Krzysztof Parzyszek 2914a488c7
[flang][OpenMP] Sema checks, lowering with new format of MAP modifiers (#149137)
OpenMP 6.0 has changed the modifiers on the MAP clause. Previous patch
has introduced parsing support for them. This patch introduces
processing of the new forms in semantic checks and in lowering. This
only applies to existing modifiers, which were updated in the 6.0 spec.
Any of the newly introduced modifiers (SELF and REF) are ignored.
2025-07-22 07:37:47 -05:00

776 lines
26 KiB
C++

//===-- lib/Semantics/semantics.cpp ---------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "flang/Semantics/semantics.h"
#include "assignment.h"
#include "canonicalize-acc.h"
#include "canonicalize-directives.h"
#include "canonicalize-do.h"
#include "canonicalize-omp.h"
#include "check-acc-structure.h"
#include "check-allocate.h"
#include "check-arithmeticif.h"
#include "check-case.h"
#include "check-coarray.h"
#include "check-cuda.h"
#include "check-data.h"
#include "check-deallocate.h"
#include "check-declarations.h"
#include "check-do-forall.h"
#include "check-if-stmt.h"
#include "check-io.h"
#include "check-namelist.h"
#include "check-nullify.h"
#include "check-omp-structure.h"
#include "check-purity.h"
#include "check-return.h"
#include "check-select-rank.h"
#include "check-select-type.h"
#include "check-stop.h"
#include "compute-offsets.h"
#include "mod-file.h"
#include "resolve-labels.h"
#include "resolve-names.h"
#include "rewrite-parse-tree.h"
#include "flang/Parser/parse-tree-visitor.h"
#include "flang/Parser/tools.h"
#include "flang/Semantics/expression.h"
#include "flang/Semantics/scope.h"
#include "flang/Semantics/symbol.h"
#include "flang/Support/default-kinds.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/TargetParser/Host.h"
#include "llvm/TargetParser/Triple.h"
namespace Fortran::semantics {
using NameToSymbolMap = std::multimap<parser::CharBlock, SymbolRef>;
static void DoDumpSymbols(llvm::raw_ostream &, const Scope &, int indent = 0);
static void PutIndent(llvm::raw_ostream &, int indent);
static void GetSymbolNames(const Scope &scope, NameToSymbolMap &symbols) {
// Finds all symbol names in the scope without collecting duplicates.
for (const auto &pair : scope) {
symbols.emplace(pair.second->name(), *pair.second);
}
for (const auto &pair : scope.commonBlocks()) {
symbols.emplace(pair.second->name(), *pair.second);
}
for (const auto &child : scope.children()) {
GetSymbolNames(child, symbols);
}
}
// A parse tree visitor that calls Enter/Leave functions from each checker
// class C supplied as template parameters. Enter is called before the node's
// children are visited, Leave is called after. No two checkers may have the
// same Enter or Leave function. Each checker must be constructible from
// SemanticsContext and have BaseChecker as a virtual base class.
template <typename... C>
class SemanticsVisitor : public virtual BaseChecker, public virtual C... {
public:
using BaseChecker::Enter;
using BaseChecker::Leave;
using C::Enter...;
using C::Leave...;
SemanticsVisitor(SemanticsContext &context)
: C{context}..., context_{context} {}
template <typename N> bool Pre(const N &node) {
if constexpr (common::HasMember<const N *, ConstructNode>) {
context_.PushConstruct(node);
}
Enter(node);
return true;
}
template <typename N> void Post(const N &node) {
Leave(node);
if constexpr (common::HasMember<const N *, ConstructNode>) {
context_.PopConstruct();
}
}
template <typename T> bool Pre(const parser::Statement<T> &node) {
context_.set_location(node.source);
Enter(node);
return true;
}
template <typename T> bool Pre(const parser::UnlabeledStatement<T> &node) {
context_.set_location(node.source);
Enter(node);
return true;
}
template <typename T> void Post(const parser::Statement<T> &node) {
Leave(node);
context_.set_location(std::nullopt);
}
template <typename T> void Post(const parser::UnlabeledStatement<T> &node) {
Leave(node);
context_.set_location(std::nullopt);
}
bool Walk(const parser::Program &program) {
parser::Walk(program, *this);
return !context_.AnyFatalError();
}
private:
SemanticsContext &context_;
};
class MiscChecker : public virtual BaseChecker {
public:
explicit MiscChecker(SemanticsContext &context) : context_{context} {}
void Leave(const parser::EntryStmt &) {
if (!context_.constructStack().empty()) { // C1571
context_.Say("ENTRY may not appear in an executable construct"_err_en_US);
}
}
void Leave(const parser::AssignStmt &stmt) {
CheckAssignGotoName(std::get<parser::Name>(stmt.t));
}
void Leave(const parser::AssignedGotoStmt &stmt) {
CheckAssignGotoName(std::get<parser::Name>(stmt.t));
}
private:
void CheckAssignGotoName(const parser::Name &name) {
if (context_.HasError(name.symbol)) {
return;
}
const Symbol &symbol{DEREF(name.symbol)};
auto type{evaluate::DynamicType::From(symbol)};
if (!IsVariableName(symbol) || symbol.Rank() != 0 || !type ||
type->category() != TypeCategory::Integer ||
type->kind() !=
context_.defaultKinds().GetDefaultKind(TypeCategory::Integer)) {
context_
.Say(name.source,
"'%s' must be a default integer scalar variable"_err_en_US,
name.source)
.Attach(symbol.name(), "Declaration of '%s'"_en_US, symbol.name());
}
}
SemanticsContext &context_;
};
static void WarnUndefinedFunctionResult(
SemanticsContext &context, const Scope &scope) {
auto WasDefined{[&context](const Symbol &symbol) {
return context.IsSymbolDefined(symbol) ||
IsInitialized(symbol, /*ignoreDataStatements=*/true,
/*ignoreAllocatable=*/true, /*ignorePointer=*/true);
}};
if (const Symbol * symbol{scope.symbol()}) {
if (const auto *subp{symbol->detailsIf<SubprogramDetails>()}) {
if (subp->isFunction() && !subp->isInterface() && !subp->stmtFunction()) {
bool wasDefined{WasDefined(subp->result())};
if (!wasDefined) {
// Definitions of ENTRY result variables also count.
for (const auto &pair : scope) {
const Symbol &local{*pair.second};
if (IsFunctionResult(local) && WasDefined(local)) {
wasDefined = true;
break;
}
}
if (!wasDefined) {
context.Warn(common::UsageWarning::UndefinedFunctionResult,
symbol->name(), "Function result is never defined"_warn_en_US);
}
}
}
}
}
if (!scope.IsModuleFile()) {
for (const Scope &child : scope.children()) {
WarnUndefinedFunctionResult(context, child);
}
}
}
using StatementSemanticsPass1 = ExprChecker;
using StatementSemanticsPass2 = SemanticsVisitor<AllocateChecker,
ArithmeticIfStmtChecker, AssignmentChecker, CaseChecker, CoarrayChecker,
DataChecker, DeallocateChecker, DoForallChecker, IfStmtChecker, IoChecker,
MiscChecker, NamelistChecker, NullifyChecker, PurityChecker,
ReturnStmtChecker, SelectRankConstructChecker, SelectTypeChecker,
StopChecker>;
static bool PerformStatementSemantics(
SemanticsContext &context, parser::Program &program) {
ResolveNames(context, program, context.globalScope());
RewriteParseTree(context, program);
ComputeOffsets(context, context.globalScope());
CheckDeclarations(context);
StatementSemanticsPass1{context}.Walk(program);
StatementSemanticsPass2 pass2{context};
pass2.Walk(program);
if (context.languageFeatures().IsEnabled(common::LanguageFeature::OpenACC)) {
SemanticsVisitor<AccStructureChecker>{context}.Walk(program);
}
if (context.languageFeatures().IsEnabled(common::LanguageFeature::OpenMP)) {
SemanticsVisitor<OmpStructureChecker>{context}.Walk(program);
}
if (context.languageFeatures().IsEnabled(common::LanguageFeature::CUDA)) {
SemanticsVisitor<CUDAChecker>{context}.Walk(program);
}
if (!context.messages().AnyFatalError()) {
WarnUndefinedFunctionResult(context, context.globalScope());
}
if (!context.AnyFatalError()) {
pass2.CompileDataInitializationsIntoInitializers();
}
return !context.AnyFatalError();
}
/// This class keeps track of the common block appearances with the biggest size
/// and with an initial value (if any) in a program. This allows reporting
/// conflicting initialization and warning about appearances of a same
/// named common block with different sizes. The biggest common block size and
/// initialization (if any) can later be provided so that lowering can generate
/// the correct symbol size and initial values, even when named common blocks
/// appears with different sizes and are initialized outside of block data.
class CommonBlockMap {
private:
struct CommonBlockInfo {
// Common block symbol for the appearance with the biggest size.
SymbolRef biggestSize;
// Common block symbol for the appearance with the initialized members (if
// any).
std::optional<SymbolRef> initialization;
};
public:
void MapCommonBlockAndCheckConflicts(
SemanticsContext &context, const Symbol &common) {
const Symbol *isInitialized{CommonBlockIsInitialized(common)};
// Merge common according to the name they will have in the object files.
// This allows merging BIND(C) and non BIND(C) common block instead of
// later crashing. This "merge" matches what ifort/gfortran/nvfortran are
// doing and what a linker would do if the definition were in distinct
// files.
std::string commonName{
GetCommonBlockObjectName(common, context.underscoring())};
auto [it, firstAppearance] = commonBlocks_.insert({commonName,
isInitialized ? CommonBlockInfo{common, common}
: CommonBlockInfo{common, std::nullopt}});
if (!firstAppearance) {
CommonBlockInfo &info{it->second};
if (isInitialized) {
if (info.initialization.has_value() &&
&**info.initialization != &common) {
// Use the location of the initialization in the error message because
// common block symbols may have no location if they are blank
// commons.
const Symbol &previousInit{
DEREF(CommonBlockIsInitialized(**info.initialization))};
context
.Say(isInitialized->name(),
"Multiple initialization of COMMON block /%s/"_err_en_US,
common.name())
.Attach(previousInit.name(),
"Previous initialization of COMMON block /%s/"_en_US,
common.name());
} else {
info.initialization = common;
}
}
if (common.size() != info.biggestSize->size() && !common.name().empty()) {
if (auto *msg{context.Warn(common::LanguageFeature::DistinctCommonSizes,
common.name(),
"A named COMMON block should have the same size everywhere it appears (%zd bytes here)"_port_en_US,
common.size())}) {
msg->Attach(info.biggestSize->name(),
"Previously defined with a size of %zd bytes"_en_US,
info.biggestSize->size());
}
}
if (common.size() > info.biggestSize->size()) {
info.biggestSize = common;
}
}
}
CommonBlockList GetCommonBlocks() const {
CommonBlockList result;
for (const auto &[_, blockInfo] : commonBlocks_) {
result.emplace_back(
std::make_pair(blockInfo.initialization ? *blockInfo.initialization
: blockInfo.biggestSize,
blockInfo.biggestSize->size()));
}
return result;
}
private:
/// Return the symbol of an initialized member if a COMMON block
/// is initalized. Otherwise, return nullptr.
static Symbol *CommonBlockIsInitialized(const Symbol &common) {
const auto &commonDetails =
common.get<Fortran::semantics::CommonBlockDetails>();
for (const auto &member : commonDetails.objects()) {
if (IsInitialized(*member)) {
return &*member;
}
}
// Common block may be initialized via initialized variables that are in an
// equivalence with the common block members.
for (const Fortran::semantics::EquivalenceSet &set :
common.owner().equivalenceSets()) {
for (const Fortran::semantics::EquivalenceObject &obj : set) {
if (!obj.symbol.test(
Fortran::semantics::Symbol::Flag::CompilerCreated)) {
if (FindCommonBlockContaining(obj.symbol) == &common &&
IsInitialized(obj.symbol)) {
return &obj.symbol;
}
}
}
}
return nullptr;
}
std::map<std::string, CommonBlockInfo> commonBlocks_;
};
SemanticsContext::SemanticsContext(
const common::IntrinsicTypeDefaultKinds &defaultKinds,
const common::LanguageFeatureControl &languageFeatures,
const common::LangOptions &langOpts,
parser::AllCookedSources &allCookedSources)
: defaultKinds_{defaultKinds}, languageFeatures_{languageFeatures},
langOpts_{langOpts}, allCookedSources_{allCookedSources},
intrinsics_{evaluate::IntrinsicProcTable::Configure(defaultKinds_)},
globalScope_{*this}, intrinsicModulesScope_{globalScope_.MakeScope(
Scope::Kind::IntrinsicModules, nullptr)},
foldingContext_{parser::ContextualMessages{&messages_}, defaultKinds_,
intrinsics_, targetCharacteristics_, languageFeatures_, tempNames_} {}
SemanticsContext::~SemanticsContext() {}
int SemanticsContext::GetDefaultKind(TypeCategory category) const {
return defaultKinds_.GetDefaultKind(category);
}
const DeclTypeSpec &SemanticsContext::MakeNumericType(
TypeCategory category, int kind) {
if (kind == 0) {
kind = GetDefaultKind(category);
}
return globalScope_.MakeNumericType(category, KindExpr{kind});
}
const DeclTypeSpec &SemanticsContext::MakeLogicalType(int kind) {
if (kind == 0) {
kind = GetDefaultKind(TypeCategory::Logical);
}
return globalScope_.MakeLogicalType(KindExpr{kind});
}
bool SemanticsContext::AnyFatalError() const {
return messages_.AnyFatalError(warningsAreErrors_);
}
bool SemanticsContext::HasError(const Symbol &symbol) {
return errorSymbols_.count(symbol) > 0;
}
bool SemanticsContext::HasError(const Symbol *symbol) {
return !symbol || HasError(*symbol);
}
bool SemanticsContext::HasError(const parser::Name &name) {
return HasError(name.symbol);
}
void SemanticsContext::SetError(const Symbol &symbol, bool value) {
if (value) {
CheckError(symbol);
errorSymbols_.emplace(symbol);
}
}
void SemanticsContext::CheckError(const Symbol &symbol) {
if (!AnyFatalError()) {
std::string buf;
llvm::raw_string_ostream ss{buf};
ss << symbol;
common::die(
"No error was reported but setting error on: %s", ss.str().c_str());
}
}
bool SemanticsContext::ScopeIndexComparator::operator()(
parser::CharBlock x, parser::CharBlock y) const {
return x.begin() < y.begin() ||
(x.begin() == y.begin() && x.size() > y.size());
}
auto SemanticsContext::SearchScopeIndex(parser::CharBlock source)
-> ScopeIndex::iterator {
if (!scopeIndex_.empty()) {
auto iter{scopeIndex_.upper_bound(source)};
auto begin{scopeIndex_.begin()};
do {
--iter;
if (iter->first.Contains(source)) {
return iter;
}
} while (iter != begin);
}
return scopeIndex_.end();
}
const Scope &SemanticsContext::FindScope(parser::CharBlock source) const {
return const_cast<SemanticsContext *>(this)->FindScope(source);
}
Scope &SemanticsContext::FindScope(parser::CharBlock source) {
if (auto iter{SearchScopeIndex(source)}; iter != scopeIndex_.end()) {
return iter->second;
} else {
common::die(
"SemanticsContext::FindScope(): invalid source location for '%s'",
source.ToString().c_str());
}
}
void SemanticsContext::UpdateScopeIndex(
Scope &scope, parser::CharBlock newSource) {
if (scope.sourceRange().empty()) {
scopeIndex_.emplace(newSource, scope);
} else if (!scope.sourceRange().Contains(newSource)) {
auto iter{SearchScopeIndex(scope.sourceRange())};
CHECK(iter != scopeIndex_.end());
while (&iter->second != &scope) {
CHECK(iter != scopeIndex_.begin());
--iter;
}
scopeIndex_.erase(iter);
scopeIndex_.emplace(newSource, scope);
}
}
bool SemanticsContext::IsInModuleFile(parser::CharBlock source) const {
for (const Scope *scope{&FindScope(source)}; !scope->IsGlobal();
scope = &scope->parent()) {
if (scope->IsModuleFile()) {
return true;
}
}
return false;
}
void SemanticsContext::PopConstruct() {
CHECK(!constructStack_.empty());
constructStack_.pop_back();
}
parser::Message *SemanticsContext::CheckIndexVarRedefine(
const parser::CharBlock &location, const Symbol &variable,
parser::MessageFixedText &&message) {
const Symbol &symbol{ResolveAssociations(variable)};
auto it{activeIndexVars_.find(symbol)};
if (it != activeIndexVars_.end()) {
std::string kind{EnumToString(it->second.kind)};
return &Say(location, std::move(message), kind, symbol.name())
.Attach(
it->second.location, "Enclosing %s construct"_en_US, kind);
} else {
return nullptr;
}
}
void SemanticsContext::WarnIndexVarRedefine(
const parser::CharBlock &location, const Symbol &variable) {
if (ShouldWarn(common::UsageWarning::IndexVarRedefinition)) {
if (auto *msg{CheckIndexVarRedefine(location, variable,
"Possible redefinition of %s variable '%s'"_warn_en_US)}) {
msg->set_usageWarning(common::UsageWarning::IndexVarRedefinition);
}
}
}
void SemanticsContext::CheckIndexVarRedefine(
const parser::CharBlock &location, const Symbol &variable) {
CheckIndexVarRedefine(
location, variable, "Cannot redefine %s variable '%s'"_err_en_US);
}
void SemanticsContext::CheckIndexVarRedefine(const parser::Variable &variable) {
if (const Symbol * entity{GetLastName(variable).symbol}) {
CheckIndexVarRedefine(variable.GetSource(), *entity);
}
}
void SemanticsContext::CheckIndexVarRedefine(const parser::Name &name) {
if (const Symbol * entity{name.symbol}) {
CheckIndexVarRedefine(name.source, *entity);
}
}
void SemanticsContext::ActivateIndexVar(
const parser::Name &name, IndexVarKind kind) {
CheckIndexVarRedefine(name);
if (const Symbol * indexVar{name.symbol}) {
activeIndexVars_.emplace(
ResolveAssociations(*indexVar), IndexVarInfo{name.source, kind});
}
}
void SemanticsContext::DeactivateIndexVar(const parser::Name &name) {
if (Symbol * indexVar{name.symbol}) {
auto it{activeIndexVars_.find(ResolveAssociations(*indexVar))};
if (it != activeIndexVars_.end() && it->second.location == name.source) {
activeIndexVars_.erase(it);
}
}
}
SymbolVector SemanticsContext::GetIndexVars(IndexVarKind kind) {
SymbolVector result;
for (const auto &[symbol, info] : activeIndexVars_) {
if (info.kind == kind) {
result.push_back(symbol);
}
}
return result;
}
SourceName SemanticsContext::SaveTempName(std::string &&name) {
return {*tempNames_.emplace(std::move(name)).first};
}
SourceName SemanticsContext::GetTempName(const Scope &scope) {
for (const auto &str : tempNames_) {
if (IsTempName(str)) {
SourceName name{str};
if (scope.find(name) == scope.end()) {
return name;
}
}
}
return SaveTempName(".F18."s + std::to_string(tempNames_.size()));
}
bool SemanticsContext::IsTempName(const std::string &name) {
return name.size() > 5 && name.substr(0, 5) == ".F18.";
}
Scope *SemanticsContext::GetBuiltinModule(const char *name) {
return ModFileReader{*this}.Read(SourceName{name, std::strlen(name)},
true /*intrinsic*/, nullptr, /*silent=*/true);
}
void SemanticsContext::UseFortranBuiltinsModule() {
if (builtinsScope_ == nullptr) {
builtinsScope_ = GetBuiltinModule("__fortran_builtins");
if (builtinsScope_) {
intrinsics_.SupplyBuiltins(*builtinsScope_);
}
}
}
void SemanticsContext::UsePPCBuiltinTypesModule() {
if (ppcBuiltinTypesScope_ == nullptr) {
ppcBuiltinTypesScope_ = GetBuiltinModule("__ppc_types");
}
}
const Scope &SemanticsContext::GetCUDABuiltinsScope() {
if (!cudaBuiltinsScope_) {
cudaBuiltinsScope_ = GetBuiltinModule("__cuda_builtins");
CHECK(cudaBuiltinsScope_.value() != nullptr);
}
return **cudaBuiltinsScope_;
}
const Scope &SemanticsContext::GetCUDADeviceScope() {
if (!cudaDeviceScope_) {
cudaDeviceScope_ = GetBuiltinModule("cudadevice");
CHECK(cudaDeviceScope_.value() != nullptr);
}
return **cudaDeviceScope_;
}
void SemanticsContext::UsePPCBuiltinsModule() {
if (ppcBuiltinsScope_ == nullptr) {
ppcBuiltinsScope_ = GetBuiltinModule("__ppc_intrinsics");
}
}
parser::Program &SemanticsContext::SaveParseTree(parser::Program &&tree) {
return modFileParseTrees_.emplace_back(std::move(tree));
}
bool Semantics::Perform() {
// Implicitly USE the __Fortran_builtins module so that special types
// (e.g., __builtin_team_type) are available to semantics, esp. for
// intrinsic checking.
if (!program_.v.empty()) {
const auto *frontModule{std::get_if<common::Indirection<parser::Module>>(
&program_.v.front().u)};
if (frontModule &&
(std::get<parser::Statement<parser::ModuleStmt>>(frontModule->value().t)
.statement.v.source == "__fortran_builtins" ||
std::get<parser::Statement<parser::ModuleStmt>>(
frontModule->value().t)
.statement.v.source == "__ppc_types")) {
// Don't try to read the builtins module when we're actually building it.
} else if (frontModule &&
(std::get<parser::Statement<parser::ModuleStmt>>(frontModule->value().t)
.statement.v.source == "__ppc_intrinsics" ||
std::get<parser::Statement<parser::ModuleStmt>>(
frontModule->value().t)
.statement.v.source == "mma")) {
// The derived type definition for the vectors is needed.
context_.UsePPCBuiltinTypesModule();
} else {
context_.UseFortranBuiltinsModule();
llvm::Triple targetTriple{llvm::Triple(
llvm::Triple::normalize(llvm::sys::getDefaultTargetTriple()))};
// Only use __ppc_intrinsics module when targetting PowerPC arch
if (context_.targetCharacteristics().isPPC()) {
context_.UsePPCBuiltinTypesModule();
context_.UsePPCBuiltinsModule();
}
}
}
return ValidateLabels(context_, program_) &&
parser::CanonicalizeDo(program_) && // force line break
CanonicalizeAcc(context_.messages(), program_) &&
CanonicalizeOmp(context_, program_) && CanonicalizeCUDA(program_) &&
PerformStatementSemantics(context_, program_) &&
CanonicalizeDirectives(context_.messages(), program_) &&
ModFileWriter{context_}
.set_hermeticModuleFileOutput(hermeticModuleFileOutput_)
.WriteAll();
}
void Semantics::EmitMessages(llvm::raw_ostream &os) {
// Resolve the CharBlock locations of the Messages to ProvenanceRanges
// so messages from parsing and semantics are intermixed in source order.
context_.messages().ResolveProvenances(context_.allCookedSources());
context_.messages().Emit(os, context_.allCookedSources(),
/*echoSourceLine=*/true, &context_.languageFeatures(),
context_.maxErrors(), context_.warningsAreErrors());
}
void SemanticsContext::DumpSymbols(llvm::raw_ostream &os) {
DoDumpSymbols(os, globalScope());
}
ProgramTree &SemanticsContext::SaveProgramTree(ProgramTree &&tree) {
return programTrees_.emplace_back(std::move(tree));
}
void Semantics::DumpSymbols(llvm::raw_ostream &os) { context_.DumpSymbols(os); }
void Semantics::DumpSymbolsSources(llvm::raw_ostream &os) const {
NameToSymbolMap symbols;
GetSymbolNames(context_.globalScope(), symbols);
const parser::AllCookedSources &allCooked{context_.allCookedSources()};
for (const auto &pair : symbols) {
const Symbol &symbol{pair.second};
if (auto sourceInfo{allCooked.GetSourcePositionRange(symbol.name())}) {
os << symbol.name().ToString() << ": " << sourceInfo->first.path << ", "
<< sourceInfo->first.line << ", " << sourceInfo->first.column << "-"
<< sourceInfo->second.column << "\n";
} else if (symbol.has<semantics::UseDetails>()) {
os << symbol.name().ToString() << ": "
<< symbol.GetUltimate().owner().symbol()->name().ToString() << "\n";
}
}
}
void DoDumpSymbols(llvm::raw_ostream &os, const Scope &scope, int indent) {
PutIndent(os, indent);
os << Scope::EnumToString(scope.kind()) << " scope:";
if (const auto *symbol{scope.symbol()}) {
os << ' ' << symbol->name();
}
if (scope.alignment().has_value()) {
os << " size=" << scope.size() << " alignment=" << *scope.alignment();
}
if (scope.derivedTypeSpec()) {
os << " instantiation of " << *scope.derivedTypeSpec();
}
os << " sourceRange=" << scope.sourceRange().size() << " bytes\n";
++indent;
for (const auto &pair : scope) {
const auto &symbol{*pair.second};
PutIndent(os, indent);
os << symbol << '\n';
if (const auto *details{symbol.detailsIf<GenericDetails>()}) {
if (const auto &type{details->derivedType()}) {
PutIndent(os, indent);
os << *type << '\n';
}
}
}
if (!scope.equivalenceSets().empty()) {
PutIndent(os, indent);
os << "Equivalence Sets:";
for (const auto &set : scope.equivalenceSets()) {
os << ' ';
char sep = '(';
for (const auto &object : set) {
os << sep << object.AsFortran();
sep = ',';
}
os << ')';
}
os << '\n';
}
if (!scope.crayPointers().empty()) {
PutIndent(os, indent);
os << "Cray Pointers:";
for (const auto &[pointee, pointer] : scope.crayPointers()) {
os << " (" << pointer->name() << ',' << pointee << ')';
}
os << '\n';
}
for (const auto &pair : scope.commonBlocks()) {
const auto &symbol{*pair.second};
PutIndent(os, indent);
os << symbol << '\n';
}
for (const auto &child : scope.children()) {
DoDumpSymbols(os, child, indent);
}
--indent;
}
static void PutIndent(llvm::raw_ostream &os, int indent) {
for (int i = 0; i < indent; ++i) {
os << " ";
}
}
void SemanticsContext::MapCommonBlockAndCheckConflicts(const Symbol &common) {
if (!commonBlockMap_) {
commonBlockMap_ = std::make_unique<CommonBlockMap>();
}
commonBlockMap_->MapCommonBlockAndCheckConflicts(*this, common);
}
CommonBlockList SemanticsContext::GetCommonBlocks() const {
if (commonBlockMap_) {
return commonBlockMap_->GetCommonBlocks();
}
return {};
}
void SemanticsContext::NoteDefinedSymbol(const Symbol &symbol) {
isDefined_.insert(symbol);
}
bool SemanticsContext::IsSymbolDefined(const Symbol &symbol) const {
return isDefined_.find(symbol) != isDefined_.end();
}
} // namespace Fortran::semantics