Slava Zakharin a0d699a8e6 Reland "[flang] Added noalias attribute to function arguments. (#140803)"
This helps to disambiguate accesses in the caller and the callee
after LLVM inlining in some apps. I did not see any performance
changes, but this is one step towards enabling other optimizations
in the apps that I am looking at.

The definition of llvm.noalias says:
```
... indicates that memory locations accessed via pointer values based on the argument or return value are not also accessed, during the execution of the function, via pointer values not based on the argument or return value. This guarantee only holds for memory locations that are modified, by any means, during the execution of the function.
```

I believe this exactly matches Fortran rules for the dummy arguments
that are modified during their subprogram execution.

I also set llvm.noalias and llvm.nocapture on the !fir.box<> arguments,
because the corresponding descriptors cannot be captured and cannot
alias anything (not based on them) during the execution of the
subprogram.
2025-05-29 13:42:57 -07:00

232 lines
14 KiB
Plaintext

// RUN: tco %s | FileCheck %s
// RUN: %flang_fc1 -emit-llvm %s -o - | FileCheck %s
// Test applying slice on fir.box
// subroutine foo(x)
// real :: x(3:, 4:)
// call bar(x(5, 6:80:3))
// end subroutine
func.func private @bar1(!fir.box<!fir.array<?xf32>>)
// CHECK-LABEL: define void @test_rebox_1(
// CHECK-SAME: ptr {{[^%]*}}%[[INBOX:.*]])
func.func @test_rebox_1(%arg0: !fir.box<!fir.array<?x?xf32>>) {
// CHECK: %[[OUTBOX_ALLOC:.*]] = alloca { ptr, i64, i32, i8, i8, i8, i8, [1 x [3 x i64]] }
%c2 = arith.constant 2 : index
%c3 = arith.constant 3 : index
%c4 = arith.constant 4 : index
%c5 = arith.constant 5 : index
%c6 = arith.constant 6 : index
%c80 = arith.constant 80 : index
%undef = fir.undefined index
%0 = fir.slice %c5, %undef, %undef, %c6, %c80, %c3 : (index, index, index, index, index, index) -> !fir.slice<2>
%1 = fir.shift %c3, %c4 : (index, index) -> !fir.shift<2>
// CHECK: %[[EXTRA_GEP:.*]] = getelementptr { ptr, i64, i32, i8, i8, i8, i8, [2 x [3 x i64]] }, ptr %[[INBOX]], i32 0, i32 6
// CHECK: %[[EXTRA:.*]] = load i8, ptr %[[EXTRA_GEP]]
// CHECK: %[[EXTRA_WITH_ADDENDUM_CORRECTION:.*]] = and i8 %[[EXTRA]]
// CHECK: %[[OUTBOX0:.*]] = insertvalue { ptr, i64, i32, i8, i8, i8, i8, [1 x [3 x i64]] } { ptr undef, i64 4, i32 20240719, i8 1, i8 27, i8 0, i8 undef, [1 x [3 x i64]] undef }, i8 %[[EXTRA_WITH_ADDENDUM_CORRECTION]], 6
// CHECK: %[[INSTRIDE_0_GEP:.*]] = getelementptr { ptr, i64, i32, i8, i8, i8, i8, [2 x [3 x i64]] }, ptr %[[INBOX]], i32 0, i32 7, i32 0, i32 2
// CHECK: %[[INSTRIDE_0:.*]] = load i64, ptr %[[INSTRIDE_0_GEP]]
// CHECK: %[[INSTRIDE_1_GEP:.*]] = getelementptr { ptr, i64, i32, i8, i8, i8, i8, [2 x [3 x i64]] }, ptr %[[INBOX]], i32 0, i32 7, i32 1, i32 2
// CHECK: %[[INSTRIDE_1:.*]] = load i64, ptr %[[INSTRIDE_1_GEP]]
// CHECK: %[[INBASE_GEP:.*]] = getelementptr { ptr, i64, i32, i8, i8, i8, i8, [2 x [3 x i64]] }, ptr %[[INBOX]], i32 0, i32 0
// CHECK: %[[INBASE:.*]] = load ptr, ptr %[[INBASE_GEP]]
// CHECK: %[[OFFSET_0:.*]] = mul i64 2, %[[INSTRIDE_0]]
// CHECK: %[[VOIDBASE0:.*]] = getelementptr i8, ptr %[[INBASE]], i64 %[[OFFSET_0]]
// CHECK: %[[OFFSET_1:.*]] = mul i64 2, %[[INSTRIDE_1]]
// CHECK: %[[VOIDBASE1:.*]] = getelementptr i8, ptr %[[VOIDBASE0]], i64 %[[OFFSET_1]]
// CHECK: %[[OUTSTRIDE0:.*]] = mul i64 3, %[[INSTRIDE_1]]
// CHECK: %[[OUTBOX1:.*]] = insertvalue { ptr, i64, i32, i8, i8, i8, i8, [1 x [3 x i64]] } %{{.*}}, i64 %[[OUTSTRIDE0]], 7, 0, 2
// CHECK: %[[OUTBOX2:.*]] = insertvalue { ptr, i64, i32, i8, i8, i8, i8, [1 x [3 x i64]] } %[[OUTBOX1]], ptr %[[VOIDBASE1]], 0
// CHECK: store { ptr, i64, i32, i8, i8, i8, i8, [1 x [3 x i64]] } %[[OUTBOX2]], ptr %[[OUTBOX_ALLOC]], align 8
%2 = fir.rebox %arg0(%1) [%0] : (!fir.box<!fir.array<?x?xf32>>, !fir.shift<2>, !fir.slice<2>) -> !fir.box<!fir.array<?xf32>>
// CHECK: call void @bar1(ptr %[[OUTBOX_ALLOC]])
fir.call @bar1(%2) : (!fir.box<!fir.array<?xf32>>) -> ()
return
}
// Test that character length is propagated in rebox
// subroutine foo(x)
// character(*) :: x(:, :)
// call bar(x(4:30:1, 4:30:1))
// end subroutine
func.func private @bar_rebox_test2(!fir.box<!fir.array<?x?x!fir.char<1,?>>>)
// CHECK-LABEL: define void @test_rebox_2(
// CHECK-SAME: ptr {{[^%]*}}%[[INBOX:.*]])
func.func @test_rebox_2(%arg0: !fir.box<!fir.array<?x?x!fir.char<1,?>>>) {
%c1 = arith.constant 1 : index
%c4 = arith.constant 4 : index
%c30 = arith.constant 30 : index
%0 = fir.slice %c4, %c30, %c1, %c4, %c30, %c1 : (index, index, index, index, index, index) -> !fir.slice<2>
// CHECK: %[[OUTBOX:.*]] = alloca { ptr, i64, i32, i8, i8, i8, i8, [2 x [3 x i64]] }
// CHECK: %[[LEN_GEP:.*]] = getelementptr { ptr, i64, i32, i8, i8, i8, i8, [2 x [3 x i64]] }, ptr %[[INBOX]], i32 0, i32 1
// CHECK: %[[LEN:.*]] = load i64, ptr %[[LEN_GEP]]
// CHECK: %[[SIZE:.*]] = mul i64 1, %[[LEN]]
// CHECK: insertvalue { ptr, i64, i32, i8, i8, i8, i8, [2 x [3 x i64]] } undef, i64 %[[SIZE]], 1
%1 = fir.rebox %arg0 [%0] : (!fir.box<!fir.array<?x?x!fir.char<1,?>>>, !fir.slice<2>) -> !fir.box<!fir.array<?x?x!fir.char<1,?>>>
fir.call @bar_rebox_test2(%1) : (!fir.box<!fir.array<?x?x!fir.char<1,?>>>) -> ()
return
}
// Test setting a new shape on a fir.box
// subroutine foo(x)
// real :: x(:)
// real, pointer(:, :, :), p
// p(2:5, 3:7, 4:9) => x
// call bar(p)
// end subroutine
func.func private @bar_rebox_test3(!fir.box<!fir.array<?x?x?xf32>>)
// CHECK-LABEL: define void @test_rebox_3(
// CHECK-SAME: ptr {{[^%]*}}%[[INBOX:.*]])
func.func @test_rebox_3(%arg0: !fir.box<!fir.array<?xf32>>) {
// CHECK: %[[OUTBOX_ALLOC:.*]] = alloca { ptr, i64, i32, i8, i8, i8, i8, [3 x [3 x i64]] }
%c2 = arith.constant 2 : index
%c3 = arith.constant 3 : index
%c4 = arith.constant 4 : index
%c5 = arith.constant 5 : index
%1 = fir.shape_shift %c2, %c3, %c3, %c4, %c4, %c5 : (index, index, index, index, index, index) -> !fir.shapeshift<3>
// CHECK: %[[INSTRIDE_GEP:.*]] = getelementptr { ptr, i64, i32, i8, i8, i8, i8, [1 x [3 x i64]] }, ptr %[[INBOX]], i32 0, i32 7, i32 0, i32 2
// CHECK: %[[INSTRIDE:.*]] = load i64, ptr %[[INSTRIDE_GEP]]
// CHECK: %[[INBASE_GEP:.*]] = getelementptr { ptr, i64, i32, i8, i8, i8, i8, [1 x [3 x i64]] }, ptr %[[INBOX]], i32 0, i32 0
// CHECK: %[[INBASE:.*]] = load ptr, ptr %[[INBASE_GEP]]
// CHECK: %[[OUTSTRIDE1:.*]] = mul i64 3, %[[INSTRIDE]]
// CHECK: %[[OUTSTRIDE2:.*]] = mul i64 4, %[[OUTSTRIDE1]]
// CHECK: %[[OUTBOX0:.*]] = insertvalue { ptr, i64, i32, i8, i8, i8, i8, [3 x [3 x i64]] } %{{.*}}, i64 %[[INSTRIDE]], 7, 0, 2
// CHECK: %[[OUTBOX1:.*]] = insertvalue { ptr, i64, i32, i8, i8, i8, i8, [3 x [3 x i64]] } %[[OUTBOX0]], i64 3, 7, 1, 0
// CHECK: %[[OUTBOX2:.*]] = insertvalue { ptr, i64, i32, i8, i8, i8, i8, [3 x [3 x i64]] } %[[OUTBOX1]], i64 4, 7, 1, 1
// CHECK: %[[OUTBOX3:.*]] = insertvalue { ptr, i64, i32, i8, i8, i8, i8, [3 x [3 x i64]] } %[[OUTBOX2]], i64 %[[OUTSTRIDE1]], 7, 1, 2
// CHECK: %[[OUTBOX4:.*]] = insertvalue { ptr, i64, i32, i8, i8, i8, i8, [3 x [3 x i64]] } %[[OUTBOX3]], i64 4, 7, 2, 0
// CHECK: %[[OUTBOX5:.*]] = insertvalue { ptr, i64, i32, i8, i8, i8, i8, [3 x [3 x i64]] } %[[OUTBOX4]], i64 5, 7, 2, 1
// CHECK: %[[OUTBOX6:.*]] = insertvalue { ptr, i64, i32, i8, i8, i8, i8, [3 x [3 x i64]] } %[[OUTBOX5]], i64 %[[OUTSTRIDE2]], 7, 2, 2
// CHECK: %[[OUTBOX7:.*]] = insertvalue { ptr, i64, i32, i8, i8, i8, i8, [3 x [3 x i64]] } %[[OUTBOX6]], ptr %[[INBASE]], 0
// CHECK: store { ptr, i64, i32, i8, i8, i8, i8, [3 x [3 x i64]] } %[[OUTBOX7]], ptr %[[OUTBOX_ALLOC]]
%2 = fir.rebox %arg0(%1) : (!fir.box<!fir.array<?xf32>>, !fir.shapeshift<3>) -> !fir.box<!fir.array<?x?x?xf32>>
// CHECK: call void @bar_rebox_test3(ptr %[[OUTBOX_ALLOC]])
fir.call @bar_rebox_test3(%2) : (!fir.box<!fir.array<?x?x?xf32>>) -> ()
return
}
// Test reboxing of character entities where the input has dynamic length and the output has compile
// time constant length.
// CHECK-LABEL: define void @test_rebox_4(
// CHECK-SAME: ptr {{[^%]*}}%[[INPUT:.*]])
func.func @test_rebox_4(%arg0: !fir.box<!fir.array<?x!fir.char<1,?>>>) {
// CHECK: %[[NEWBOX_STORAGE:.*]] = alloca { ptr, i64, i32, i8, i8, i8, i8, [1 x [3 x i64]] }
// CHECK: %[[EXTENT_GEP:.*]] = getelementptr {{{.*}}}, ptr %[[INPUT]], i32 0, i32 7, i32 0, i32 1
// CHECK: %[[EXTENT:.*]] = load i64, ptr %[[EXTENT_GEP]]
// CHECK: %[[STRIDE_GEP:.*]] = getelementptr { ptr, i64, i32, i8, i8, i8, i8, [1 x [3 x i64]] }, ptr %[[INPUT]], i32 0, i32 7, i32 0, i32 2
// CHECK: %[[STRIDE:.*]] = load i64, ptr %[[STRIDE_GEP]]
// CHECK: %[[BASE_GEP:.*]] = getelementptr { ptr, i64, i32, i8, i8, i8, i8, [1 x [3 x i64]] }, ptr %[[INPUT]], i32 0, i32 0
// CHECK: %[[BASE:.*]] = load ptr, ptr %[[BASE_GEP]]
// CHECK: %[[NEWBOX1:.*]] = insertvalue { ptr, i64, i32, i8, i8, i8, i8, [1 x [3 x i64]] } %{{.*}}, i64 %[[EXTENT]], 7, 0, 1
// CHECK: %[[NEWBOX2:.*]] = insertvalue { ptr, i64, i32, i8, i8, i8, i8, [1 x [3 x i64]] } %[[NEWBOX1]], i64 %[[STRIDE]], 7, 0, 2
// CHECK: %[[NEWBOX3:.*]] = insertvalue { ptr, i64, i32, i8, i8, i8, i8, [1 x [3 x i64]] } %[[NEWBOX2]], ptr %[[BASE]], 0
// CHECK: store { ptr, i64, i32, i8, i8, i8, i8, [1 x [3 x i64]] } %[[NEWBOX3]], ptr %[[NEWBOX_STORAGE]]
// CHECK: call void @bar_test_rebox_4(ptr %[[NEWBOX_STORAGE]])
%1 = fir.rebox %arg0 : (!fir.box<!fir.array<?x!fir.char<1,?>>>) -> !fir.box<!fir.ptr<!fir.array<?x!fir.char<1,10>>>>
fir.call @bar_test_rebox_4(%1) : (!fir.box<!fir.ptr<!fir.array<?x!fir.char<1,10>>>>) -> ()
return
}
func.func private @bar_test_rebox_4(!fir.box<!fir.ptr<!fir.array<?x!fir.char<1,10>>>>)
// Testing complex part slice reboxing
// subroutine test_cmplx_2(a)
// complex :: a(:)
// call bar1(a%re)
// end subroutine
// CHECK-LABEL: define void @test_cmplx_1(
// CHECK-SAME: ptr {{[^%]*}}%[[INBOX:.*]])
func.func @test_cmplx_1(%arg0: !fir.box<!fir.array<?xcomplex<f32>>>) {
// CHECK: %[[OUTBOX_ALLOC:.*]] = alloca { ptr, i64, i32, i8, i8, i8, i8, [1 x [3 x i64]] }
%c1 = arith.constant 1 : index
%c1_i32 = arith.constant 0 : i32
%c0 = arith.constant 0 : index
%0:3 = fir.box_dims %arg0, %c0 : (!fir.box<!fir.array<?xcomplex<f32>>>, index) -> (index, index, index)
%1 = fir.slice %c1, %0#1, %c1 path %c1_i32 : (index, index, index, i32) -> !fir.slice<1>
%2 = fir.rebox %arg0 [%1] : (!fir.box<!fir.array<?xcomplex<f32>>>, !fir.slice<1>) -> !fir.box<!fir.array<?xf32>>
// CHECK: %[[INSTRIDE_0_GEP:.*]] = getelementptr { ptr, i64, i32, i8, i8, i8, i8, [1 x [3 x i64]] }, ptr %[[INBOX]], i32 0, i32 7, i64 0, i32 1
// CHECK: %[[INSTRIDE_0:.*]] = load i64, ptr %[[INSTRIDE_0_GEP]]
// CHECK: %[[INSTRIDE_1_GEP:.*]] = getelementptr { ptr, i64, i32, i8, i8, i8, i8, [1 x [3 x i64]] }, ptr %[[INBOX]], i32 0, i32 7, i32 0, i32 2
// CHECK: %[[INSTRIDE_1:.*]] = load i64, ptr %[[INSTRIDE_1_GEP]]
// CHECK: %[[FRONT_GEP:.*]] = getelementptr { ptr, i64, i32, i8, i8, i8, i8, [1 x [3 x i64]] }, ptr %[[INBOX]], i32 0, i32 0
// CHECK: %[[FRONT_PTR:.*]] = load ptr, ptr %[[FRONT_GEP]]
// CHECK: %[[FIELD_OFFSET_GEP:.*]] = getelementptr { float, float }, ptr %[[FRONT_PTR]], i64 0, i32 0
// CHECK: %[[FRONT_OFFSET:.*]] = mul i64 0, %[[INSTRIDE_1]]
// CHECK: %[[OFFSET_GEP:.*]] = getelementptr i8, ptr %[[FIELD_OFFSET_GEP]], i64 %[[FRONT_OFFSET]]
// CHECK: %[[SUB_1:.*]] = sub i64 %[[INSTRIDE_0]], 1
// CHECK: %[[ADD_1:.*]] = add i64 %[[SUB_1]], 1
// CHECK: %[[DIV_1:.*]] = sdiv i64 %[[ADD_1]], 1
// CHECK: %[[CHECK_NONZERO:.*]] = icmp sgt i64 %[[DIV_1]], 0
// CHECK: %[[CHECKED_BOUND:.*]] = select i1 %[[CHECK_NONZERO]], i64 %[[DIV_1]], i64 0
// CHECK: %[[STRIDE:.*]] = mul i64 1, %[[INSTRIDE_1]]
// CHECK: %[[VAL_BUILD_1:.*]] = insertvalue { ptr, i64, i32, i8, i8, i8, i8, [1 x [3 x i64]] } %{{.*}}, i64 %[[CHECKED_BOUND]], 7, 0, 1
// CHECK: %[[VAL_BUILD_2:.*]] = insertvalue { ptr, i64, i32, i8, i8, i8, i8, [1 x [3 x i64]] } %[[VAL_BUILD_1]], i64 %[[STRIDE]], 7, 0, 2
// CHECK: %[[VAL_BUILD_3:.*]] = insertvalue { ptr, i64, i32, i8, i8, i8, i8, [1 x [3 x i64]] } %[[VAL_BUILD_2]], ptr %[[OFFSET_GEP]], 0
// CHECK: store { ptr, i64, i32, i8, i8, i8, i8, [1 x [3 x i64]] } %[[VAL_BUILD_3]], ptr %[[OUTBOX_ALLOC]]
fir.call @bar1(%2) : (!fir.box<!fir.array<?xf32>>) -> ()
// CHECK: call void @bar1(ptr %[[OUTBOX_ALLOC]])
return
}
// Testing triple on complex part slice
// subroutine test_cmplx_2(a)
// complex :: a(:)
// call bar1(a(7:60:5)%im)
// end subroutine
// CHECK-LABEL: define void @test_cmplx_2(
// CHECK-SAME: ptr {{[^%]*}}%[[INBOX:.*]])
func.func @test_cmplx_2(%arg0: !fir.box<!fir.array<?xcomplex<f32>>>) {
// CHECK: %[[OUTBOX_ALLOC:.*]] = alloca { ptr, i64, i32, i8, i8, i8, i8, [1 x [3 x i64]] }
%c7 = arith.constant 7 : index
%c5 = arith.constant 5 : index
%c60 = arith.constant 60 : index
%c1_i32 = arith.constant 1 : i32
%0 = fir.slice %c7, %c60, %c5 path %c1_i32 : (index, index, index, i32) -> !fir.slice<1>
%1 = fir.rebox %arg0 [%0] : (!fir.box<!fir.array<?xcomplex<f32>>>, !fir.slice<1>) -> !fir.box<!fir.array<11xf32>>
%2 = fir.convert %1 : (!fir.box<!fir.array<11xf32>>) -> !fir.box<!fir.array<?xf32>>
// CHECK: %[[INSTRIDE_0_GEP:.*]] = getelementptr { ptr, i64, i32, i8, i8, i8, i8, [1 x [3 x i64]] }, ptr %[[INBOX]], i32 0, i32 7, i32 0, i32 2
// CHECK: %[[INSTRIDE_0:.*]] = load i64, ptr %[[INSTRIDE_0_GEP]]
// CHECK: %[[FRONT_GEP:.*]] = getelementptr { ptr, i64, i32, i8, i8, i8, i8, [1 x [3 x i64]] }, ptr %[[INBOX]], i32 0, i32 0
// CHECK: %[[FRONT_PTR:.*]] = load ptr, ptr %[[FRONT_GEP]]
// CHECK: %[[FIELD_OFFSET_GEP:.*]] = getelementptr { float, float }, ptr %[[FRONT_PTR]], i64 0, i32 1
// CHECK: %[[FRONT_OFFSET:.*]] = mul i64 6, %[[INSTRIDE_0]]
// CHECK: %[[OFFSET_GEP:.*]] = getelementptr i8, ptr %[[FIELD_OFFSET_GEP]], i64 %[[FRONT_OFFSET]]
// CHECK: %[[STRIDE:.*]] = mul i64 5, %[[INSTRIDE_0]]
// CHECK: %[[VAL_BUILD_1:.*]] = insertvalue { ptr, i64, i32, i8, i8, i8, i8, [1 x [3 x i64]] } %{{.*}}, i64 %[[STRIDE]], 7, 0, 2
// CHECK: %[[VAL_BUILD_2:.*]] = insertvalue { ptr, i64, i32, i8, i8, i8, i8, [1 x [3 x i64]] } %[[VAL_BUILD_1]], ptr %[[OFFSET_GEP]], 0
// CHECK: store { ptr, i64, i32, i8, i8, i8, i8, [1 x [3 x i64]] } %[[VAL_BUILD_2]], ptr %[[OUTBOX_ALLOC]]
fir.call @bar1(%2) fastmath<contract> : (!fir.box<!fir.array<?xf32>>) -> ()
// CHECK: call void @bar1(ptr %[[OUTBOX_ALLOC]])
return
}
// Test reboxing of unlimited polymorphic.
func.func @rebox_unlimited_polymorphic_box(%arg0 : !fir.class<!fir.array<?xnone>>, %arg1 : !fir.box<!fir.array<?xnone>>, %arg0r : !fir.ref<!fir.class<!fir.array<?xnone>>>, %arg1r : !fir.ref<!fir.box<!fir.array<?xnone>>>) {
%c1 = arith.constant 1 : index
%c10 = arith.constant 10 : index
%1 = fir.slice %c1, %c10, %c1 : (index, index, index) -> !fir.slice<1>
%2 = fir.rebox %arg0 [%1] : (!fir.class<!fir.array<?xnone>>, !fir.slice<1>) -> !fir.class<!fir.array<?xnone>>
%3 = fir.rebox %arg1 [%1] : (!fir.box<!fir.array<?xnone>>, !fir.slice<1>) -> !fir.box<!fir.array<?xnone>>
fir.store %2 to %arg0r : !fir.ref<!fir.class<!fir.array<?xnone>>>
fir.store %3 to %arg1r : !fir.ref<!fir.box<!fir.array<?xnone>>>
return
}
// CHECK-LABEL: define void @rebox_unlimited_polymorphic_box
// CHECK: %[[VAL_16:.*]] = alloca { ptr, i64, i32, i8, i8, i8, i8, [1 x [3 x i64]], ptr, [1 x i64] }
// CHECK: %[[VAL_17:.*]] = alloca { ptr, i64, i32, i8, i8, i8, i8, [1 x [3 x i64]], ptr, [1 x i64] }
// ...
// CHECK: store { ptr, i64, i32, i8, i8, i8, i8, [1 x [3 x i64]], ptr, [1 x i64] } %{{.*}}, ptr %[[VAL_17]]
// ...
// CHECK: store { ptr, i64, i32, i8, i8, i8, i8, [1 x [3 x i64]], ptr, [1 x i64] } %{{.*}}, ptr %[[VAL_16]]