));
|
|
}
|
|
}
|
|
}
|
|
|
|
NW &= Op2->getNoWrapFlags();
|
|
}
|
|
|
|
// If not all GEPs are identical we'll have to create a new PHI node.
|
|
// Check that the old PHI node has only one use so that it will get
|
|
// removed.
|
|
if (DI != -1 && !PN->hasOneUse())
|
|
return nullptr;
|
|
|
|
auto *NewGEP = cast<GetElementPtrInst>(Op1->clone());
|
|
NewGEP->setNoWrapFlags(NW);
|
|
|
|
if (DI == -1) {
|
|
// All the GEPs feeding the PHI are identical. Clone one down into our
|
|
// BB so that it can be merged with the current GEP.
|
|
} else {
|
|
// All the GEPs feeding the PHI differ at a single offset. Clone a GEP
|
|
// into the current block so it can be merged, and create a new PHI to
|
|
// set that index.
|
|
PHINode *NewPN;
|
|
{
|
|
IRBuilderBase::InsertPointGuard Guard(Builder);
|
|
Builder.SetInsertPoint(PN);
|
|
NewPN = Builder.CreatePHI(Op1->getOperand(DI)->getType(),
|
|
PN->getNumOperands());
|
|
}
|
|
|
|
for (auto &I : PN->operands())
|
|
NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI),
|
|
PN->getIncomingBlock(I));
|
|
|
|
NewGEP->setOperand(DI, NewPN);
|
|
}
|
|
|
|
NewGEP->insertBefore(*GEP.getParent(), GEP.getParent()->getFirstInsertionPt());
|
|
return NewGEP;
|
|
}
|
|
|
|
Instruction *InstCombinerImpl::visitGetElementPtrInst(GetElementPtrInst &GEP) {
|
|
Value *PtrOp = GEP.getOperand(0);
|
|
SmallVector<Value *, 8> Indices(GEP.indices());
|
|
Type *GEPType = GEP.getType();
|
|
Type *GEPEltType = GEP.getSourceElementType();
|
|
if (Value *V =
|
|
simplifyGEPInst(GEPEltType, PtrOp, Indices, GEP.getNoWrapFlags(),
|
|
SQ.getWithInstruction(&GEP)))
|
|
return replaceInstUsesWith(GEP, V);
|
|
|
|
// For vector geps, use the generic demanded vector support.
|
|
// Skip if GEP return type is scalable. The number of elements is unknown at
|
|
// compile-time.
|
|
if (auto *GEPFVTy = dyn_cast<FixedVectorType>(GEPType)) {
|
|
auto VWidth = GEPFVTy->getNumElements();
|
|
APInt PoisonElts(VWidth, 0);
|
|
APInt AllOnesEltMask(APInt::getAllOnes(VWidth));
|
|
if (Value *V = SimplifyDemandedVectorElts(&GEP, AllOnesEltMask,
|
|
PoisonElts)) {
|
|
if (V != &GEP)
|
|
return replaceInstUsesWith(GEP, V);
|
|
return &GEP;
|
|
}
|
|
|
|
// TODO: 1) Scalarize splat operands, 2) scalarize entire instruction if
|
|
// possible (decide on canonical form for pointer broadcast), 3) exploit
|
|
// undef elements to decrease demanded bits
|
|
}
|
|
|
|
// Eliminate unneeded casts for indices, and replace indices which displace
|
|
// by multiples of a zero size type with zero.
|
|
bool MadeChange = false;
|
|
|
|
// Index width may not be the same width as pointer width.
|
|
// Data layout chooses the right type based on supported integer types.
|
|
Type *NewScalarIndexTy =
|
|
DL.getIndexType(GEP.getPointerOperandType()->getScalarType());
|
|
|
|
gep_type_iterator GTI = gep_type_begin(GEP);
|
|
for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E;
|
|
++I, ++GTI) {
|
|
// Skip indices into struct types.
|
|
if (GTI.isStruct())
|
|
continue;
|
|
|
|
Type *IndexTy = (*I)->getType();
|
|
Type *NewIndexType =
|
|
IndexTy->isVectorTy()
|
|
? VectorType::get(NewScalarIndexTy,
|
|
cast<VectorType>(IndexTy)->getElementCount())
|
|
: NewScalarIndexTy;
|
|
|
|
// If the element type has zero size then any index over it is equivalent
|
|
// to an index of zero, so replace it with zero if it is not zero already.
|
|
Type *EltTy = GTI.getIndexedType();
|
|
if (EltTy->isSized() && DL.getTypeAllocSize(EltTy).isZero())
|
|
if (!isa<Constant>(*I) || !match(I->get(), m_Zero())) {
|
|
*I = Constant::getNullValue(NewIndexType);
|
|
MadeChange = true;
|
|
}
|
|
|
|
if (IndexTy != NewIndexType) {
|
|
// If we are using a wider index than needed for this platform, shrink
|
|
// it to what we need. If narrower, sign-extend it to what we need.
|
|
// This explicit cast can make subsequent optimizations more obvious.
|
|
*I = Builder.CreateIntCast(*I, NewIndexType, true);
|
|
MadeChange = true;
|
|
}
|
|
}
|
|
if (MadeChange)
|
|
return &GEP;
|
|
|
|
// Canonicalize constant GEPs to i8 type.
|
|
if (!GEPEltType->isIntegerTy(8) && GEP.hasAllConstantIndices()) {
|
|
APInt Offset(DL.getIndexTypeSizeInBits(GEPType), 0);
|
|
if (GEP.accumulateConstantOffset(DL, Offset))
|
|
return replaceInstUsesWith(
|
|
GEP, Builder.CreatePtrAdd(PtrOp, Builder.getInt(Offset), "",
|
|
GEP.getNoWrapFlags()));
|
|
}
|
|
|
|
if (shouldCanonicalizeGEPToPtrAdd(GEP)) {
|
|
Value *Offset = EmitGEPOffset(cast<GEPOperator>(&GEP));
|
|
Value *NewGEP =
|
|
Builder.CreatePtrAdd(PtrOp, Offset, "", GEP.getNoWrapFlags());
|
|
return replaceInstUsesWith(GEP, NewGEP);
|
|
}
|
|
|
|
// Check to see if the inputs to the PHI node are getelementptr instructions.
|
|
if (auto *PN = dyn_cast<PHINode>(PtrOp)) {
|
|
if (Value *NewPtrOp = foldGEPOfPhi(GEP, PN, Builder))
|
|
return replaceOperand(GEP, 0, NewPtrOp);
|
|
}
|
|
|
|
if (auto *Src = dyn_cast<GEPOperator>(PtrOp))
|
|
if (Instruction *I = visitGEPOfGEP(GEP, Src))
|
|
return I;
|
|
|
|
if (GEP.getNumIndices() == 1) {
|
|
unsigned AS = GEP.getPointerAddressSpace();
|
|
if (GEP.getOperand(1)->getType()->getScalarSizeInBits() ==
|
|
DL.getIndexSizeInBits(AS)) {
|
|
uint64_t TyAllocSize = DL.getTypeAllocSize(GEPEltType).getFixedValue();
|
|
|
|
if (TyAllocSize == 1) {
|
|
// Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X)) to (bitcast Y),
|
|
// but only if the result pointer is only used as if it were an integer,
|
|
// or both point to the same underlying object (otherwise provenance is
|
|
// not necessarily retained).
|
|
Value *X = GEP.getPointerOperand();
|
|
Value *Y;
|
|
if (match(GEP.getOperand(1),
|
|
m_Sub(m_PtrToInt(m_Value(Y)), m_PtrToInt(m_Specific(X)))) &&
|
|
GEPType == Y->getType()) {
|
|
bool HasSameUnderlyingObject =
|
|
getUnderlyingObject(X) == getUnderlyingObject(Y);
|
|
bool Changed = false;
|
|
GEP.replaceUsesWithIf(Y, [&](Use &U) {
|
|
bool ShouldReplace = HasSameUnderlyingObject ||
|
|
isa<ICmpInst>(U.getUser()) ||
|
|
isa<PtrToIntInst>(U.getUser());
|
|
Changed |= ShouldReplace;
|
|
return ShouldReplace;
|
|
});
|
|
return Changed ? &GEP : nullptr;
|
|
}
|
|
} else if (auto *ExactIns =
|
|
dyn_cast<PossiblyExactOperator>(GEP.getOperand(1))) {
|
|
// Canonicalize (gep T* X, V / sizeof(T)) to (gep i8* X, V)
|
|
Value *V;
|
|
if (ExactIns->isExact()) {
|
|
if ((has_single_bit(TyAllocSize) &&
|
|
match(GEP.getOperand(1),
|
|
m_Shr(m_Value(V),
|
|
m_SpecificInt(countr_zero(TyAllocSize))))) ||
|
|
match(GEP.getOperand(1),
|
|
m_IDiv(m_Value(V), m_SpecificInt(TyAllocSize)))) {
|
|
return GetElementPtrInst::Create(Builder.getInt8Ty(),
|
|
GEP.getPointerOperand(), V,
|
|
GEP.getNoWrapFlags());
|
|
}
|
|
}
|
|
if (ExactIns->isExact() && ExactIns->hasOneUse()) {
|
|
// Try to canonicalize non-i8 element type to i8 if the index is an
|
|
// exact instruction. If the index is an exact instruction (div/shr)
|
|
// with a constant RHS, we can fold the non-i8 element scale into the
|
|
// div/shr (similiar to the mul case, just inverted).
|
|
const APInt *C;
|
|
std::optional<APInt> NewC;
|
|
if (has_single_bit(TyAllocSize) &&
|
|
match(ExactIns, m_Shr(m_Value(V), m_APInt(C))) &&
|
|
C->uge(countr_zero(TyAllocSize)))
|
|
NewC = *C - countr_zero(TyAllocSize);
|
|
else if (match(ExactIns, m_UDiv(m_Value(V), m_APInt(C)))) {
|
|
APInt Quot;
|
|
uint64_t Rem;
|
|
APInt::udivrem(*C, TyAllocSize, Quot, Rem);
|
|
if (Rem == 0)
|
|
NewC = Quot;
|
|
} else if (match(ExactIns, m_SDiv(m_Value(V), m_APInt(C)))) {
|
|
APInt Quot;
|
|
int64_t Rem;
|
|
APInt::sdivrem(*C, TyAllocSize, Quot, Rem);
|
|
// For sdiv we need to make sure we arent creating INT_MIN / -1.
|
|
if (!Quot.isAllOnes() && Rem == 0)
|
|
NewC = Quot;
|
|
}
|
|
|
|
if (NewC.has_value()) {
|
|
Value *NewOp = Builder.CreateBinOp(
|
|
static_cast<Instruction::BinaryOps>(ExactIns->getOpcode()), V,
|
|
ConstantInt::get(V->getType(), *NewC));
|
|
cast<BinaryOperator>(NewOp)->setIsExact();
|
|
return GetElementPtrInst::Create(Builder.getInt8Ty(),
|
|
GEP.getPointerOperand(), NewOp,
|
|
GEP.getNoWrapFlags());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// We do not handle pointer-vector geps here.
|
|
if (GEPType->isVectorTy())
|
|
return nullptr;
|
|
|
|
if (!GEP.isInBounds()) {
|
|
unsigned IdxWidth =
|
|
DL.getIndexSizeInBits(PtrOp->getType()->getPointerAddressSpace());
|
|
APInt BasePtrOffset(IdxWidth, 0);
|
|
Value *UnderlyingPtrOp =
|
|
PtrOp->stripAndAccumulateInBoundsConstantOffsets(DL, BasePtrOffset);
|
|
bool CanBeNull, CanBeFreed;
|
|
uint64_t DerefBytes = UnderlyingPtrOp->getPointerDereferenceableBytes(
|
|
DL, CanBeNull, CanBeFreed);
|
|
if (!CanBeNull && !CanBeFreed && DerefBytes != 0) {
|
|
if (GEP.accumulateConstantOffset(DL, BasePtrOffset) &&
|
|
BasePtrOffset.isNonNegative()) {
|
|
APInt AllocSize(IdxWidth, DerefBytes);
|
|
if (BasePtrOffset.ule(AllocSize)) {
|
|
return GetElementPtrInst::CreateInBounds(
|
|
GEP.getSourceElementType(), PtrOp, Indices, GEP.getName());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// nusw + nneg -> nuw
|
|
if (GEP.hasNoUnsignedSignedWrap() && !GEP.hasNoUnsignedWrap() &&
|
|
all_of(GEP.indices(), [&](Value *Idx) {
|
|
return isKnownNonNegative(Idx, SQ.getWithInstruction(&GEP));
|
|
})) {
|
|
GEP.setNoWrapFlags(GEP.getNoWrapFlags() | GEPNoWrapFlags::noUnsignedWrap());
|
|
return &GEP;
|
|
}
|
|
|
|
// These rewrites are trying to preserve inbounds/nuw attributes. So we want
|
|
// to do this after having tried to derive "nuw" above.
|
|
if (GEP.getNumIndices() == 1) {
|
|
// Given (gep p, x+y) we want to determine the common nowrap flags for both
|
|
// geps if transforming into (gep (gep p, x), y).
|
|
auto GetPreservedNoWrapFlags = [&](bool AddIsNUW) {
|
|
// We can preserve both "inbounds nuw", "nusw nuw" and "nuw" if we know
|
|
// that x + y does not have unsigned wrap.
|
|
if (GEP.hasNoUnsignedWrap() && AddIsNUW)
|
|
return GEP.getNoWrapFlags();
|
|
return GEPNoWrapFlags::none();
|
|
};
|
|
|
|
// Try to replace ADD + GEP with GEP + GEP.
|
|
Value *Idx1, *Idx2;
|
|
if (match(GEP.getOperand(1),
|
|
m_OneUse(m_AddLike(m_Value(Idx1), m_Value(Idx2))))) {
|
|
// %idx = add i64 %idx1, %idx2
|
|
// %gep = getelementptr i32, ptr %ptr, i64 %idx
|
|
// as:
|
|
// %newptr = getelementptr i32, ptr %ptr, i64 %idx1
|
|
// %newgep = getelementptr i32, ptr %newptr, i64 %idx2
|
|
bool NUW = match(GEP.getOperand(1), m_NUWAddLike(m_Value(), m_Value()));
|
|
GEPNoWrapFlags NWFlags = GetPreservedNoWrapFlags(NUW);
|
|
auto *NewPtr =
|
|
Builder.CreateGEP(GEP.getSourceElementType(), GEP.getPointerOperand(),
|
|
Idx1, "", NWFlags);
|
|
return replaceInstUsesWith(GEP,
|
|
Builder.CreateGEP(GEP.getSourceElementType(),
|
|
NewPtr, Idx2, "", NWFlags));
|
|
}
|
|
ConstantInt *C;
|
|
if (match(GEP.getOperand(1), m_OneUse(m_SExtLike(m_OneUse(m_NSWAddLike(
|
|
m_Value(Idx1), m_ConstantInt(C))))))) {
|
|
// %add = add nsw i32 %idx1, idx2
|
|
// %sidx = sext i32 %add to i64
|
|
// %gep = getelementptr i32, ptr %ptr, i64 %sidx
|
|
// as:
|
|
// %newptr = getelementptr i32, ptr %ptr, i32 %idx1
|
|
// %newgep = getelementptr i32, ptr %newptr, i32 idx2
|
|
bool NUW = match(GEP.getOperand(1),
|
|
m_NNegZExt(m_NUWAddLike(m_Value(), m_Value())));
|
|
GEPNoWrapFlags NWFlags = GetPreservedNoWrapFlags(NUW);
|
|
auto *NewPtr = Builder.CreateGEP(
|
|
GEP.getSourceElementType(), GEP.getPointerOperand(),
|
|
Builder.CreateSExt(Idx1, GEP.getOperand(1)->getType()), "", NWFlags);
|
|
return replaceInstUsesWith(
|
|
GEP,
|
|
Builder.CreateGEP(GEP.getSourceElementType(), NewPtr,
|
|
Builder.CreateSExt(C, GEP.getOperand(1)->getType()),
|
|
"", NWFlags));
|
|
}
|
|
}
|
|
|
|
if (Instruction *R = foldSelectGEP(GEP, Builder))
|
|
return R;
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
static bool isNeverEqualToUnescapedAlloc(Value *V, const TargetLibraryInfo &TLI,
|
|
Instruction *AI) {
|
|
if (isa<ConstantPointerNull>(V))
|
|
return true;
|
|
if (auto *LI = dyn_cast<LoadInst>(V))
|
|
return isa<GlobalVariable>(LI->getPointerOperand());
|
|
// Two distinct allocations will never be equal.
|
|
return isAllocLikeFn(V, &TLI) && V != AI;
|
|
}
|
|
|
|
/// Given a call CB which uses an address UsedV, return true if we can prove the
|
|
/// call's only possible effect is storing to V.
|
|
static bool isRemovableWrite(CallBase &CB, Value *UsedV,
|
|
const TargetLibraryInfo &TLI) {
|
|
if (!CB.use_empty())
|
|
// TODO: add recursion if returned attribute is present
|
|
return false;
|
|
|
|
if (CB.isTerminator())
|
|
// TODO: remove implementation restriction
|
|
return false;
|
|
|
|
if (!CB.willReturn() || !CB.doesNotThrow())
|
|
return false;
|
|
|
|
// If the only possible side effect of the call is writing to the alloca,
|
|
// and the result isn't used, we can safely remove any reads implied by the
|
|
// call including those which might read the alloca itself.
|
|
std::optional<MemoryLocation> Dest = MemoryLocation::getForDest(&CB, TLI);
|
|
return Dest && Dest->Ptr == UsedV;
|
|
}
|
|
|
|
static bool isAllocSiteRemovable(Instruction *AI,
|
|
SmallVectorImpl<WeakTrackingVH> &Users,
|
|
const TargetLibraryInfo &TLI) {
|
|
SmallVector<Instruction*, 4> Worklist;
|
|
const std::optional<StringRef> Family = getAllocationFamily(AI, &TLI);
|
|
Worklist.push_back(AI);
|
|
|
|
do {
|
|
Instruction *PI = Worklist.pop_back_val();
|
|
for (User *U : PI->users()) {
|
|
Instruction *I = cast<Instruction>(U);
|
|
switch (I->getOpcode()) {
|
|
default:
|
|
// Give up the moment we see something we can't handle.
|
|
return false;
|
|
|
|
case Instruction::AddrSpaceCast:
|
|
case Instruction::BitCast:
|
|
case Instruction::GetElementPtr:
|
|
Users.emplace_back(I);
|
|
Worklist.push_back(I);
|
|
continue;
|
|
|
|
case Instruction::ICmp: {
|
|
ICmpInst *ICI = cast<ICmpInst>(I);
|
|
// We can fold eq/ne comparisons with null to false/true, respectively.
|
|
// We also fold comparisons in some conditions provided the alloc has
|
|
// not escaped (see isNeverEqualToUnescapedAlloc).
|
|
if (!ICI->isEquality())
|
|
return false;
|
|
unsigned OtherIndex = (ICI->getOperand(0) == PI) ? 1 : 0;
|
|
if (!isNeverEqualToUnescapedAlloc(ICI->getOperand(OtherIndex), TLI, AI))
|
|
return false;
|
|
|
|
// Do not fold compares to aligned_alloc calls, as they may have to
|
|
// return null in case the required alignment cannot be satisfied,
|
|
// unless we can prove that both alignment and size are valid.
|
|
auto AlignmentAndSizeKnownValid = [](CallBase *CB) {
|
|
// Check if alignment and size of a call to aligned_alloc is valid,
|
|
// that is alignment is a power-of-2 and the size is a multiple of the
|
|
// alignment.
|
|
const APInt *Alignment;
|
|
const APInt *Size;
|
|
return match(CB->getArgOperand(0), m_APInt(Alignment)) &&
|
|
match(CB->getArgOperand(1), m_APInt(Size)) &&
|
|
Alignment->isPowerOf2() && Size->urem(*Alignment).isZero();
|
|
};
|
|
auto *CB = dyn_cast<CallBase>(AI);
|
|
LibFunc TheLibFunc;
|
|
if (CB && TLI.getLibFunc(*CB->getCalledFunction(), TheLibFunc) &&
|
|
TLI.has(TheLibFunc) && TheLibFunc == LibFunc_aligned_alloc &&
|
|
!AlignmentAndSizeKnownValid(CB))
|
|
return false;
|
|
Users.emplace_back(I);
|
|
continue;
|
|
}
|
|
|
|
case Instruction::Call:
|
|
// Ignore no-op and store intrinsics.
|
|
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
|
|
switch (II->getIntrinsicID()) {
|
|
default:
|
|
return false;
|
|
|
|
case Intrinsic::memmove:
|
|
case Intrinsic::memcpy:
|
|
case Intrinsic::memset: {
|
|
MemIntrinsic *MI = cast<MemIntrinsic>(II);
|
|
if (MI->isVolatile() || MI->getRawDest() != PI)
|
|
return false;
|
|
[[fallthrough]];
|
|
}
|
|
case Intrinsic::assume:
|
|
case Intrinsic::invariant_start:
|
|
case Intrinsic::invariant_end:
|
|
case Intrinsic::lifetime_start:
|
|
case Intrinsic::lifetime_end:
|
|
case Intrinsic::objectsize:
|
|
Users.emplace_back(I);
|
|
continue;
|
|
case Intrinsic::launder_invariant_group:
|
|
case Intrinsic::strip_invariant_group:
|
|
Users.emplace_back(I);
|
|
Worklist.push_back(I);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (isRemovableWrite(*cast<CallBase>(I), PI, TLI)) {
|
|
Users.emplace_back(I);
|
|
continue;
|
|
}
|
|
|
|
if (Family && getFreedOperand(cast<CallBase>(I), &TLI) == PI &&
|
|
getAllocationFamily(I, &TLI) == Family) {
|
|
Users.emplace_back(I);
|
|
continue;
|
|
}
|
|
|
|
if (Family && getReallocatedOperand(cast<CallBase>(I)) == PI &&
|
|
getAllocationFamily(I, &TLI) == Family) {
|
|
Users.emplace_back(I);
|
|
Worklist.push_back(I);
|
|
continue;
|
|
}
|
|
|
|
return false;
|
|
|
|
case Instruction::Store: {
|
|
StoreInst *SI = cast<StoreInst>(I);
|
|
if (SI->isVolatile() || SI->getPointerOperand() != PI)
|
|
return false;
|
|
Users.emplace_back(I);
|
|
continue;
|
|
}
|
|
}
|
|
llvm_unreachable("missing a return?");
|
|
}
|
|
} while (!Worklist.empty());
|
|
return true;
|
|
}
|
|
|
|
Instruction *InstCombinerImpl::visitAllocSite(Instruction &MI) {
|
|
assert(isa<AllocaInst>(MI) || isRemovableAlloc(&cast<CallBase>(MI), &TLI));
|
|
|
|
// If we have a malloc call which is only used in any amount of comparisons to
|
|
// null and free calls, delete the calls and replace the comparisons with true
|
|
// or false as appropriate.
|
|
|
|
// This is based on the principle that we can substitute our own allocation
|
|
// function (which will never return null) rather than knowledge of the
|
|
// specific function being called. In some sense this can change the permitted
|
|
// outputs of a program (when we convert a malloc to an alloca, the fact that
|
|
// the allocation is now on the stack is potentially visible, for example),
|
|
// but we believe in a permissible manner.
|
|
SmallVector<WeakTrackingVH, 64> Users;
|
|
|
|
// If we are removing an alloca with a dbg.declare, insert dbg.value calls
|
|
// before each store.
|
|
SmallVector<DbgVariableIntrinsic *, 8> DVIs;
|
|
SmallVector<DbgVariableRecord *, 8> DVRs;
|
|
std::unique_ptr<DIBuilder> DIB;
|
|
if (isa<AllocaInst>(MI)) {
|
|
findDbgUsers(DVIs, &MI, &DVRs);
|
|
DIB.reset(new DIBuilder(*MI.getModule(), /*AllowUnresolved=*/false));
|
|
}
|
|
|
|
if (isAllocSiteRemovable(&MI, Users, TLI)) {
|
|
for (unsigned i = 0, e = Users.size(); i != e; ++i) {
|
|
// Lowering all @llvm.objectsize calls first because they may
|
|
// use a bitcast/GEP of the alloca we are removing.
|
|
if (!Users[i])
|
|
continue;
|
|
|
|
Instruction *I = cast<Instruction>(&*Users[i]);
|
|
|
|
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
|
|
if (II->getIntrinsicID() == Intrinsic::objectsize) {
|
|
SmallVector<Instruction *> InsertedInstructions;
|
|
Value *Result = lowerObjectSizeCall(
|
|
II, DL, &TLI, AA, /*MustSucceed=*/true, &InsertedInstructions);
|
|
for (Instruction *Inserted : InsertedInstructions)
|
|
Worklist.add(Inserted);
|
|
replaceInstUsesWith(*I, Result);
|
|
eraseInstFromFunction(*I);
|
|
Users[i] = nullptr; // Skip examining in the next loop.
|
|
}
|
|
}
|
|
}
|
|
for (unsigned i = 0, e = Users.size(); i != e; ++i) {
|
|
if (!Users[i])
|
|
continue;
|
|
|
|
Instruction *I = cast<Instruction>(&*Users[i]);
|
|
|
|
if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
|
|
replaceInstUsesWith(*C,
|
|
ConstantInt::get(Type::getInt1Ty(C->getContext()),
|
|
C->isFalseWhenEqual()));
|
|
} else if (auto *SI = dyn_cast<StoreInst>(I)) {
|
|
for (auto *DVI : DVIs)
|
|
if (DVI->isAddressOfVariable())
|
|
ConvertDebugDeclareToDebugValue(DVI, SI, *DIB);
|
|
for (auto *DVR : DVRs)
|
|
if (DVR->isAddressOfVariable())
|
|
ConvertDebugDeclareToDebugValue(DVR, SI, *DIB);
|
|
} else {
|
|
// Casts, GEP, or anything else: we're about to delete this instruction,
|
|
// so it can not have any valid uses.
|
|
replaceInstUsesWith(*I, PoisonValue::get(I->getType()));
|
|
}
|
|
eraseInstFromFunction(*I);
|
|
}
|
|
|
|
if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) {
|
|
// Replace invoke with a NOP intrinsic to maintain the original CFG
|
|
Module *M = II->getModule();
|
|
Function *F = Intrinsic::getOrInsertDeclaration(M, Intrinsic::donothing);
|
|
auto *NewII = InvokeInst::Create(
|
|
F, II->getNormalDest(), II->getUnwindDest(), {}, "", II->getParent());
|
|
NewII->setDebugLoc(II->getDebugLoc());
|
|
}
|
|
|
|
// Remove debug intrinsics which describe the value contained within the
|
|
// alloca. In addition to removing dbg.{declare,addr} which simply point to
|
|
// the alloca, remove dbg.value(<alloca>, ..., DW_OP_deref)'s as well, e.g.:
|
|
//
|
|
// ```
|
|
// define void @foo(i32 %0) {
|
|
// %a = alloca i32 ; Deleted.
|
|
// store i32 %0, i32* %a
|
|
// dbg.value(i32 %0, "arg0") ; Not deleted.
|
|
// dbg.value(i32* %a, "arg0", DW_OP_deref) ; Deleted.
|
|
// call void @trivially_inlinable_no_op(i32* %a)
|
|
// ret void
|
|
// }
|
|
// ```
|
|
//
|
|
// This may not be required if we stop describing the contents of allocas
|
|
// using dbg.value(<alloca>, ..., DW_OP_deref), but we currently do this in
|
|
// the LowerDbgDeclare utility.
|
|
//
|
|
// If there is a dead store to `%a` in @trivially_inlinable_no_op, the
|
|
// "arg0" dbg.value may be stale after the call. However, failing to remove
|
|
// the DW_OP_deref dbg.value causes large gaps in location coverage.
|
|
//
|
|
// FIXME: the Assignment Tracking project has now likely made this
|
|
// redundant (and it's sometimes harmful).
|
|
for (auto *DVI : DVIs)
|
|
if (DVI->isAddressOfVariable() || DVI->getExpression()->startsWithDeref())
|
|
DVI->eraseFromParent();
|
|
for (auto *DVR : DVRs)
|
|
if (DVR->isAddressOfVariable() || DVR->getExpression()->startsWithDeref())
|
|
DVR->eraseFromParent();
|
|
|
|
return eraseInstFromFunction(MI);
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
/// Move the call to free before a NULL test.
|
|
///
|
|
/// Check if this free is accessed after its argument has been test
|
|
/// against NULL (property 0).
|
|
/// If yes, it is legal to move this call in its predecessor block.
|
|
///
|
|
/// The move is performed only if the block containing the call to free
|
|
/// will be removed, i.e.:
|
|
/// 1. it has only one predecessor P, and P has two successors
|
|
/// 2. it contains the call, noops, and an unconditional branch
|
|
/// 3. its successor is the same as its predecessor's successor
|
|
///
|
|
/// The profitability is out-of concern here and this function should
|
|
/// be called only if the caller knows this transformation would be
|
|
/// profitable (e.g., for code size).
|
|
static Instruction *tryToMoveFreeBeforeNullTest(CallInst &FI,
|
|
const DataLayout &DL) {
|
|
Value *Op = FI.getArgOperand(0);
|
|
BasicBlock *FreeInstrBB = FI.getParent();
|
|
BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor();
|
|
|
|
// Validate part of constraint #1: Only one predecessor
|
|
// FIXME: We can extend the number of predecessor, but in that case, we
|
|
// would duplicate the call to free in each predecessor and it may
|
|
// not be profitable even for code size.
|
|
if (!PredBB)
|
|
return nullptr;
|
|
|
|
// Validate constraint #2: Does this block contains only the call to
|
|
// free, noops, and an unconditional branch?
|
|
BasicBlock *SuccBB;
|
|
Instruction *FreeInstrBBTerminator = FreeInstrBB->getTerminator();
|
|
if (!match(FreeInstrBBTerminator, m_UnconditionalBr(SuccBB)))
|
|
return nullptr;
|
|
|
|
// If there are only 2 instructions in the block, at this point,
|
|
// this is the call to free and unconditional.
|
|
// If there are more than 2 instructions, check that they are noops
|
|
// i.e., they won't hurt the performance of the generated code.
|
|
if (FreeInstrBB->size() != 2) {
|
|
for (const Instruction &Inst : FreeInstrBB->instructionsWithoutDebug()) {
|
|
if (&Inst == &FI || &Inst == FreeInstrBBTerminator)
|
|
continue;
|
|
auto *Cast = dyn_cast<CastInst>(&Inst);
|
|
if (!Cast || !Cast->isNoopCast(DL))
|
|
return nullptr;
|
|
}
|
|
}
|
|
// Validate the rest of constraint #1 by matching on the pred branch.
|
|
Instruction *TI = PredBB->getTerminator();
|
|
BasicBlock *TrueBB, *FalseBB;
|
|
CmpPredicate Pred;
|
|
if (!match(TI, m_Br(m_ICmp(Pred,
|
|
m_CombineOr(m_Specific(Op),
|
|
m_Specific(Op->stripPointerCasts())),
|
|
m_Zero()),
|
|
TrueBB, FalseBB)))
|
|
return nullptr;
|
|
if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
|
|
return nullptr;
|
|
|
|
// Validate constraint #3: Ensure the null case just falls through.
|
|
if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB))
|
|
return nullptr;
|
|
assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) &&
|
|
"Broken CFG: missing edge from predecessor to successor");
|
|
|
|
// At this point, we know that everything in FreeInstrBB can be moved
|
|
// before TI.
|
|
for (Instruction &Instr : llvm::make_early_inc_range(*FreeInstrBB)) {
|
|
if (&Instr == FreeInstrBBTerminator)
|
|
break;
|
|
Instr.moveBeforePreserving(TI->getIterator());
|
|
}
|
|
assert(FreeInstrBB->size() == 1 &&
|
|
"Only the branch instruction should remain");
|
|
|
|
// Now that we've moved the call to free before the NULL check, we have to
|
|
// remove any attributes on its parameter that imply it's non-null, because
|
|
// those attributes might have only been valid because of the NULL check, and
|
|
// we can get miscompiles if we keep them. This is conservative if non-null is
|
|
// also implied by something other than the NULL check, but it's guaranteed to
|
|
// be correct, and the conservativeness won't matter in practice, since the
|
|
// attributes are irrelevant for the call to free itself and the pointer
|
|
// shouldn't be used after the call.
|
|
AttributeList Attrs = FI.getAttributes();
|
|
Attrs = Attrs.removeParamAttribute(FI.getContext(), 0, Attribute::NonNull);
|
|
Attribute Dereferenceable = Attrs.getParamAttr(0, Attribute::Dereferenceable);
|
|
if (Dereferenceable.isValid()) {
|
|
uint64_t Bytes = Dereferenceable.getDereferenceableBytes();
|
|
Attrs = Attrs.removeParamAttribute(FI.getContext(), 0,
|
|
Attribute::Dereferenceable);
|
|
Attrs = Attrs.addDereferenceableOrNullParamAttr(FI.getContext(), 0, Bytes);
|
|
}
|
|
FI.setAttributes(Attrs);
|
|
|
|
return &FI;
|
|
}
|
|
|
|
Instruction *InstCombinerImpl::visitFree(CallInst &FI, Value *Op) {
|
|
// free undef -> unreachable.
|
|
if (isa<UndefValue>(Op)) {
|
|
// Leave a marker since we can't modify the CFG here.
|
|
CreateNonTerminatorUnreachable(&FI);
|
|
return eraseInstFromFunction(FI);
|
|
}
|
|
|
|
// If we have 'free null' delete the instruction. This can happen in stl code
|
|
// when lots of inlining happens.
|
|
if (isa<ConstantPointerNull>(Op))
|
|
return eraseInstFromFunction(FI);
|
|
|
|
// If we had free(realloc(...)) with no intervening uses, then eliminate the
|
|
// realloc() entirely.
|
|
CallInst *CI = dyn_cast<CallInst>(Op);
|
|
if (CI && CI->hasOneUse())
|
|
if (Value *ReallocatedOp = getReallocatedOperand(CI))
|
|
return eraseInstFromFunction(*replaceInstUsesWith(*CI, ReallocatedOp));
|
|
|
|
// If we optimize for code size, try to move the call to free before the null
|
|
// test so that simplify cfg can remove the empty block and dead code
|
|
// elimination the branch. I.e., helps to turn something like:
|
|
// if (foo) free(foo);
|
|
// into
|
|
// free(foo);
|
|
//
|
|
// Note that we can only do this for 'free' and not for any flavor of
|
|
// 'operator delete'; there is no 'operator delete' symbol for which we are
|
|
// permitted to invent a call, even if we're passing in a null pointer.
|
|
if (MinimizeSize) {
|
|
LibFunc Func;
|
|
if (TLI.getLibFunc(FI, Func) && TLI.has(Func) && Func == LibFunc_free)
|
|
if (Instruction *I = tryToMoveFreeBeforeNullTest(FI, DL))
|
|
return I;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
Instruction *InstCombinerImpl::visitReturnInst(ReturnInst &RI) {
|
|
Value *RetVal = RI.getReturnValue();
|
|
if (!RetVal)
|
|
return nullptr;
|
|
|
|
Function *F = RI.getFunction();
|
|
Type *RetTy = RetVal->getType();
|
|
if (RetTy->isPointerTy()) {
|
|
bool HasDereferenceable =
|
|
F->getAttributes().getRetDereferenceableBytes() > 0;
|
|
if (F->hasRetAttribute(Attribute::NonNull) ||
|
|
(HasDereferenceable &&
|
|
!NullPointerIsDefined(F, RetTy->getPointerAddressSpace()))) {
|
|
if (Value *V = simplifyNonNullOperand(RetVal, HasDereferenceable))
|
|
return replaceOperand(RI, 0, V);
|
|
}
|
|
}
|
|
|
|
if (!AttributeFuncs::isNoFPClassCompatibleType(RetTy))
|
|
return nullptr;
|
|
|
|
FPClassTest ReturnClass = F->getAttributes().getRetNoFPClass();
|
|
if (ReturnClass == fcNone)
|
|
return nullptr;
|
|
|
|
KnownFPClass KnownClass;
|
|
Value *Simplified =
|
|
SimplifyDemandedUseFPClass(RetVal, ~ReturnClass, KnownClass, &RI);
|
|
if (!Simplified)
|
|
return nullptr;
|
|
|
|
return ReturnInst::Create(RI.getContext(), Simplified);
|
|
}
|
|
|
|
// WARNING: keep in sync with SimplifyCFGOpt::simplifyUnreachable()!
|
|
bool InstCombinerImpl::removeInstructionsBeforeUnreachable(Instruction &I) {
|
|
// Try to remove the previous instruction if it must lead to unreachable.
|
|
// This includes instructions like stores and "llvm.assume" that may not get
|
|
// removed by simple dead code elimination.
|
|
bool Changed = false;
|
|
while (Instruction *Prev = I.getPrevNonDebugInstruction()) {
|
|
// While we theoretically can erase EH, that would result in a block that
|
|
// used to start with an EH no longer starting with EH, which is invalid.
|
|
// To make it valid, we'd need to fixup predecessors to no longer refer to
|
|
// this block, but that changes CFG, which is not allowed in InstCombine.
|
|
if (Prev->isEHPad())
|
|
break; // Can not drop any more instructions. We're done here.
|
|
|
|
if (!isGuaranteedToTransferExecutionToSuccessor(Prev))
|
|
break; // Can not drop any more instructions. We're done here.
|
|
// Otherwise, this instruction can be freely erased,
|
|
// even if it is not side-effect free.
|
|
|
|
// A value may still have uses before we process it here (for example, in
|
|
// another unreachable block), so convert those to poison.
|
|
replaceInstUsesWith(*Prev, PoisonValue::get(Prev->getType()));
|
|
eraseInstFromFunction(*Prev);
|
|
Changed = true;
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
Instruction *InstCombinerImpl::visitUnreachableInst(UnreachableInst &I) {
|
|
removeInstructionsBeforeUnreachable(I);
|
|
return nullptr;
|
|
}
|
|
|
|
Instruction *InstCombinerImpl::visitUnconditionalBranchInst(BranchInst &BI) {
|
|
assert(BI.isUnconditional() && "Only for unconditional branches.");
|
|
|
|
// If this store is the second-to-last instruction in the basic block
|
|
// (excluding debug info) and if the block ends with
|
|
// an unconditional branch, try to move the store to the successor block.
|
|
|
|
auto GetLastSinkableStore = [](BasicBlock::iterator BBI) {
|
|
BasicBlock::iterator FirstInstr = BBI->getParent()->begin();
|
|
do {
|
|
if (BBI != FirstInstr)
|
|
--BBI;
|
|
} while (BBI != FirstInstr && BBI->isDebugOrPseudoInst());
|
|
|
|
return dyn_cast<StoreInst>(BBI);
|
|
};
|
|
|
|
if (StoreInst *SI = GetLastSinkableStore(BasicBlock::iterator(BI)))
|
|
if (mergeStoreIntoSuccessor(*SI))
|
|
return &BI;
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
void InstCombinerImpl::addDeadEdge(BasicBlock *From, BasicBlock *To,
|
|
SmallVectorImpl<BasicBlock *> &Worklist) {
|
|
if (!DeadEdges.insert({From, To}).second)
|
|
return;
|
|
|
|
// Replace phi node operands in successor with poison.
|
|
for (PHINode &PN : To->phis())
|
|
for (Use &U : PN.incoming_values())
|
|
if (PN.getIncomingBlock(U) == From && !isa<PoisonValue>(U)) {
|
|
replaceUse(U, PoisonValue::get(PN.getType()));
|
|
addToWorklist(&PN);
|
|
MadeIRChange = true;
|
|
}
|
|
|
|
Worklist.push_back(To);
|
|
}
|
|
|
|
// Under the assumption that I is unreachable, remove it and following
|
|
// instructions. Changes are reported directly to MadeIRChange.
|
|
void InstCombinerImpl::handleUnreachableFrom(
|
|
Instruction *I, SmallVectorImpl<BasicBlock *> &Worklist) {
|
|
BasicBlock *BB = I->getParent();
|
|
for (Instruction &Inst : make_early_inc_range(
|
|
make_range(std::next(BB->getTerminator()->getReverseIterator()),
|
|
std::next(I->getReverseIterator())))) {
|
|
if (!Inst.use_empty() && !Inst.getType()->isTokenTy()) {
|
|
replaceInstUsesWith(Inst, PoisonValue::get(Inst.getType()));
|
|
MadeIRChange = true;
|
|
}
|
|
if (Inst.isEHPad() || Inst.getType()->isTokenTy())
|
|
continue;
|
|
// RemoveDIs: erase debug-info on this instruction manually.
|
|
Inst.dropDbgRecords();
|
|
eraseInstFromFunction(Inst);
|
|
MadeIRChange = true;
|
|
}
|
|
|
|
SmallVector<Value *> Changed;
|
|
if (handleUnreachableTerminator(BB->getTerminator(), Changed)) {
|
|
MadeIRChange = true;
|
|
for (Value *V : Changed)
|
|
addToWorklist(cast<Instruction>(V));
|
|
}
|
|
|
|
// Handle potentially dead successors.
|
|
for (BasicBlock *Succ : successors(BB))
|
|
addDeadEdge(BB, Succ, Worklist);
|
|
}
|
|
|
|
void InstCombinerImpl::handlePotentiallyDeadBlocks(
|
|
SmallVectorImpl<BasicBlock *> &Worklist) {
|
|
while (!Worklist.empty()) {
|
|
BasicBlock *BB = Worklist.pop_back_val();
|
|
if (!all_of(predecessors(BB), [&](BasicBlock *Pred) {
|
|
return DeadEdges.contains({Pred, BB}) || DT.dominates(BB, Pred);
|
|
}))
|
|
continue;
|
|
|
|
handleUnreachableFrom(&BB->front(), Worklist);
|
|
}
|
|
}
|
|
|
|
void InstCombinerImpl::handlePotentiallyDeadSuccessors(BasicBlock *BB,
|
|
BasicBlock *LiveSucc) {
|
|
SmallVector<BasicBlock *> Worklist;
|
|
for (BasicBlock *Succ : successors(BB)) {
|
|
// The live successor isn't dead.
|
|
if (Succ == LiveSucc)
|
|
continue;
|
|
|
|
addDeadEdge(BB, Succ, Worklist);
|
|
}
|
|
|
|
handlePotentiallyDeadBlocks(Worklist);
|
|
}
|
|
|
|
Instruction *InstCombinerImpl::visitBranchInst(BranchInst &BI) {
|
|
if (BI.isUnconditional())
|
|
return visitUnconditionalBranchInst(BI);
|
|
|
|
// Change br (not X), label True, label False to: br X, label False, True
|
|
Value *Cond = BI.getCondition();
|
|
Value *X;
|
|
if (match(Cond, m_Not(m_Value(X))) && !isa<Constant>(X)) {
|
|
// Swap Destinations and condition...
|
|
BI.swapSuccessors();
|
|
if (BPI)
|
|
BPI->swapSuccEdgesProbabilities(BI.getParent());
|
|
return replaceOperand(BI, 0, X);
|
|
}
|
|
|
|
// Canonicalize logical-and-with-invert as logical-or-with-invert.
|
|
// This is done by inverting the condition and swapping successors:
|
|
// br (X && !Y), T, F --> br !(X && !Y), F, T --> br (!X || Y), F, T
|
|
Value *Y;
|
|
if (isa<SelectInst>(Cond) &&
|
|
match(Cond,
|
|
m_OneUse(m_LogicalAnd(m_Value(X), m_OneUse(m_Not(m_Value(Y))))))) {
|
|
Value *NotX = Builder.CreateNot(X, "not." + X->getName());
|
|
Value *Or = Builder.CreateLogicalOr(NotX, Y);
|
|
BI.swapSuccessors();
|
|
if (BPI)
|
|
BPI->swapSuccEdgesProbabilities(BI.getParent());
|
|
return replaceOperand(BI, 0, Or);
|
|
}
|
|
|
|
// If the condition is irrelevant, remove the use so that other
|
|
// transforms on the condition become more effective.
|
|
if (!isa<ConstantInt>(Cond) && BI.getSuccessor(0) == BI.getSuccessor(1))
|
|
return replaceOperand(BI, 0, ConstantInt::getFalse(Cond->getType()));
|
|
|
|
// Canonicalize, for example, fcmp_one -> fcmp_oeq.
|
|
CmpPredicate Pred;
|
|
if (match(Cond, m_OneUse(m_FCmp(Pred, m_Value(), m_Value()))) &&
|
|
!isCanonicalPredicate(Pred)) {
|
|
// Swap destinations and condition.
|
|
auto *Cmp = cast<CmpInst>(Cond);
|
|
Cmp->setPredicate(CmpInst::getInversePredicate(Pred));
|
|
BI.swapSuccessors();
|
|
if (BPI)
|
|
BPI->swapSuccEdgesProbabilities(BI.getParent());
|
|
Worklist.push(Cmp);
|
|
return &BI;
|
|
}
|
|
|
|
if (isa<UndefValue>(Cond)) {
|
|
handlePotentiallyDeadSuccessors(BI.getParent(), /*LiveSucc*/ nullptr);
|
|
return nullptr;
|
|
}
|
|
if (auto *CI = dyn_cast<ConstantInt>(Cond)) {
|
|
handlePotentiallyDeadSuccessors(BI.getParent(),
|
|
BI.getSuccessor(!CI->getZExtValue()));
|
|
return nullptr;
|
|
}
|
|
|
|
// Replace all dominated uses of the condition with true/false
|
|
// Ignore constant expressions to avoid iterating over uses on other
|
|
// functions.
|
|
if (!isa<Constant>(Cond) && BI.getSuccessor(0) != BI.getSuccessor(1)) {
|
|
for (auto &U : make_early_inc_range(Cond->uses())) {
|
|
BasicBlockEdge Edge0(BI.getParent(), BI.getSuccessor(0));
|
|
if (DT.dominates(Edge0, U)) {
|
|
replaceUse(U, ConstantInt::getTrue(Cond->getType()));
|
|
addToWorklist(cast<Instruction>(U.getUser()));
|
|
continue;
|
|
}
|
|
BasicBlockEdge Edge1(BI.getParent(), BI.getSuccessor(1));
|
|
if (DT.dominates(Edge1, U)) {
|
|
replaceUse(U, ConstantInt::getFalse(Cond->getType()));
|
|
addToWorklist(cast<Instruction>(U.getUser()));
|
|
}
|
|
}
|
|
}
|
|
|
|
DC.registerBranch(&BI);
|
|
return nullptr;
|
|
}
|
|
|
|
// Replaces (switch (select cond, X, C)/(select cond, C, X)) with (switch X) if
|
|
// we can prove that both (switch C) and (switch X) go to the default when cond
|
|
// is false/true.
|
|
static Value *simplifySwitchOnSelectUsingRanges(SwitchInst &SI,
|
|
SelectInst *Select,
|
|
bool IsTrueArm) {
|
|
unsigned CstOpIdx = IsTrueArm ? 1 : 2;
|
|
auto *C = dyn_cast<ConstantInt>(Select->getOperand(CstOpIdx));
|
|
if (!C)
|
|
return nullptr;
|
|
|
|
BasicBlock *CstBB = SI.findCaseValue(C)->getCaseSuccessor();
|
|
if (CstBB != SI.getDefaultDest())
|
|
return nullptr;
|
|
Value *X = Select->getOperand(3 - CstOpIdx);
|
|
CmpPredicate Pred;
|
|
const APInt *RHSC;
|
|
if (!match(Select->getCondition(),
|
|
m_ICmp(Pred, m_Specific(X), m_APInt(RHSC))))
|
|
return nullptr;
|
|
if (IsTrueArm)
|
|
Pred = ICmpInst::getInversePredicate(Pred);
|
|
|
|
// See whether we can replace the select with X
|
|
ConstantRange CR = ConstantRange::makeExactICmpRegion(Pred, *RHSC);
|
|
for (auto Case : SI.cases())
|
|
if (!CR.contains(Case.getCaseValue()->getValue()))
|
|
return nullptr;
|
|
|
|
return X;
|
|
}
|
|
|
|
Instruction *InstCombinerImpl::visitSwitchInst(SwitchInst &SI) {
|
|
Value *Cond = SI.getCondition();
|
|
Value *Op0;
|
|
ConstantInt *AddRHS;
|
|
if (match(Cond, m_Add(m_Value(Op0), m_ConstantInt(AddRHS)))) {
|
|
// Change 'switch (X+4) case 1:' into 'switch (X) case -3'.
|
|
for (auto Case : SI.cases()) {
|
|
Constant *NewCase = ConstantExpr::getSub(Case.getCaseValue(), AddRHS);
|
|
assert(isa<ConstantInt>(NewCase) &&
|
|
"Result of expression should be constant");
|
|
Case.setValue(cast<ConstantInt>(NewCase));
|
|
}
|
|
return replaceOperand(SI, 0, Op0);
|
|
}
|
|
|
|
ConstantInt *SubLHS;
|
|
if (match(Cond, m_Sub(m_ConstantInt(SubLHS), m_Value(Op0)))) {
|
|
// Change 'switch (1-X) case 1:' into 'switch (X) case 0'.
|
|
for (auto Case : SI.cases()) {
|
|
Constant *NewCase = ConstantExpr::getSub(SubLHS, Case.getCaseValue());
|
|
assert(isa<ConstantInt>(NewCase) &&
|
|
"Result of expression should be constant");
|
|
Case.setValue(cast<ConstantInt>(NewCase));
|
|
}
|
|
return replaceOperand(SI, 0, Op0);
|
|
}
|
|
|
|
uint64_t ShiftAmt;
|
|
if (match(Cond, m_Shl(m_Value(Op0), m_ConstantInt(ShiftAmt))) &&
|
|
ShiftAmt < Op0->getType()->getScalarSizeInBits() &&
|
|
all_of(SI.cases(), [&](const auto &Case) {
|
|
return Case.getCaseValue()->getValue().countr_zero() >= ShiftAmt;
|
|
})) {
|
|
// Change 'switch (X << 2) case 4:' into 'switch (X) case 1:'.
|
|
OverflowingBinaryOperator *Shl = cast<OverflowingBinaryOperator>(Cond);
|
|
if (Shl->hasNoUnsignedWrap() || Shl->hasNoSignedWrap() ||
|
|
Shl->hasOneUse()) {
|
|
Value *NewCond = Op0;
|
|
if (!Shl->hasNoUnsignedWrap() && !Shl->hasNoSignedWrap()) {
|
|
// If the shift may wrap, we need to mask off the shifted bits.
|
|
unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
|
|
NewCond = Builder.CreateAnd(
|
|
Op0, APInt::getLowBitsSet(BitWidth, BitWidth - ShiftAmt));
|
|
}
|
|
for (auto Case : SI.cases()) {
|
|
const APInt &CaseVal = Case.getCaseValue()->getValue();
|
|
APInt ShiftedCase = Shl->hasNoSignedWrap() ? CaseVal.ashr(ShiftAmt)
|
|
: CaseVal.lshr(ShiftAmt);
|
|
Case.setValue(ConstantInt::get(SI.getContext(), ShiftedCase));
|
|
}
|
|
return replaceOperand(SI, 0, NewCond);
|
|
}
|
|
}
|
|
|
|
// Fold switch(zext/sext(X)) into switch(X) if possible.
|
|
if (match(Cond, m_ZExtOrSExt(m_Value(Op0)))) {
|
|
bool IsZExt = isa<ZExtInst>(Cond);
|
|
Type *SrcTy = Op0->getType();
|
|
unsigned NewWidth = SrcTy->getScalarSizeInBits();
|
|
|
|
if (all_of(SI.cases(), [&](const auto &Case) {
|
|
const APInt &CaseVal = Case.getCaseValue()->getValue();
|
|
return IsZExt ? CaseVal.isIntN(NewWidth)
|
|
: CaseVal.isSignedIntN(NewWidth);
|
|
})) {
|
|
for (auto &Case : SI.cases()) {
|
|
APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth);
|
|
Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase));
|
|
}
|
|
return replaceOperand(SI, 0, Op0);
|
|
}
|
|
}
|
|
|
|
// Fold switch(select cond, X, Y) into switch(X/Y) if possible
|
|
if (auto *Select = dyn_cast<SelectInst>(Cond)) {
|
|
if (Value *V =
|
|
simplifySwitchOnSelectUsingRanges(SI, Select, /*IsTrueArm=*/true))
|
|
return replaceOperand(SI, 0, V);
|
|
if (Value *V =
|
|
simplifySwitchOnSelectUsingRanges(SI, Select, /*IsTrueArm=*/false))
|
|
return replaceOperand(SI, 0, V);
|
|
}
|
|
|
|
KnownBits Known = computeKnownBits(Cond, &SI);
|
|
unsigned LeadingKnownZeros = Known.countMinLeadingZeros();
|
|
unsigned LeadingKnownOnes = Known.countMinLeadingOnes();
|
|
|
|
// Compute the number of leading bits we can ignore.
|
|
// TODO: A better way to determine this would use ComputeNumSignBits().
|
|
for (const auto &C : SI.cases()) {
|
|
LeadingKnownZeros =
|
|
std::min(LeadingKnownZeros, C.getCaseValue()->getValue().countl_zero());
|
|
LeadingKnownOnes =
|
|
std::min(LeadingKnownOnes, C.getCaseValue()->getValue().countl_one());
|
|
}
|
|
|
|
unsigned NewWidth = Known.getBitWidth() - std::max(LeadingKnownZeros, LeadingKnownOnes);
|
|
|
|
// Shrink the condition operand if the new type is smaller than the old type.
|
|
// But do not shrink to a non-standard type, because backend can't generate
|
|
// good code for that yet.
|
|
// TODO: We can make it aggressive again after fixing PR39569.
|
|
if (NewWidth > 0 && NewWidth < Known.getBitWidth() &&
|
|
shouldChangeType(Known.getBitWidth(), NewWidth)) {
|
|
IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth);
|
|
Builder.SetInsertPoint(&SI);
|
|
Value *NewCond = Builder.CreateTrunc(Cond, Ty, "trunc");
|
|
|
|
for (auto Case : SI.cases()) {
|
|
APInt TruncatedCase = Case.getCaseValue()->getValue().trunc(NewWidth);
|
|
Case.setValue(ConstantInt::get(SI.getContext(), TruncatedCase));
|
|
}
|
|
return replaceOperand(SI, 0, NewCond);
|
|
}
|
|
|
|
if (isa<UndefValue>(Cond)) {
|
|
handlePotentiallyDeadSuccessors(SI.getParent(), /*LiveSucc*/ nullptr);
|
|
return nullptr;
|
|
}
|
|
if (auto *CI = dyn_cast<ConstantInt>(Cond)) {
|
|
handlePotentiallyDeadSuccessors(SI.getParent(),
|
|
SI.findCaseValue(CI)->getCaseSuccessor());
|
|
return nullptr;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
Instruction *
|
|
InstCombinerImpl::foldExtractOfOverflowIntrinsic(ExtractValueInst &EV) {
|
|
auto *WO = dyn_cast<WithOverflowInst>(EV.getAggregateOperand());
|
|
if (!WO)
|
|
return nullptr;
|
|
|
|
Intrinsic::ID OvID = WO->getIntrinsicID();
|
|
const APInt *C = nullptr;
|
|
if (match(WO->getRHS(), m_APIntAllowPoison(C))) {
|
|
if (*EV.idx_begin() == 0 && (OvID == Intrinsic::smul_with_overflow ||
|
|
OvID == Intrinsic::umul_with_overflow)) {
|
|
// extractvalue (any_mul_with_overflow X, -1), 0 --> -X
|
|
if (C->isAllOnes())
|
|
return BinaryOperator::CreateNeg(WO->getLHS());
|
|
// extractvalue (any_mul_with_overflow X, 2^n), 0 --> X << n
|
|
if (C->isPowerOf2()) {
|
|
return BinaryOperator::CreateShl(
|
|
WO->getLHS(),
|
|
ConstantInt::get(WO->getLHS()->getType(), C->logBase2()));
|
|
}
|
|
}
|
|
}
|
|
|
|
// We're extracting from an overflow intrinsic. See if we're the only user.
|
|
// That allows us to simplify multiple result intrinsics to simpler things
|
|
// that just get one value.
|
|
if (!WO->hasOneUse())
|
|
return nullptr;
|
|
|
|
// Check if we're grabbing only the result of a 'with overflow' intrinsic
|
|
// and replace it with a traditional binary instruction.
|
|
if (*EV.idx_begin() == 0) {
|
|
Instruction::BinaryOps BinOp = WO->getBinaryOp();
|
|
Value *LHS = WO->getLHS(), *RHS = WO->getRHS();
|
|
// Replace the old instruction's uses with poison.
|
|
replaceInstUsesWith(*WO, PoisonValue::get(WO->getType()));
|
|
eraseInstFromFunction(*WO);
|
|
return BinaryOperator::Create(BinOp, LHS, RHS);
|
|
}
|
|
|
|
assert(*EV.idx_begin() == 1 && "Unexpected extract index for overflow inst");
|
|
|
|
// (usub LHS, RHS) overflows when LHS is unsigned-less-than RHS.
|
|
if (OvID == Intrinsic::usub_with_overflow)
|
|
return new ICmpInst(ICmpInst::ICMP_ULT, WO->getLHS(), WO->getRHS());
|
|
|
|
// smul with i1 types overflows when both sides are set: -1 * -1 == +1, but
|
|
// +1 is not possible because we assume signed values.
|
|
if (OvID == Intrinsic::smul_with_overflow &&
|
|
WO->getLHS()->getType()->isIntOrIntVectorTy(1))
|
|
return BinaryOperator::CreateAnd(WO->getLHS(), WO->getRHS());
|
|
|
|
// extractvalue (umul_with_overflow X, X), 1 -> X u> 2^(N/2)-1
|
|
if (OvID == Intrinsic::umul_with_overflow && WO->getLHS() == WO->getRHS()) {
|
|
unsigned BitWidth = WO->getLHS()->getType()->getScalarSizeInBits();
|
|
// Only handle even bitwidths for performance reasons.
|
|
if (BitWidth % 2 == 0)
|
|
return new ICmpInst(
|
|
ICmpInst::ICMP_UGT, WO->getLHS(),
|
|
ConstantInt::get(WO->getLHS()->getType(),
|
|
APInt::getLowBitsSet(BitWidth, BitWidth / 2)));
|
|
}
|
|
|
|
// If only the overflow result is used, and the right hand side is a
|
|
// constant (or constant splat), we can remove the intrinsic by directly
|
|
// checking for overflow.
|
|
if (C) {
|
|
// Compute the no-wrap range for LHS given RHS=C, then construct an
|
|
// equivalent icmp, potentially using an offset.
|
|
ConstantRange NWR = ConstantRange::makeExactNoWrapRegion(
|
|
WO->getBinaryOp(), *C, WO->getNoWrapKind());
|
|
|
|
CmpInst::Predicate Pred;
|
|
APInt NewRHSC, Offset;
|
|
NWR.getEquivalentICmp(Pred, NewRHSC, Offset);
|
|
auto *OpTy = WO->getRHS()->getType();
|
|
auto *NewLHS = WO->getLHS();
|
|
if (Offset != 0)
|
|
NewLHS = Builder.CreateAdd(NewLHS, ConstantInt::get(OpTy, Offset));
|
|
return new ICmpInst(ICmpInst::getInversePredicate(Pred), NewLHS,
|
|
ConstantInt::get(OpTy, NewRHSC));
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
static Value *foldFrexpOfSelect(ExtractValueInst &EV, IntrinsicInst *FrexpCall,
|
|
SelectInst *SelectInst,
|
|
InstCombiner::BuilderTy &Builder) {
|
|
// Helper to fold frexp of select to select of frexp.
|
|
|
|
if (!SelectInst->hasOneUse() || !FrexpCall->hasOneUse())
|
|
return nullptr;
|
|
Value *Cond = SelectInst->getCondition();
|
|
Value *TrueVal = SelectInst->getTrueValue();
|
|
Value *FalseVal = SelectInst->getFalseValue();
|
|
|
|
const APFloat *ConstVal = nullptr;
|
|
Value *VarOp = nullptr;
|
|
bool ConstIsTrue = false;
|
|
|
|
if (match(TrueVal, m_APFloat(ConstVal))) {
|
|
VarOp = FalseVal;
|
|
ConstIsTrue = true;
|
|
} else if (match(FalseVal, m_APFloat(ConstVal))) {
|
|
VarOp = TrueVal;
|
|
ConstIsTrue = false;
|
|
} else {
|
|
return nullptr;
|
|
}
|
|
|
|
Builder.SetInsertPoint(&EV);
|
|
|
|
CallInst *NewFrexp =
|
|
Builder.CreateCall(FrexpCall->getCalledFunction(), {VarOp}, "frexp");
|
|
NewFrexp->copyIRFlags(FrexpCall);
|
|
|
|
Value *NewEV = Builder.CreateExtractValue(NewFrexp, 0, "mantissa");
|
|
|
|
int Exp;
|
|
APFloat Mantissa = frexp(*ConstVal, Exp, APFloat::rmNearestTiesToEven);
|
|
|
|
Constant *ConstantMantissa = ConstantFP::get(TrueVal->getType(), Mantissa);
|
|
|
|
Value *NewSel = Builder.CreateSelectFMF(
|
|
Cond, ConstIsTrue ? ConstantMantissa : NewEV,
|
|
ConstIsTrue ? NewEV : ConstantMantissa, SelectInst, "select.frexp");
|
|
return NewSel;
|
|
}
|
|
Instruction *InstCombinerImpl::visitExtractValueInst(ExtractValueInst &EV) {
|
|
Value *Agg = EV.getAggregateOperand();
|
|
|
|
if (!EV.hasIndices())
|
|
return replaceInstUsesWith(EV, Agg);
|
|
|
|
if (Value *V = simplifyExtractValueInst(Agg, EV.getIndices(),
|
|
SQ.getWithInstruction(&EV)))
|
|
return replaceInstUsesWith(EV, V);
|
|
|
|
Value *Cond, *TrueVal, *FalseVal;
|
|
if (match(&EV, m_ExtractValue<0>(m_Intrinsic<Intrinsic::frexp>(m_Select(
|
|
m_Value(Cond), m_Value(TrueVal), m_Value(FalseVal)))))) {
|
|
auto *SelInst =
|
|
cast<SelectInst>(cast<IntrinsicInst>(Agg)->getArgOperand(0));
|
|
if (Value *Result =
|
|
foldFrexpOfSelect(EV, cast<IntrinsicInst>(Agg), SelInst, Builder))
|
|
return replaceInstUsesWith(EV, Result);
|
|
}
|
|
if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
|
|
// We're extracting from an insertvalue instruction, compare the indices
|
|
const unsigned *exti, *exte, *insi, *inse;
|
|
for (exti = EV.idx_begin(), insi = IV->idx_begin(),
|
|
exte = EV.idx_end(), inse = IV->idx_end();
|
|
exti != exte && insi != inse;
|
|
++exti, ++insi) {
|
|
if (*insi != *exti)
|
|
// The insert and extract both reference distinctly different elements.
|
|
// This means the extract is not influenced by the insert, and we can
|
|
// replace the aggregate operand of the extract with the aggregate
|
|
// operand of the insert. i.e., replace
|
|
// %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
|
|
// %E = extractvalue { i32, { i32 } } %I, 0
|
|
// with
|
|
// %E = extractvalue { i32, { i32 } } %A, 0
|
|
return ExtractValueInst::Create(IV->getAggregateOperand(),
|
|
EV.getIndices());
|
|
}
|
|
if (exti == exte && insi == inse)
|
|
// Both iterators are at the end: Index lists are identical. Replace
|
|
// %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
|
|
// %C = extractvalue { i32, { i32 } } %B, 1, 0
|
|
// with "i32 42"
|
|
return replaceInstUsesWith(EV, IV->getInsertedValueOperand());
|
|
if (exti == exte) {
|
|
// The extract list is a prefix of the insert list. i.e. replace
|
|
// %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
|
|
// %E = extractvalue { i32, { i32 } } %I, 1
|
|
// with
|
|
// %X = extractvalue { i32, { i32 } } %A, 1
|
|
// %E = insertvalue { i32 } %X, i32 42, 0
|
|
// by switching the order of the insert and extract (though the
|
|
// insertvalue should be left in, since it may have other uses).
|
|
Value *NewEV = Builder.CreateExtractValue(IV->getAggregateOperand(),
|
|
EV.getIndices());
|
|
return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
|
|
ArrayRef(insi, inse));
|
|
}
|
|
if (insi == inse)
|
|
// The insert list is a prefix of the extract list
|
|
// We can simply remove the common indices from the extract and make it
|
|
// operate on the inserted value instead of the insertvalue result.
|
|
// i.e., replace
|
|
// %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
|
|
// %E = extractvalue { i32, { i32 } } %I, 1, 0
|
|
// with
|
|
// %E extractvalue { i32 } { i32 42 }, 0
|
|
return ExtractValueInst::Create(IV->getInsertedValueOperand(),
|
|
ArrayRef(exti, exte));
|
|
}
|
|
|
|
if (Instruction *R = foldExtractOfOverflowIntrinsic(EV))
|
|
return R;
|
|
|
|
if (LoadInst *L = dyn_cast<LoadInst>(Agg)) {
|
|
// Bail out if the aggregate contains scalable vector type
|
|
if (auto *STy = dyn_cast<StructType>(Agg->getType());
|
|
STy && STy->isScalableTy())
|
|
return nullptr;
|
|
|
|
// If the (non-volatile) load only has one use, we can rewrite this to a
|
|
// load from a GEP. This reduces the size of the load. If a load is used
|
|
// only by extractvalue instructions then this either must have been
|
|
// optimized before, or it is a struct with padding, in which case we
|
|
// don't want to do the transformation as it loses padding knowledge.
|
|
if (L->isSimple() && L->hasOneUse()) {
|
|
// extractvalue has integer indices, getelementptr has Value*s. Convert.
|
|
SmallVector<Value*, 4> Indices;
|
|
// Prefix an i32 0 since we need the first element.
|
|
Indices.push_back(Builder.getInt32(0));
|
|
for (unsigned Idx : EV.indices())
|
|
Indices.push_back(Builder.getInt32(Idx));
|
|
|
|
// We need to insert these at the location of the old load, not at that of
|
|
// the extractvalue.
|
|
Builder.SetInsertPoint(L);
|
|
Value *GEP = Builder.CreateInBoundsGEP(L->getType(),
|
|
L->getPointerOperand(), Indices);
|
|
Instruction *NL = Builder.CreateLoad(EV.getType(), GEP);
|
|
// Whatever aliasing information we had for the orignal load must also
|
|
// hold for the smaller load, so propagate the annotations.
|
|
NL->setAAMetadata(L->getAAMetadata());
|
|
// Returning the load directly will cause the main loop to insert it in
|
|
// the wrong spot, so use replaceInstUsesWith().
|
|
return replaceInstUsesWith(EV, NL);
|
|
}
|
|
}
|
|
|
|
if (auto *PN = dyn_cast<PHINode>(Agg))
|
|
if (Instruction *Res = foldOpIntoPhi(EV, PN))
|
|
return Res;
|
|
|
|
// Canonicalize extract (select Cond, TV, FV)
|
|
// -> select cond, (extract TV), (extract FV)
|
|
if (auto *SI = dyn_cast<SelectInst>(Agg))
|
|
if (Instruction *R = FoldOpIntoSelect(EV, SI, /*FoldWithMultiUse=*/true))
|
|
return R;
|
|
|
|
// We could simplify extracts from other values. Note that nested extracts may
|
|
// already be simplified implicitly by the above: extract (extract (insert) )
|
|
// will be translated into extract ( insert ( extract ) ) first and then just
|
|
// the value inserted, if appropriate. Similarly for extracts from single-use
|
|
// loads: extract (extract (load)) will be translated to extract (load (gep))
|
|
// and if again single-use then via load (gep (gep)) to load (gep).
|
|
// However, double extracts from e.g. function arguments or return values
|
|
// aren't handled yet.
|
|
return nullptr;
|
|
}
|
|
|
|
/// Return 'true' if the given typeinfo will match anything.
|
|
static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) {
|
|
switch (Personality) {
|
|
case EHPersonality::GNU_C:
|
|
case EHPersonality::GNU_C_SjLj:
|
|
case EHPersonality::Rust:
|
|
// The GCC C EH and Rust personality only exists to support cleanups, so
|
|
// it's not clear what the semantics of catch clauses are.
|
|
return false;
|
|
case EHPersonality::Unknown:
|
|
return false;
|
|
case EHPersonality::GNU_Ada:
|
|
// While __gnat_all_others_value will match any Ada exception, it doesn't
|
|
// match foreign exceptions (or didn't, before gcc-4.7).
|
|
return false;
|
|
case EHPersonality::GNU_CXX:
|
|
case EHPersonality::GNU_CXX_SjLj:
|
|
case EHPersonality::GNU_ObjC:
|
|
case EHPersonality::MSVC_X86SEH:
|
|
case EHPersonality::MSVC_TableSEH:
|
|
case EHPersonality::MSVC_CXX:
|
|
case EHPersonality::CoreCLR:
|
|
case EHPersonality::Wasm_CXX:
|
|
case EHPersonality::XL_CXX:
|
|
case EHPersonality::ZOS_CXX:
|
|
return TypeInfo->isNullValue();
|
|
}
|
|
llvm_unreachable("invalid enum");
|
|
}
|
|
|
|
static bool shorter_filter(const Value *LHS, const Value *RHS) {
|
|
return
|
|
cast<ArrayType>(LHS->getType())->getNumElements()
|
|
<
|
|
cast<ArrayType>(RHS->getType())->getNumElements();
|
|
}
|
|
|
|
Instruction *InstCombinerImpl::visitLandingPadInst(LandingPadInst &LI) {
|
|
// The logic here should be correct for any real-world personality function.
|
|
// However if that turns out not to be true, the offending logic can always
|
|
// be conditioned on the personality function, like the catch-all logic is.
|
|
EHPersonality Personality =
|
|
classifyEHPersonality(LI.getParent()->getParent()->getPersonalityFn());
|
|
|
|
// Simplify the list of clauses, eg by removing repeated catch clauses
|
|
// (these are often created by inlining).
|
|
bool MakeNewInstruction = false; // If true, recreate using the following:
|
|
SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction;
|
|
bool CleanupFlag = LI.isCleanup(); // - The new instruction is a cleanup.
|
|
|
|
SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
|
|
for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
|
|
bool isLastClause = i + 1 == e;
|
|
if (LI.isCatch(i)) {
|
|
// A catch clause.
|
|
Constant *CatchClause = LI.getClause(i);
|
|
Constant *TypeInfo = CatchClause->stripPointerCasts();
|
|
|
|
// If we already saw this clause, there is no point in having a second
|
|
// copy of it.
|
|
if (AlreadyCaught.insert(TypeInfo).second) {
|
|
// This catch clause was not already seen.
|
|
NewClauses.push_back(CatchClause);
|
|
} else {
|
|
// Repeated catch clause - drop the redundant copy.
|
|
MakeNewInstruction = true;
|
|
}
|
|
|
|
// If this is a catch-all then there is no point in keeping any following
|
|
// clauses or marking the landingpad as having a cleanup.
|
|
if (isCatchAll(Personality, TypeInfo)) {
|
|
if (!isLastClause)
|
|
MakeNewInstruction = true;
|
|
CleanupFlag = false;
|
|
break;
|
|
}
|
|
} else {
|
|
// A filter clause. If any of the filter elements were already caught
|
|
// then they can be dropped from the filter. It is tempting to try to
|
|
// exploit the filter further by saying that any typeinfo that does not
|
|
// occur in the filter can't be caught later (and thus can be dropped).
|
|
// However this would be wrong, since typeinfos can match without being
|
|
// equal (for example if one represents a C++ class, and the other some
|
|
// class derived from it).
|
|
assert(LI.isFilter(i) && "Unsupported landingpad clause!");
|
|
Constant *FilterClause = LI.getClause(i);
|
|
ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
|
|
unsigned NumTypeInfos = FilterType->getNumElements();
|
|
|
|
// An empty filter catches everything, so there is no point in keeping any
|
|
// following clauses or marking the landingpad as having a cleanup. By
|
|
// dealing with this case here the following code is made a bit simpler.
|
|
if (!NumTypeInfos) {
|
|
NewClauses.push_back(FilterClause);
|
|
if (!isLastClause)
|
|
MakeNewInstruction = true;
|
|
CleanupFlag = false;
|
|
break;
|
|
}
|
|
|
|
bool MakeNewFilter = false; // If true, make a new filter.
|
|
SmallVector<Constant *, 16> NewFilterElts; // New elements.
|
|
if (isa<ConstantAggregateZero>(FilterClause)) {
|
|
// Not an empty filter - it contains at least one null typeinfo.
|
|
assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
|
|
Constant *TypeInfo =
|
|
Constant::getNullValue(FilterType->getElementType());
|
|
// If this typeinfo is a catch-all then the filter can never match.
|
|
if (isCatchAll(Personality, TypeInfo)) {
|
|
// Throw the filter away.
|
|
MakeNewInstruction = true;
|
|
continue;
|
|
}
|
|
|
|
// There is no point in having multiple copies of this typeinfo, so
|
|
// discard all but the first copy if there is more than one.
|
|
NewFilterElts.push_back(TypeInfo);
|
|
if (NumTypeInfos > 1)
|
|
MakeNewFilter = true;
|
|
} else {
|
|
ConstantArray *Filter = cast<ConstantArray>(FilterClause);
|
|
SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
|
|
NewFilterElts.reserve(NumTypeInfos);
|
|
|
|
// Remove any filter elements that were already caught or that already
|
|
// occurred in the filter. While there, see if any of the elements are
|
|
// catch-alls. If so, the filter can be discarded.
|
|
bool SawCatchAll = false;
|
|
for (unsigned j = 0; j != NumTypeInfos; ++j) {
|
|
Constant *Elt = Filter->getOperand(j);
|
|
Constant *TypeInfo = Elt->stripPointerCasts();
|
|
if (isCatchAll(Personality, TypeInfo)) {
|
|
// This element is a catch-all. Bail out, noting this fact.
|
|
SawCatchAll = true;
|
|
break;
|
|
}
|
|
|
|
// Even if we've seen a type in a catch clause, we don't want to
|
|
// remove it from the filter. An unexpected type handler may be
|
|
// set up for a call site which throws an exception of the same
|
|
// type caught. In order for the exception thrown by the unexpected
|
|
// handler to propagate correctly, the filter must be correctly
|
|
// described for the call site.
|
|
//
|
|
// Example:
|
|
//
|
|
// void unexpected() { throw 1;}
|
|
// void foo() throw (int) {
|
|
// std::set_unexpected(unexpected);
|
|
// try {
|
|
// throw 2.0;
|
|
// } catch (int i) {}
|
|
// }
|
|
|
|
// There is no point in having multiple copies of the same typeinfo in
|
|
// a filter, so only add it if we didn't already.
|
|
if (SeenInFilter.insert(TypeInfo).second)
|
|
NewFilterElts.push_back(cast<Constant>(Elt));
|
|
}
|
|
// A filter containing a catch-all cannot match anything by definition.
|
|
if (SawCatchAll) {
|
|
// Throw the filter away.
|
|
MakeNewInstruction = true;
|
|
continue;
|
|
}
|
|
|
|
// If we dropped something from the filter, make a new one.
|
|
if (NewFilterElts.size() < NumTypeInfos)
|
|
MakeNewFilter = true;
|
|
}
|
|
if (MakeNewFilter) {
|
|
FilterType = ArrayType::get(FilterType->getElementType(),
|
|
NewFilterElts.size());
|
|
FilterClause = ConstantArray::get(FilterType, NewFilterElts);
|
|
MakeNewInstruction = true;
|
|
}
|
|
|
|
NewClauses.push_back(FilterClause);
|
|
|
|
// If the new filter is empty then it will catch everything so there is
|
|
// no point in keeping any following clauses or marking the landingpad
|
|
// as having a cleanup. The case of the original filter being empty was
|
|
// already handled above.
|
|
if (MakeNewFilter && !NewFilterElts.size()) {
|
|
assert(MakeNewInstruction && "New filter but not a new instruction!");
|
|
CleanupFlag = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If several filters occur in a row then reorder them so that the shortest
|
|
// filters come first (those with the smallest number of elements). This is
|
|
// advantageous because shorter filters are more likely to match, speeding up
|
|
// unwinding, but mostly because it increases the effectiveness of the other
|
|
// filter optimizations below.
|
|
for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
|
|
unsigned j;
|
|
// Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
|
|
for (j = i; j != e; ++j)
|
|
if (!isa<ArrayType>(NewClauses[j]->getType()))
|
|
break;
|
|
|
|
// Check whether the filters are already sorted by length. We need to know
|
|
// if sorting them is actually going to do anything so that we only make a
|
|
// new landingpad instruction if it does.
|
|
for (unsigned k = i; k + 1 < j; ++k)
|
|
if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
|
|
// Not sorted, so sort the filters now. Doing an unstable sort would be
|
|
// correct too but reordering filters pointlessly might confuse users.
|
|
std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
|
|
shorter_filter);
|
|
MakeNewInstruction = true;
|
|
break;
|
|
}
|
|
|
|
// Look for the next batch of filters.
|
|
i = j + 1;
|
|
}
|
|
|
|
// If typeinfos matched if and only if equal, then the elements of a filter L
|
|
// that occurs later than a filter F could be replaced by the intersection of
|
|
// the elements of F and L. In reality two typeinfos can match without being
|
|
// equal (for example if one represents a C++ class, and the other some class
|
|
// derived from it) so it would be wrong to perform this transform in general.
|
|
// However the transform is correct and useful if F is a subset of L. In that
|
|
// case L can be replaced by F, and thus removed altogether since repeating a
|
|
// filter is pointless. So here we look at all pairs of filters F and L where
|
|
// L follows F in the list of clauses, and remove L if every element of F is
|
|
// an element of L. This can occur when inlining C++ functions with exception
|
|
// specifications.
|
|
for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
|
|
// Examine each filter in turn.
|
|
Value *Filter = NewClauses[i];
|
|
ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
|
|
if (!FTy)
|
|
// Not a filter - skip it.
|
|
continue;
|
|
unsigned FElts = FTy->getNumElements();
|
|
// Examine each filter following this one. Doing this backwards means that
|
|
// we don't have to worry about filters disappearing under us when removed.
|
|
for (unsigned j = NewClauses.size() - 1; j != i; --j) {
|
|
Value *LFilter = NewClauses[j];
|
|
ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
|
|
if (!LTy)
|
|
// Not a filter - skip it.
|
|
continue;
|
|
// If Filter is a subset of LFilter, i.e. every element of Filter is also
|
|
// an element of LFilter, then discard LFilter.
|
|
SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j;
|
|
// If Filter is empty then it is a subset of LFilter.
|
|
if (!FElts) {
|
|
// Discard LFilter.
|
|
NewClauses.erase(J);
|
|
MakeNewInstruction = true;
|
|
// Move on to the next filter.
|
|
continue;
|
|
}
|
|
unsigned LElts = LTy->getNumElements();
|
|
// If Filter is longer than LFilter then it cannot be a subset of it.
|
|
if (FElts > LElts)
|
|
// Move on to the next filter.
|
|
continue;
|
|
// At this point we know that LFilter has at least one element.
|
|
if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
|
|
// Filter is a subset of LFilter iff Filter contains only zeros (as we
|
|
// already know that Filter is not longer than LFilter).
|
|
if (isa<ConstantAggregateZero>(Filter)) {
|
|
assert(FElts <= LElts && "Should have handled this case earlier!");
|
|
// Discard LFilter.
|
|
NewClauses.erase(J);
|
|
MakeNewInstruction = true;
|
|
}
|
|
// Move on to the next filter.
|
|
continue;
|
|
}
|
|
ConstantArray *LArray = cast<ConstantArray>(LFilter);
|
|
if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
|
|
// Since Filter is non-empty and contains only zeros, it is a subset of
|
|
// LFilter iff LFilter contains a zero.
|
|
assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
|
|
for (unsigned l = 0; l != LElts; ++l)
|
|
if (LArray->getOperand(l)->isNullValue()) {
|
|
// LFilter contains a zero - discard it.
|
|
NewClauses.erase(J);
|
|
MakeNewInstruction = true;
|
|
break;
|
|
}
|
|
// Move on to the next filter.
|
|
continue;
|
|
}
|
|
// At this point we know that both filters are ConstantArrays. Loop over
|
|
// operands to see whether every element of Filter is also an element of
|
|
// LFilter. Since filters tend to be short this is probably faster than
|
|
// using a method that scales nicely.
|
|
ConstantArray *FArray = cast<ConstantArray>(Filter);
|
|
bool AllFound = true;
|
|
for (unsigned f = 0; f != FElts; ++f) {
|
|
Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
|
|
AllFound = false;
|
|
for (unsigned l = 0; l != LElts; ++l) {
|
|
Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
|
|
if (LTypeInfo == FTypeInfo) {
|
|
AllFound = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!AllFound)
|
|
break;
|
|
}
|
|
if (AllFound) {
|
|
// Discard LFilter.
|
|
NewClauses.erase(J);
|
|
MakeNewInstruction = true;
|
|
}
|
|
// Move on to the next filter.
|
|
}
|
|
}
|
|
|
|
// If we changed any of the clauses, replace the old landingpad instruction
|
|
// with a new one.
|
|
if (MakeNewInstruction) {
|
|
LandingPadInst *NLI = LandingPadInst::Create(LI.getType(),
|
|
NewClauses.size());
|
|
for (Constant *C : NewClauses)
|
|
NLI->addClause(C);
|
|
// A landing pad with no clauses must have the cleanup flag set. It is
|
|
// theoretically possible, though highly unlikely, that we eliminated all
|
|
// clauses. If so, force the cleanup flag to true.
|
|
if (NewClauses.empty())
|
|
CleanupFlag = true;
|
|
NLI->setCleanup(CleanupFlag);
|
|
return NLI;
|
|
}
|
|
|
|
// Even if none of the clauses changed, we may nonetheless have understood
|
|
// that the cleanup flag is pointless. Clear it if so.
|
|
if (LI.isCleanup() != CleanupFlag) {
|
|
assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
|
|
LI.setCleanup(CleanupFlag);
|
|
return &LI;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
Value *
|
|
InstCombinerImpl::pushFreezeToPreventPoisonFromPropagating(FreezeInst &OrigFI) {
|
|
// Try to push freeze through instructions that propagate but don't produce
|
|
// poison as far as possible. If an operand of freeze follows three
|
|
// conditions 1) one-use, 2) does not produce poison, and 3) has all but one
|
|
// guaranteed-non-poison operands then push the freeze through to the one
|
|
// operand that is not guaranteed non-poison. The actual transform is as
|
|
// follows.
|
|
// Op1 = ... ; Op1 can be posion
|
|
// Op0 = Inst(Op1, NonPoisonOps...) ; Op0 has only one use and only have
|
|
// ; single guaranteed-non-poison operands
|
|
// ... = Freeze(Op0)
|
|
// =>
|
|
// Op1 = ...
|
|
// Op1.fr = Freeze(Op1)
|
|
// ... = Inst(Op1.fr, NonPoisonOps...)
|
|
auto *OrigOp = OrigFI.getOperand(0);
|
|
auto *OrigOpInst = dyn_cast<Instruction>(OrigOp);
|
|
|
|
// While we could change the other users of OrigOp to use freeze(OrigOp), that
|
|
// potentially reduces their optimization potential, so let's only do this iff
|
|
// the OrigOp is only used by the freeze.
|
|
if (!OrigOpInst || !OrigOpInst->hasOneUse() || isa<PHINode>(OrigOp))
|
|
return nullptr;
|
|
|
|
// We can't push the freeze through an instruction which can itself create
|
|
// poison. If the only source of new poison is flags, we can simply
|
|
// strip them (since we know the only use is the freeze and nothing can
|
|
// benefit from them.)
|
|
if (canCreateUndefOrPoison(cast<Operator>(OrigOp),
|
|
/*ConsiderFlagsAndMetadata*/ false))
|
|
return nullptr;
|
|
|
|
// If operand is guaranteed not to be poison, there is no need to add freeze
|
|
// to the operand. So we first find the operand that is not guaranteed to be
|
|
// poison.
|
|
Use *MaybePoisonOperand = nullptr;
|
|
for (Use &U : OrigOpInst->operands()) {
|
|
if (isa<MetadataAsValue>(U.get()) ||
|
|
isGuaranteedNotToBeUndefOrPoison(U.get()))
|
|
continue;
|
|
if (!MaybePoisonOperand)
|
|
MaybePoisonOperand = &U;
|
|
else
|
|
return nullptr;
|
|
}
|
|
|
|
OrigOpInst->dropPoisonGeneratingAnnotations();
|
|
|
|
// If all operands are guaranteed to be non-poison, we can drop freeze.
|
|
if (!MaybePoisonOperand)
|
|
return OrigOp;
|
|
|
|
Builder.SetInsertPoint(OrigOpInst);
|
|
auto *FrozenMaybePoisonOperand = Builder.CreateFreeze(
|
|
MaybePoisonOperand->get(), MaybePoisonOperand->get()->getName() + ".fr");
|
|
|
|
replaceUse(*MaybePoisonOperand, FrozenMaybePoisonOperand);
|
|
return OrigOp;
|
|
}
|
|
|
|
Instruction *InstCombinerImpl::foldFreezeIntoRecurrence(FreezeInst &FI,
|
|
PHINode *PN) {
|
|
// Detect whether this is a recurrence with a start value and some number of
|
|
// backedge values. We'll check whether we can push the freeze through the
|
|
// backedge values (possibly dropping poison flags along the way) until we
|
|
// reach the phi again. In that case, we can move the freeze to the start
|
|
// value.
|
|
Use *StartU = nullptr;
|
|
SmallVector<Value *> Worklist;
|
|
for (Use &U : PN->incoming_values()) {
|
|
if (DT.dominates(PN->getParent(), PN->getIncomingBlock(U))) {
|
|
// Add backedge value to worklist.
|
|
Worklist.push_back(U.get());
|
|
continue;
|
|
}
|
|
|
|
// Don't bother handling multiple start values.
|
|
if (StartU)
|
|
return nullptr;
|
|
StartU = &U;
|
|
}
|
|
|
|
if (!StartU || Worklist.empty())
|
|
return nullptr; // Not a recurrence.
|
|
|
|
Value *StartV = StartU->get();
|
|
BasicBlock *StartBB = PN->getIncomingBlock(*StartU);
|
|
bool StartNeedsFreeze = !isGuaranteedNotToBeUndefOrPoison(StartV);
|
|
// We can't insert freeze if the start value is the result of the
|
|
// terminator (e.g. an invoke).
|
|
if (StartNeedsFreeze && StartBB->getTerminator() == StartV)
|
|
return nullptr;
|
|
|
|
SmallPtrSet<Value *, 32> Visited;
|
|
SmallVector<Instruction *> DropFlags;
|
|
while (!Worklist.empty()) {
|
|
Value *V = Worklist.pop_back_val();
|
|
if (!Visited.insert(V).second)
|
|
continue;
|
|
|
|
if (Visited.size() > 32)
|
|
return nullptr; // Limit the total number of values we inspect.
|
|
|
|
// Assume that PN is non-poison, because it will be after the transform.
|
|
if (V == PN || isGuaranteedNotToBeUndefOrPoison(V))
|
|
continue;
|
|
|
|
Instruction *I = dyn_cast<Instruction>(V);
|
|
if (!I || canCreateUndefOrPoison(cast<Operator>(I),
|
|
/*ConsiderFlagsAndMetadata*/ false))
|
|
return nullptr;
|
|
|
|
DropFlags.push_back(I);
|
|
append_range(Worklist, I->operands());
|
|
}
|
|
|
|
for (Instruction *I : DropFlags)
|
|
I->dropPoisonGeneratingAnnotations();
|
|
|
|
if (StartNeedsFreeze) {
|
|
Builder.SetInsertPoint(StartBB->getTerminator());
|
|
Value *FrozenStartV = Builder.CreateFreeze(StartV,
|
|
StartV->getName() + ".fr");
|
|
replaceUse(*StartU, FrozenStartV);
|
|
}
|
|
return replaceInstUsesWith(FI, PN);
|
|
}
|
|
|
|
bool InstCombinerImpl::freezeOtherUses(FreezeInst &FI) {
|
|
Value *Op = FI.getOperand(0);
|
|
|
|
if (isa<Constant>(Op) || Op->hasOneUse())
|
|
return false;
|
|
|
|
// Move the freeze directly after the definition of its operand, so that
|
|
// it dominates the maximum number of uses. Note that it may not dominate
|
|
// *all* uses if the operand is an invoke/callbr and the use is in a phi on
|
|
// the normal/default destination. This is why the domination check in the
|
|
// replacement below is still necessary.
|
|
BasicBlock::iterator MoveBefore;
|
|
if (isa<Argument>(Op)) {
|
|
MoveBefore =
|
|
FI.getFunction()->getEntryBlock().getFirstNonPHIOrDbgOrAlloca();
|
|
} else {
|
|
auto MoveBeforeOpt = cast<Instruction>(Op)->getInsertionPointAfterDef();
|
|
if (!MoveBeforeOpt)
|
|
return false;
|
|
MoveBefore = *MoveBeforeOpt;
|
|
}
|
|
|
|
// Don't move to the position of a debug intrinsic.
|
|
if (isa<DbgInfoIntrinsic>(MoveBefore))
|
|
MoveBefore = MoveBefore->getNextNonDebugInstruction()->getIterator();
|
|
// Re-point iterator to come after any debug-info records, if we're
|
|
// running in "RemoveDIs" mode
|
|
MoveBefore.setHeadBit(false);
|
|
|
|
bool Changed = false;
|
|
if (&FI != &*MoveBefore) {
|
|
FI.moveBefore(*MoveBefore->getParent(), MoveBefore);
|
|
Changed = true;
|
|
}
|
|
|
|
Op->replaceUsesWithIf(&FI, [&](Use &U) -> bool {
|
|
bool Dominates = DT.dominates(&FI, U);
|
|
Changed |= Dominates;
|
|
return Dominates;
|
|
});
|
|
|
|
return Changed;
|
|
}
|
|
|
|
// Check if any direct or bitcast user of this value is a shuffle instruction.
|
|
static bool isUsedWithinShuffleVector(Value *V) {
|
|
for (auto *U : V->users()) {
|
|
if (isa<ShuffleVectorInst>(U))
|
|
return true;
|
|
else if (match(U, m_BitCast(m_Specific(V))) && isUsedWithinShuffleVector(U))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
Instruction *InstCombinerImpl::visitFreeze(FreezeInst &I) {
|
|
Value *Op0 = I.getOperand(0);
|
|
|
|
if (Value *V = simplifyFreezeInst(Op0, SQ.getWithInstruction(&I)))
|
|
return replaceInstUsesWith(I, V);
|
|
|
|
// freeze (phi const, x) --> phi const, (freeze x)
|
|
if (auto *PN = dyn_cast<PHINode>(Op0)) {
|
|
if (Instruction *NV = foldOpIntoPhi(I, PN))
|
|
return NV;
|
|
if (Instruction *NV = foldFreezeIntoRecurrence(I, PN))
|
|
return NV;
|
|
}
|
|
|
|
if (Value *NI = pushFreezeToPreventPoisonFromPropagating(I))
|
|
return replaceInstUsesWith(I, NI);
|
|
|
|
// If I is freeze(undef), check its uses and fold it to a fixed constant.
|
|
// - or: pick -1
|
|
// - select's condition: if the true value is constant, choose it by making
|
|
// the condition true.
|
|
// - default: pick 0
|
|
//
|
|
// Note that this transform is intentionally done here rather than
|
|
// via an analysis in InstSimplify or at individual user sites. That is
|
|
// because we must produce the same value for all uses of the freeze -
|
|
// it's the reason "freeze" exists!
|
|
//
|
|
// TODO: This could use getBinopAbsorber() / getBinopIdentity() to avoid
|
|
// duplicating logic for binops at least.
|
|
auto getUndefReplacement = [&](Type *Ty) {
|
|
Value *BestValue = nullptr;
|
|
Value *NullValue = Constant::getNullValue(Ty);
|
|
for (const auto *U : I.users()) {
|
|
Value *V = NullValue;
|
|
if (match(U, m_Or(m_Value(), m_Value())))
|
|
V = ConstantInt::getAllOnesValue(Ty);
|
|
else if (match(U, m_Select(m_Specific(&I), m_Constant(), m_Value())))
|
|
V = ConstantInt::getTrue(Ty);
|
|
else if (match(U, m_c_Select(m_Specific(&I), m_Value(V)))) {
|
|
if (!isGuaranteedNotToBeUndefOrPoison(V, &AC, &I, &DT))
|
|
V = NullValue;
|
|
}
|
|
|
|
if (!BestValue)
|
|
BestValue = V;
|
|
else if (BestValue != V)
|
|
BestValue = NullValue;
|
|
}
|
|
assert(BestValue && "Must have at least one use");
|
|
return BestValue;
|
|
};
|
|
|
|
if (match(Op0, m_Undef())) {
|
|
// Don't fold freeze(undef/poison) if it's used as a vector operand in
|
|
// a shuffle. This may improve codegen for shuffles that allow
|
|
// unspecified inputs.
|
|
if (isUsedWithinShuffleVector(&I))
|
|
return nullptr;
|
|
return replaceInstUsesWith(I, getUndefReplacement(I.getType()));
|
|
}
|
|
|
|
auto getFreezeVectorReplacement = [](Constant *C) -> Constant * {
|
|
Type *Ty = C->getType();
|
|
auto *VTy = dyn_cast<FixedVectorType>(Ty);
|
|
if (!VTy)
|
|
return nullptr;
|
|
unsigned NumElts = VTy->getNumElements();
|
|
Constant *BestValue = Constant::getNullValue(VTy->getScalarType());
|
|
for (unsigned i = 0; i != NumElts; ++i) {
|
|
Constant *EltC = C->getAggregateElement(i);
|
|
if (EltC && !match(EltC, m_Undef())) {
|
|
BestValue = EltC;
|
|
break;
|
|
}
|
|
}
|
|
return Constant::replaceUndefsWith(C, BestValue);
|
|
};
|
|
|
|
Constant *C;
|
|
if (match(Op0, m_Constant(C)) && C->containsUndefOrPoisonElement() &&
|
|
!C->containsConstantExpression()) {
|
|
if (Constant *Repl = getFreezeVectorReplacement(C))
|
|
return replaceInstUsesWith(I, Repl);
|
|
}
|
|
|
|
// Replace uses of Op with freeze(Op).
|
|
if (freezeOtherUses(I))
|
|
return &I;
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// Check for case where the call writes to an otherwise dead alloca. This
|
|
/// shows up for unused out-params in idiomatic C/C++ code. Note that this
|
|
/// helper *only* analyzes the write; doesn't check any other legality aspect.
|
|
static bool SoleWriteToDeadLocal(Instruction *I, TargetLibraryInfo &TLI) {
|
|
auto *CB = dyn_cast<CallBase>(I);
|
|
if (!CB)
|
|
// TODO: handle e.g. store to alloca here - only worth doing if we extend
|
|
// to allow reload along used path as described below. Otherwise, this
|
|
// is simply a store to a dead allocation which will be removed.
|
|
return false;
|
|
std::optional<MemoryLocation> Dest = MemoryLocation::getForDest(CB, TLI);
|
|
if (!Dest)
|
|
return false;
|
|
auto *AI = dyn_cast<AllocaInst>(getUnderlyingObject(Dest->Ptr));
|
|
if (!AI)
|
|
// TODO: allow malloc?
|
|
return false;
|
|
// TODO: allow memory access dominated by move point? Note that since AI
|
|
// could have a reference to itself captured by the call, we would need to
|
|
// account for cycles in doing so.
|
|
SmallVector<const User *> AllocaUsers;
|
|
SmallPtrSet<const User *, 4> Visited;
|
|
auto pushUsers = [&](const Instruction &I) {
|
|
for (const User *U : I.users()) {
|
|
if (Visited.insert(U).second)
|
|
AllocaUsers.push_back(U);
|
|
}
|
|
};
|
|
pushUsers(*AI);
|
|
while (!AllocaUsers.empty()) {
|
|
auto *UserI = cast<Instruction>(AllocaUsers.pop_back_val());
|
|
if (isa<GetElementPtrInst>(UserI) || isa<AddrSpaceCastInst>(UserI)) {
|
|
pushUsers(*UserI);
|
|
continue;
|
|
}
|
|
if (UserI == CB)
|
|
continue;
|
|
// TODO: support lifetime.start/end here
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Try to move the specified instruction from its current block into the
|
|
/// beginning of DestBlock, which can only happen if it's safe to move the
|
|
/// instruction past all of the instructions between it and the end of its
|
|
/// block.
|
|
bool InstCombinerImpl::tryToSinkInstruction(Instruction *I,
|
|
BasicBlock *DestBlock) {
|
|
BasicBlock *SrcBlock = I->getParent();
|
|
|
|
// Cannot move control-flow-involving, volatile loads, vaarg, etc.
|
|
if (isa<PHINode>(I) || I->isEHPad() || I->mayThrow() || !I->willReturn() ||
|
|
I->isTerminator())
|
|
return false;
|
|
|
|
// Do not sink static or dynamic alloca instructions. Static allocas must
|
|
// remain in the entry block, and dynamic allocas must not be sunk in between
|
|
// a stacksave / stackrestore pair, which would incorrectly shorten its
|
|
// lifetime.
|
|
if (isa<AllocaInst>(I))
|
|
return false;
|
|
|
|
// Do not sink into catchswitch blocks.
|
|
if (isa<CatchSwitchInst>(DestBlock->getTerminator()))
|
|
return false;
|
|
|
|
// Do not sink convergent call instructions.
|
|
if (auto *CI = dyn_cast<CallInst>(I)) {
|
|
if (CI->isConvergent())
|
|
return false;
|
|
}
|
|
|
|
// Unless we can prove that the memory write isn't visibile except on the
|
|
// path we're sinking to, we must bail.
|
|
if (I->mayWriteToMemory()) {
|
|
if (!SoleWriteToDeadLocal(I, TLI))
|
|
return false;
|
|
}
|
|
|
|
// We can only sink load instructions if there is nothing between the load and
|
|
// the end of block that could change the value.
|
|
if (I->mayReadFromMemory() &&
|
|
!I->hasMetadata(LLVMContext::MD_invariant_load)) {
|
|
// We don't want to do any sophisticated alias analysis, so we only check
|
|
// the instructions after I in I's parent block if we try to sink to its
|
|
// successor block.
|
|
if (DestBlock->getUniquePredecessor() != I->getParent())
|
|
return false;
|
|
for (BasicBlock::iterator Scan = std::next(I->getIterator()),
|
|
E = I->getParent()->end();
|
|
Scan != E; ++Scan)
|
|
if (Scan->mayWriteToMemory())
|
|
return false;
|
|
}
|
|
|
|
I->dropDroppableUses([&](const Use *U) {
|
|
auto *I = dyn_cast<Instruction>(U->getUser());
|
|
if (I && I->getParent() != DestBlock) {
|
|
Worklist.add(I);
|
|
return true;
|
|
}
|
|
return false;
|
|
});
|
|
/// FIXME: We could remove droppable uses that are not dominated by
|
|
/// the new position.
|
|
|
|
BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
|
|
I->moveBefore(*DestBlock, InsertPos);
|
|
++NumSunkInst;
|
|
|
|
// Also sink all related debug uses from the source basic block. Otherwise we
|
|
// get debug use before the def. Attempt to salvage debug uses first, to
|
|
// maximise the range variables have location for. If we cannot salvage, then
|
|
// mark the location undef: we know it was supposed to receive a new location
|
|
// here, but that computation has been sunk.
|
|
SmallVector<DbgVariableIntrinsic *, 2> DbgUsers;
|
|
SmallVector<DbgVariableRecord *, 2> DbgVariableRecords;
|
|
findDbgUsers(DbgUsers, I, &DbgVariableRecords);
|
|
if (!DbgUsers.empty())
|
|
tryToSinkInstructionDbgValues(I, InsertPos, SrcBlock, DestBlock, DbgUsers);
|
|
if (!DbgVariableRecords.empty())
|
|
tryToSinkInstructionDbgVariableRecords(I, InsertPos, SrcBlock, DestBlock,
|
|
DbgVariableRecords);
|
|
|
|
// PS: there are numerous flaws with this behaviour, not least that right now
|
|
// assignments can be re-ordered past other assignments to the same variable
|
|
// if they use different Values. Creating more undef assignements can never be
|
|
// undone. And salvaging all users outside of this block can un-necessarily
|
|
// alter the lifetime of the live-value that the variable refers to.
|
|
// Some of these things can be resolved by tolerating debug use-before-defs in
|
|
// LLVM-IR, however it depends on the instruction-referencing CodeGen backend
|
|
// being used for more architectures.
|
|
|
|
return true;
|
|
}
|
|
|
|
void InstCombinerImpl::tryToSinkInstructionDbgValues(
|
|
Instruction *I, BasicBlock::iterator InsertPos, BasicBlock *SrcBlock,
|
|
BasicBlock *DestBlock, SmallVectorImpl<DbgVariableIntrinsic *> &DbgUsers) {
|
|
// For all debug values in the destination block, the sunk instruction
|
|
// will still be available, so they do not need to be dropped.
|
|
SmallVector<DbgVariableIntrinsic *, 2> DbgUsersToSalvage;
|
|
for (auto &DbgUser : DbgUsers)
|
|
if (DbgUser->getParent() != DestBlock)
|
|
DbgUsersToSalvage.push_back(DbgUser);
|
|
|
|
// Process the sinking DbgUsersToSalvage in reverse order, as we only want
|
|
// to clone the last appearing debug intrinsic for each given variable.
|
|
SmallVector<DbgVariableIntrinsic *, 2> DbgUsersToSink;
|
|
for (DbgVariableIntrinsic *DVI : DbgUsersToSalvage)
|
|
if (DVI->getParent() == SrcBlock)
|
|
DbgUsersToSink.push_back(DVI);
|
|
llvm::sort(DbgUsersToSink,
|
|
[](auto *A, auto *B) { return B->comesBefore(A); });
|
|
|
|
SmallVector<DbgVariableIntrinsic *, 2> DIIClones;
|
|
SmallSet<DebugVariable, 4> SunkVariables;
|
|
for (auto *User : DbgUsersToSink) {
|
|
// A dbg.declare instruction should not be cloned, since there can only be
|
|
// one per variable fragment. It should be left in the original place
|
|
// because the sunk instruction is not an alloca (otherwise we could not be
|
|
// here).
|
|
if (isa<DbgDeclareInst>(User))
|
|
continue;
|
|
|
|
DebugVariable DbgUserVariable =
|
|
DebugVariable(User->getVariable(), User->getExpression(),
|
|
User->getDebugLoc()->getInlinedAt());
|
|
|
|
if (!SunkVariables.insert(DbgUserVariable).second)
|
|
continue;
|
|
|
|
// Leave dbg.assign intrinsics in their original positions and there should
|
|
// be no need to insert a clone.
|
|
if (isa<DbgAssignIntrinsic>(User))
|
|
continue;
|
|
|
|
DIIClones.emplace_back(cast<DbgVariableIntrinsic>(User->clone()));
|
|
if (isa<DbgDeclareInst>(User) && isa<CastInst>(I))
|
|
DIIClones.back()->replaceVariableLocationOp(I, I->getOperand(0));
|
|
LLVM_DEBUG(dbgs() << "CLONE: " << *DIIClones.back() << '\n');
|
|
}
|
|
|
|
// Perform salvaging without the clones, then sink the clones.
|
|
if (!DIIClones.empty()) {
|
|
salvageDebugInfoForDbgValues(*I, DbgUsersToSalvage, {});
|
|
// The clones are in reverse order of original appearance, reverse again to
|
|
// maintain the original order.
|
|
for (auto &DIIClone : llvm::reverse(DIIClones)) {
|
|
DIIClone->insertBefore(InsertPos);
|
|
LLVM_DEBUG(dbgs() << "SINK: " << *DIIClone << '\n');
|
|
}
|
|
}
|
|
}
|
|
|
|
void InstCombinerImpl::tryToSinkInstructionDbgVariableRecords(
|
|
Instruction *I, BasicBlock::iterator InsertPos, BasicBlock *SrcBlock,
|
|
BasicBlock *DestBlock,
|
|
SmallVectorImpl<DbgVariableRecord *> &DbgVariableRecords) {
|
|
// Implementation of tryToSinkInstructionDbgValues, but for the
|
|
// DbgVariableRecord of variable assignments rather than dbg.values.
|
|
|
|
// Fetch all DbgVariableRecords not already in the destination.
|
|
SmallVector<DbgVariableRecord *, 2> DbgVariableRecordsToSalvage;
|
|
for (auto &DVR : DbgVariableRecords)
|
|
if (DVR->getParent() != DestBlock)
|
|
DbgVariableRecordsToSalvage.push_back(DVR);
|
|
|
|
// Fetch a second collection, of DbgVariableRecords in the source block that
|
|
// we're going to sink.
|
|
SmallVector<DbgVariableRecord *> DbgVariableRecordsToSink;
|
|
for (DbgVariableRecord *DVR : DbgVariableRecordsToSalvage)
|
|
if (DVR->getParent() == SrcBlock)
|
|
DbgVariableRecordsToSink.push_back(DVR);
|
|
|
|
// Sort DbgVariableRecords according to their position in the block. This is a
|
|
// partial order: DbgVariableRecords attached to different instructions will
|
|
// be ordered by the instruction order, but DbgVariableRecords attached to the
|
|
// same instruction won't have an order.
|
|
auto Order = [](DbgVariableRecord *A, DbgVariableRecord *B) -> bool {
|
|
return B->getInstruction()->comesBefore(A->getInstruction());
|
|
};
|
|
llvm::stable_sort(DbgVariableRecordsToSink, Order);
|
|
|
|
// If there are two assignments to the same variable attached to the same
|
|
// instruction, the ordering between the two assignments is important. Scan
|
|
// for this (rare) case and establish which is the last assignment.
|
|
using InstVarPair = std::pair<const Instruction *, DebugVariable>;
|
|
SmallDenseMap<InstVarPair, DbgVariableRecord *> FilterOutMap;
|
|
if (DbgVariableRecordsToSink.size() > 1) {
|
|
SmallDenseMap<InstVarPair, unsigned> CountMap;
|
|
// Count how many assignments to each variable there is per instruction.
|
|
for (DbgVariableRecord *DVR : DbgVariableRecordsToSink) {
|
|
DebugVariable DbgUserVariable =
|
|
DebugVariable(DVR->getVariable(), DVR->getExpression(),
|
|
DVR->getDebugLoc()->getInlinedAt());
|
|
CountMap[std::make_pair(DVR->getInstruction(), DbgUserVariable)] += 1;
|
|
}
|
|
|
|
// If there are any instructions with two assignments, add them to the
|
|
// FilterOutMap to record that they need extra filtering.
|
|
SmallPtrSet<const Instruction *, 4> DupSet;
|
|
for (auto It : CountMap) {
|
|
if (It.second > 1) {
|
|
FilterOutMap[It.first] = nullptr;
|
|
DupSet.insert(It.first.first);
|
|
}
|
|
}
|
|
|
|
// For all instruction/variable pairs needing extra filtering, find the
|
|
// latest assignment.
|
|
for (const Instruction *Inst : DupSet) {
|
|
for (DbgVariableRecord &DVR :
|
|
llvm::reverse(filterDbgVars(Inst->getDbgRecordRange()))) {
|
|
DebugVariable DbgUserVariable =
|
|
DebugVariable(DVR.getVariable(), DVR.getExpression(),
|
|
DVR.getDebugLoc()->getInlinedAt());
|
|
auto FilterIt =
|
|
FilterOutMap.find(std::make_pair(Inst, DbgUserVariable));
|
|
if (FilterIt == FilterOutMap.end())
|
|
continue;
|
|
if (FilterIt->second != nullptr)
|
|
continue;
|
|
FilterIt->second = &DVR;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Perform cloning of the DbgVariableRecords that we plan on sinking, filter
|
|
// out any duplicate assignments identified above.
|
|
SmallVector<DbgVariableRecord *, 2> DVRClones;
|
|
SmallSet<DebugVariable, 4> SunkVariables;
|
|
for (DbgVariableRecord *DVR : DbgVariableRecordsToSink) {
|
|
if (DVR->Type == DbgVariableRecord::LocationType::Declare)
|
|
continue;
|
|
|
|
DebugVariable DbgUserVariable =
|
|
DebugVariable(DVR->getVariable(), DVR->getExpression(),
|
|
DVR->getDebugLoc()->getInlinedAt());
|
|
|
|
// For any variable where there were multiple assignments in the same place,
|
|
// ignore all but the last assignment.
|
|
if (!FilterOutMap.empty()) {
|
|
InstVarPair IVP = std::make_pair(DVR->getInstruction(), DbgUserVariable);
|
|
auto It = FilterOutMap.find(IVP);
|
|
|
|
// Filter out.
|
|
if (It != FilterOutMap.end() && It->second != DVR)
|
|
continue;
|
|
}
|
|
|
|
if (!SunkVariables.insert(DbgUserVariable).second)
|
|
continue;
|
|
|
|
if (DVR->isDbgAssign())
|
|
continue;
|
|
|
|
DVRClones.emplace_back(DVR->clone());
|
|
LLVM_DEBUG(dbgs() << "CLONE: " << *DVRClones.back() << '\n');
|
|
}
|
|
|
|
// Perform salvaging without the clones, then sink the clones.
|
|
if (DVRClones.empty())
|
|
return;
|
|
|
|
salvageDebugInfoForDbgValues(*I, {}, DbgVariableRecordsToSalvage);
|
|
|
|
// The clones are in reverse order of original appearance. Assert that the
|
|
// head bit is set on the iterator as we _should_ have received it via
|
|
// getFirstInsertionPt. Inserting like this will reverse the clone order as
|
|
// we'll repeatedly insert at the head, such as:
|
|
// DVR-3 (third insertion goes here)
|
|
// DVR-2 (second insertion goes here)
|
|
// DVR-1 (first insertion goes here)
|
|
// Any-Prior-DVRs
|
|
// InsertPtInst
|
|
assert(InsertPos.getHeadBit());
|
|
for (DbgVariableRecord *DVRClone : DVRClones) {
|
|
InsertPos->getParent()->insertDbgRecordBefore(DVRClone, InsertPos);
|
|
LLVM_DEBUG(dbgs() << "SINK: " << *DVRClone << '\n');
|
|
}
|
|
}
|
|
|
|
bool InstCombinerImpl::run() {
|
|
while (!Worklist.isEmpty()) {
|
|
// Walk deferred instructions in reverse order, and push them to the
|
|
// worklist, which means they'll end up popped from the worklist in-order.
|
|
while (Instruction *I = Worklist.popDeferred()) {
|
|
// Check to see if we can DCE the instruction. We do this already here to
|
|
// reduce the number of uses and thus allow other folds to trigger.
|
|
// Note that eraseInstFromFunction() may push additional instructions on
|
|
// the deferred worklist, so this will DCE whole instruction chains.
|
|
if (isInstructionTriviallyDead(I, &TLI)) {
|
|
eraseInstFromFunction(*I);
|
|
++NumDeadInst;
|
|
continue;
|
|
}
|
|
|
|
Worklist.push(I);
|
|
}
|
|
|
|
Instruction *I = Worklist.removeOne();
|
|
if (I == nullptr) continue; // skip null values.
|
|
|
|
// Check to see if we can DCE the instruction.
|
|
if (isInstructionTriviallyDead(I, &TLI)) {
|
|
eraseInstFromFunction(*I);
|
|
++NumDeadInst;
|
|
continue;
|
|
}
|
|
|
|
if (!DebugCounter::shouldExecute(VisitCounter))
|
|
continue;
|
|
|
|
// See if we can trivially sink this instruction to its user if we can
|
|
// prove that the successor is not executed more frequently than our block.
|
|
// Return the UserBlock if successful.
|
|
auto getOptionalSinkBlockForInst =
|
|
[this](Instruction *I) -> std::optional<BasicBlock *> {
|
|
if (!EnableCodeSinking)
|
|
return std::nullopt;
|
|
|
|
BasicBlock *BB = I->getParent();
|
|
BasicBlock *UserParent = nullptr;
|
|
unsigned NumUsers = 0;
|
|
|
|
for (Use &U : I->uses()) {
|
|
User *User = U.getUser();
|
|
if (User->isDroppable())
|
|
continue;
|
|
if (NumUsers > MaxSinkNumUsers)
|
|
return std::nullopt;
|
|
|
|
Instruction *UserInst = cast<Instruction>(User);
|
|
// Special handling for Phi nodes - get the block the use occurs in.
|
|
BasicBlock *UserBB = UserInst->getParent();
|
|
if (PHINode *PN = dyn_cast<PHINode>(UserInst))
|
|
UserBB = PN->getIncomingBlock(U);
|
|
// Bail out if we have uses in different blocks. We don't do any
|
|
// sophisticated analysis (i.e finding NearestCommonDominator of these
|
|
// use blocks).
|
|
if (UserParent && UserParent != UserBB)
|
|
return std::nullopt;
|
|
UserParent = UserBB;
|
|
|
|
// Make sure these checks are done only once, naturally we do the checks
|
|
// the first time we get the userparent, this will save compile time.
|
|
if (NumUsers == 0) {
|
|
// Try sinking to another block. If that block is unreachable, then do
|
|
// not bother. SimplifyCFG should handle it.
|
|
if (UserParent == BB || !DT.isReachableFromEntry(UserParent))
|
|
return std::nullopt;
|
|
|
|
auto *Term = UserParent->getTerminator();
|
|
// See if the user is one of our successors that has only one
|
|
// predecessor, so that we don't have to split the critical edge.
|
|
// Another option where we can sink is a block that ends with a
|
|
// terminator that does not pass control to other block (such as
|
|
// return or unreachable or resume). In this case:
|
|
// - I dominates the User (by SSA form);
|
|
// - the User will be executed at most once.
|
|
// So sinking I down to User is always profitable or neutral.
|
|
if (UserParent->getUniquePredecessor() != BB && !succ_empty(Term))
|
|
return std::nullopt;
|
|
|
|
assert(DT.dominates(BB, UserParent) && "Dominance relation broken?");
|
|
}
|
|
|
|
NumUsers++;
|
|
}
|
|
|
|
// No user or only has droppable users.
|
|
if (!UserParent)
|
|
return std::nullopt;
|
|
|
|
return UserParent;
|
|
};
|
|
|
|
auto OptBB = getOptionalSinkBlockForInst(I);
|
|
if (OptBB) {
|
|
auto *UserParent = *OptBB;
|
|
// Okay, the CFG is simple enough, try to sink this instruction.
|
|
if (tryToSinkInstruction(I, UserParent)) {
|
|
LLVM_DEBUG(dbgs() << "IC: Sink: " << *I << '\n');
|
|
MadeIRChange = true;
|
|
// We'll add uses of the sunk instruction below, but since
|
|
// sinking can expose opportunities for it's *operands* add
|
|
// them to the worklist
|
|
for (Use &U : I->operands())
|
|
if (Instruction *OpI = dyn_cast<Instruction>(U.get()))
|
|
Worklist.push(OpI);
|
|
}
|
|
}
|
|
|
|
// Now that we have an instruction, try combining it to simplify it.
|
|
Builder.SetInsertPoint(I);
|
|
Builder.CollectMetadataToCopy(
|
|
I, {LLVMContext::MD_dbg, LLVMContext::MD_annotation});
|
|
|
|
#ifndef NDEBUG
|
|
std::string OrigI;
|
|
#endif
|
|
LLVM_DEBUG(raw_string_ostream SS(OrigI); I->print(SS););
|
|
LLVM_DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n');
|
|
|
|
if (Instruction *Result = visit(*I)) {
|
|
++NumCombined;
|
|
// Should we replace the old instruction with a new one?
|
|
if (Result != I) {
|
|
LLVM_DEBUG(dbgs() << "IC: Old = " << *I << '\n'
|
|
<< " New = " << *Result << '\n');
|
|
|
|
// We copy the old instruction's DebugLoc to the new instruction, unless
|
|
// InstCombine already assigned a DebugLoc to it, in which case we
|
|
// should trust the more specifically selected DebugLoc.
|
|
Result->setDebugLoc(Result->getDebugLoc().orElse(I->getDebugLoc()));
|
|
// We also copy annotation metadata to the new instruction.
|
|
Result->copyMetadata(*I, LLVMContext::MD_annotation);
|
|
// Everything uses the new instruction now.
|
|
I->replaceAllUsesWith(Result);
|
|
|
|
// Move the name to the new instruction first.
|
|
Result->takeName(I);
|
|
|
|
// Insert the new instruction into the basic block...
|
|
BasicBlock *InstParent = I->getParent();
|
|
BasicBlock::iterator InsertPos = I->getIterator();
|
|
|
|
// Are we replace a PHI with something that isn't a PHI, or vice versa?
|
|
if (isa<PHINode>(Result) != isa<PHINode>(I)) {
|
|
// We need to fix up the insertion point.
|
|
if (isa<PHINode>(I)) // PHI -> Non-PHI
|
|
InsertPos = InstParent->getFirstInsertionPt();
|
|
else // Non-PHI -> PHI
|
|
InsertPos = InstParent->getFirstNonPHIIt();
|
|
}
|
|
|
|
Result->insertInto(InstParent, InsertPos);
|
|
|
|
// Push the new instruction and any users onto the worklist.
|
|
Worklist.pushUsersToWorkList(*Result);
|
|
Worklist.push(Result);
|
|
|
|
eraseInstFromFunction(*I);
|
|
} else {
|
|
LLVM_DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n'
|
|
<< " New = " << *I << '\n');
|
|
|
|
// If the instruction was modified, it's possible that it is now dead.
|
|
// if so, remove it.
|
|
if (isInstructionTriviallyDead(I, &TLI)) {
|
|
eraseInstFromFunction(*I);
|
|
} else {
|
|
Worklist.pushUsersToWorkList(*I);
|
|
Worklist.push(I);
|
|
}
|
|
}
|
|
MadeIRChange = true;
|
|
}
|
|
}
|
|
|
|
Worklist.zap();
|
|
return MadeIRChange;
|
|
}
|
|
|
|
// Track the scopes used by !alias.scope and !noalias. In a function, a
|
|
// @llvm.experimental.noalias.scope.decl is only useful if that scope is used
|
|
// by both sets. If not, the declaration of the scope can be safely omitted.
|
|
// The MDNode of the scope can be omitted as well for the instructions that are
|
|
// part of this function. We do not do that at this point, as this might become
|
|
// too time consuming to do.
|
|
class AliasScopeTracker {
|
|
SmallPtrSet<const MDNode *, 8> UsedAliasScopesAndLists;
|
|
SmallPtrSet<const MDNode *, 8> UsedNoAliasScopesAndLists;
|
|
|
|
public:
|
|
void analyse(Instruction *I) {
|
|
// This seems to be faster than checking 'mayReadOrWriteMemory()'.
|
|
if (!I->hasMetadataOtherThanDebugLoc())
|
|
return;
|
|
|
|
auto Track = [](Metadata *ScopeList, auto &Container) {
|
|
const auto *MDScopeList = dyn_cast_or_null<MDNode>(ScopeList);
|
|
if (!MDScopeList || !Container.insert(MDScopeList).second)
|
|
return;
|
|
for (const auto &MDOperand : MDScopeList->operands())
|
|
if (auto *MDScope = dyn_cast<MDNode>(MDOperand))
|
|
Container.insert(MDScope);
|
|
};
|
|
|
|
Track(I->getMetadata(LLVMContext::MD_alias_scope), UsedAliasScopesAndLists);
|
|
Track(I->getMetadata(LLVMContext::MD_noalias), UsedNoAliasScopesAndLists);
|
|
}
|
|
|
|
bool isNoAliasScopeDeclDead(Instruction *Inst) {
|
|
NoAliasScopeDeclInst *Decl = dyn_cast<NoAliasScopeDeclInst>(Inst);
|
|
if (!Decl)
|
|
return false;
|
|
|
|
assert(Decl->use_empty() &&
|
|
"llvm.experimental.noalias.scope.decl in use ?");
|
|
const MDNode *MDSL = Decl->getScopeList();
|
|
assert(MDSL->getNumOperands() == 1 &&
|
|
"llvm.experimental.noalias.scope should refer to a single scope");
|
|
auto &MDOperand = MDSL->getOperand(0);
|
|
if (auto *MD = dyn_cast<MDNode>(MDOperand))
|
|
return !UsedAliasScopesAndLists.contains(MD) ||
|
|
!UsedNoAliasScopesAndLists.contains(MD);
|
|
|
|
// Not an MDNode ? throw away.
|
|
return true;
|
|
}
|
|
};
|
|
|
|
/// Populate the IC worklist from a function, by walking it in reverse
|
|
/// post-order and adding all reachable code to the worklist.
|
|
///
|
|
/// This has a couple of tricks to make the code faster and more powerful. In
|
|
/// particular, we constant fold and DCE instructions as we go, to avoid adding
|
|
/// them to the worklist (this significantly speeds up instcombine on code where
|
|
/// many instructions are dead or constant). Additionally, if we find a branch
|
|
/// whose condition is a known constant, we only visit the reachable successors.
|
|
bool InstCombinerImpl::prepareWorklist(Function &F) {
|
|
bool MadeIRChange = false;
|
|
SmallPtrSet<BasicBlock *, 32> LiveBlocks;
|
|
SmallVector<Instruction *, 128> InstrsForInstructionWorklist;
|
|
DenseMap<Constant *, Constant *> FoldedConstants;
|
|
AliasScopeTracker SeenAliasScopes;
|
|
|
|
auto HandleOnlyLiveSuccessor = [&](BasicBlock *BB, BasicBlock *LiveSucc) {
|
|
for (BasicBlock *Succ : successors(BB))
|
|
if (Succ != LiveSucc && DeadEdges.insert({BB, Succ}).second)
|
|
for (PHINode &PN : Succ->phis())
|
|
for (Use &U : PN.incoming_values())
|
|
if (PN.getIncomingBlock(U) == BB && !isa<PoisonValue>(U)) {
|
|
U.set(PoisonValue::get(PN.getType()));
|
|
MadeIRChange = true;
|
|
}
|
|
};
|
|
|
|
for (BasicBlock *BB : RPOT) {
|
|
if (!BB->isEntryBlock() && all_of(predecessors(BB), [&](BasicBlock *Pred) {
|
|
return DeadEdges.contains({Pred, BB}) || DT.dominates(BB, Pred);
|
|
})) {
|
|
HandleOnlyLiveSuccessor(BB, nullptr);
|
|
continue;
|
|
}
|
|
LiveBlocks.insert(BB);
|
|
|
|
for (Instruction &Inst : llvm::make_early_inc_range(*BB)) {
|
|
// ConstantProp instruction if trivially constant.
|
|
if (!Inst.use_empty() &&
|
|
(Inst.getNumOperands() == 0 || isa<Constant>(Inst.getOperand(0))))
|
|
if (Constant *C = ConstantFoldInstruction(&Inst, DL, &TLI)) {
|
|
LLVM_DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << Inst
|
|
<< '\n');
|
|
Inst.replaceAllUsesWith(C);
|
|
++NumConstProp;
|
|
if (isInstructionTriviallyDead(&Inst, &TLI))
|
|
Inst.eraseFromParent();
|
|
MadeIRChange = true;
|
|
continue;
|
|
}
|
|
|
|
// See if we can constant fold its operands.
|
|
for (Use &U : Inst.operands()) {
|
|
if (!isa<ConstantVector>(U) && !isa<ConstantExpr>(U))
|
|
continue;
|
|
|
|
auto *C = cast<Constant>(U);
|
|
Constant *&FoldRes = FoldedConstants[C];
|
|
if (!FoldRes)
|
|
FoldRes = ConstantFoldConstant(C, DL, &TLI);
|
|
|
|
if (FoldRes != C) {
|
|
LLVM_DEBUG(dbgs() << "IC: ConstFold operand of: " << Inst
|
|
<< "\n Old = " << *C
|
|
<< "\n New = " << *FoldRes << '\n');
|
|
U = FoldRes;
|
|
MadeIRChange = true;
|
|
}
|
|
}
|
|
|
|
// Skip processing debug and pseudo intrinsics in InstCombine. Processing
|
|
// these call instructions consumes non-trivial amount of time and
|
|
// provides no value for the optimization.
|
|
if (!Inst.isDebugOrPseudoInst()) {
|
|
InstrsForInstructionWorklist.push_back(&Inst);
|
|
SeenAliasScopes.analyse(&Inst);
|
|
}
|
|
}
|
|
|
|
// If this is a branch or switch on a constant, mark only the single
|
|
// live successor. Otherwise assume all successors are live.
|
|
Instruction *TI = BB->getTerminator();
|
|
if (BranchInst *BI = dyn_cast<BranchInst>(TI); BI && BI->isConditional()) {
|
|
if (isa<UndefValue>(BI->getCondition())) {
|
|
// Branch on undef is UB.
|
|
HandleOnlyLiveSuccessor(BB, nullptr);
|
|
continue;
|
|
}
|
|
if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) {
|
|
bool CondVal = Cond->getZExtValue();
|
|
HandleOnlyLiveSuccessor(BB, BI->getSuccessor(!CondVal));
|
|
continue;
|
|
}
|
|
} else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
|
|
if (isa<UndefValue>(SI->getCondition())) {
|
|
// Switch on undef is UB.
|
|
HandleOnlyLiveSuccessor(BB, nullptr);
|
|
continue;
|
|
}
|
|
if (auto *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
|
|
HandleOnlyLiveSuccessor(BB,
|
|
SI->findCaseValue(Cond)->getCaseSuccessor());
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Remove instructions inside unreachable blocks. This prevents the
|
|
// instcombine code from having to deal with some bad special cases, and
|
|
// reduces use counts of instructions.
|
|
for (BasicBlock &BB : F) {
|
|
if (LiveBlocks.count(&BB))
|
|
continue;
|
|
|
|
unsigned NumDeadInstInBB;
|
|
unsigned NumDeadDbgInstInBB;
|
|
std::tie(NumDeadInstInBB, NumDeadDbgInstInBB) =
|
|
removeAllNonTerminatorAndEHPadInstructions(&BB);
|
|
|
|
MadeIRChange |= NumDeadInstInBB + NumDeadDbgInstInBB > 0;
|
|
NumDeadInst += NumDeadInstInBB;
|
|
}
|
|
|
|
// Once we've found all of the instructions to add to instcombine's worklist,
|
|
// add them in reverse order. This way instcombine will visit from the top
|
|
// of the function down. This jives well with the way that it adds all uses
|
|
// of instructions to the worklist after doing a transformation, thus avoiding
|
|
// some N^2 behavior in pathological cases.
|
|
Worklist.reserve(InstrsForInstructionWorklist.size());
|
|
for (Instruction *Inst : reverse(InstrsForInstructionWorklist)) {
|
|
// DCE instruction if trivially dead. As we iterate in reverse program
|
|
// order here, we will clean up whole chains of dead instructions.
|
|
if (isInstructionTriviallyDead(Inst, &TLI) ||
|
|
SeenAliasScopes.isNoAliasScopeDeclDead(Inst)) {
|
|
++NumDeadInst;
|
|
LLVM_DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n');
|
|
salvageDebugInfo(*Inst);
|
|
Inst->eraseFromParent();
|
|
MadeIRChange = true;
|
|
continue;
|
|
}
|
|
|
|
Worklist.push(Inst);
|
|
}
|
|
|
|
return MadeIRChange;
|
|
}
|
|
|
|
void InstCombiner::computeBackEdges() {
|
|
// Collect backedges.
|
|
SmallPtrSet<BasicBlock *, 16> Visited;
|
|
for (BasicBlock *BB : RPOT) {
|
|
Visited.insert(BB);
|
|
for (BasicBlock *Succ : successors(BB))
|
|
if (Visited.contains(Succ))
|
|
BackEdges.insert({BB, Succ});
|
|
}
|
|
ComputedBackEdges = true;
|
|
}
|
|
|
|
static bool combineInstructionsOverFunction(
|
|
Function &F, InstructionWorklist &Worklist, AliasAnalysis *AA,
|
|
AssumptionCache &AC, TargetLibraryInfo &TLI, TargetTransformInfo &TTI,
|
|
DominatorTree &DT, OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI,
|
|
BranchProbabilityInfo *BPI, ProfileSummaryInfo *PSI,
|
|
const InstCombineOptions &Opts) {
|
|
auto &DL = F.getDataLayout();
|
|
bool VerifyFixpoint = Opts.VerifyFixpoint &&
|
|
!F.hasFnAttribute("instcombine-no-verify-fixpoint");
|
|
|
|
/// Builder - This is an IRBuilder that automatically inserts new
|
|
/// instructions into the worklist when they are created.
|
|
IRBuilder<TargetFolder, IRBuilderCallbackInserter> Builder(
|
|
F.getContext(), TargetFolder(DL),
|
|
IRBuilderCallbackInserter([&Worklist, &AC](Instruction *I) {
|
|
Worklist.add(I);
|
|
if (auto *Assume = dyn_cast<AssumeInst>(I))
|
|
AC.registerAssumption(Assume);
|
|
}));
|
|
|
|
ReversePostOrderTraversal<BasicBlock *> RPOT(&F.front());
|
|
|
|
// Lower dbg.declare intrinsics otherwise their value may be clobbered
|
|
// by instcombiner.
|
|
bool MadeIRChange = false;
|
|
if (ShouldLowerDbgDeclare)
|
|
MadeIRChange = LowerDbgDeclare(F);
|
|
|
|
// Iterate while there is work to do.
|
|
unsigned Iteration = 0;
|
|
while (true) {
|
|
if (Iteration >= Opts.MaxIterations && !VerifyFixpoint) {
|
|
LLVM_DEBUG(dbgs() << "\n\n[IC] Iteration limit #" << Opts.MaxIterations
|
|
<< " on " << F.getName()
|
|
<< " reached; stopping without verifying fixpoint\n");
|
|
break;
|
|
}
|
|
|
|
++Iteration;
|
|
++NumWorklistIterations;
|
|
LLVM_DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
|
|
<< F.getName() << "\n");
|
|
|
|
InstCombinerImpl IC(Worklist, Builder, F.hasMinSize(), AA, AC, TLI, TTI, DT,
|
|
ORE, BFI, BPI, PSI, DL, RPOT);
|
|
IC.MaxArraySizeForCombine = MaxArraySize;
|
|
bool MadeChangeInThisIteration = IC.prepareWorklist(F);
|
|
MadeChangeInThisIteration |= IC.run();
|
|
if (!MadeChangeInThisIteration)
|
|
break;
|
|
|
|
MadeIRChange = true;
|
|
if (Iteration > Opts.MaxIterations) {
|
|
reportFatalUsageError(
|
|
"Instruction Combining on " + Twine(F.getName()) +
|
|
" did not reach a fixpoint after " + Twine(Opts.MaxIterations) +
|
|
" iterations. " +
|
|
"Use 'instcombine<no-verify-fixpoint>' or function attribute "
|
|
"'instcombine-no-verify-fixpoint' to suppress this error.");
|
|
}
|
|
}
|
|
|
|
if (Iteration == 1)
|
|
++NumOneIteration;
|
|
else if (Iteration == 2)
|
|
++NumTwoIterations;
|
|
else if (Iteration == 3)
|
|
++NumThreeIterations;
|
|
else
|
|
++NumFourOrMoreIterations;
|
|
|
|
return MadeIRChange;
|
|
}
|
|
|
|
InstCombinePass::InstCombinePass(InstCombineOptions Opts) : Options(Opts) {}
|
|
|
|
void InstCombinePass::printPipeline(
|
|
raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) {
|
|
static_cast<PassInfoMixin<InstCombinePass> *>(this)->printPipeline(
|
|
OS, MapClassName2PassName);
|
|
OS << '<';
|
|
OS << "max-iterations=" << Options.MaxIterations << ";";
|
|
OS << (Options.VerifyFixpoint ? "" : "no-") << "verify-fixpoint";
|
|
OS << '>';
|
|
}
|
|
|
|
char InstCombinePass::ID = 0;
|
|
|
|
PreservedAnalyses InstCombinePass::run(Function &F,
|
|
FunctionAnalysisManager &AM) {
|
|
auto &LRT = AM.getResult<LastRunTrackingAnalysis>(F);
|
|
// No changes since last InstCombine pass, exit early.
|
|
if (LRT.shouldSkip(&ID))
|
|
return PreservedAnalyses::all();
|
|
|
|
auto &AC = AM.getResult<AssumptionAnalysis>(F);
|
|
auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
|
|
auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
|
|
auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
|
|
auto &TTI = AM.getResult<TargetIRAnalysis>(F);
|
|
|
|
auto *AA = &AM.getResult<AAManager>(F);
|
|
auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
|
|
ProfileSummaryInfo *PSI =
|
|
MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
|
|
auto *BFI = (PSI && PSI->hasProfileSummary()) ?
|
|
&AM.getResult<BlockFrequencyAnalysis>(F) : nullptr;
|
|
auto *BPI = AM.getCachedResult<BranchProbabilityAnalysis>(F);
|
|
|
|
if (!combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE,
|
|
BFI, BPI, PSI, Options)) {
|
|
// No changes, all analyses are preserved.
|
|
LRT.update(&ID, /*Changed=*/false);
|
|
return PreservedAnalyses::all();
|
|
}
|
|
|
|
// Mark all the analyses that instcombine updates as preserved.
|
|
PreservedAnalyses PA;
|
|
LRT.update(&ID, /*Changed=*/true);
|
|
PA.preserve<LastRunTrackingAnalysis>();
|
|
PA.preserveSet<CFGAnalyses>();
|
|
return PA;
|
|
}
|
|
|
|
void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesCFG();
|
|
AU.addRequired<AAResultsWrapperPass>();
|
|
AU.addRequired<AssumptionCacheTracker>();
|
|
AU.addRequired<TargetLibraryInfoWrapperPass>();
|
|
AU.addRequired<TargetTransformInfoWrapperPass>();
|
|
AU.addRequired<DominatorTreeWrapperPass>();
|
|
AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
|
|
AU.addPreserved<DominatorTreeWrapperPass>();
|
|
AU.addPreserved<AAResultsWrapperPass>();
|
|
AU.addPreserved<BasicAAWrapperPass>();
|
|
AU.addPreserved<GlobalsAAWrapperPass>();
|
|
AU.addRequired<ProfileSummaryInfoWrapperPass>();
|
|
LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
|
|
}
|
|
|
|
bool InstructionCombiningPass::runOnFunction(Function &F) {
|
|
if (skipFunction(F))
|
|
return false;
|
|
|
|
// Required analyses.
|
|
auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
|
|
auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
|
|
auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
|
|
auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
|
|
auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
|
auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
|
|
|
|
// Optional analyses.
|
|
ProfileSummaryInfo *PSI =
|
|
&getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
|
|
BlockFrequencyInfo *BFI =
|
|
(PSI && PSI->hasProfileSummary()) ?
|
|
&getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() :
|
|
nullptr;
|
|
BranchProbabilityInfo *BPI = nullptr;
|
|
if (auto *WrapperPass =
|
|
getAnalysisIfAvailable<BranchProbabilityInfoWrapperPass>())
|
|
BPI = &WrapperPass->getBPI();
|
|
|
|
return combineInstructionsOverFunction(F, Worklist, AA, AC, TLI, TTI, DT, ORE,
|
|
BFI, BPI, PSI, InstCombineOptions());
|
|
}
|
|
|
|
char InstructionCombiningPass::ID = 0;
|
|
|
|
InstructionCombiningPass::InstructionCombiningPass() : FunctionPass(ID) {
|
|
initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine",
|
|
"Combine redundant instructions", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass)
|
|
INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
|
|
INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine",
|
|
"Combine redundant instructions", false, false)
|
|
|
|
// Initialization Routines
|
|
void llvm::initializeInstCombine(PassRegistry &Registry) {
|
|
initializeInstructionCombiningPassPass(Registry);
|
|
}
|
|
|
|
FunctionPass *llvm::createInstructionCombiningPass() {
|
|
return new InstructionCombiningPass();
|
|
}
|