
1. Explicit value means the non-zero value in a sparse tensor. If explicitVal is set, then all the non-zero values in the tensor have the same explicit value. The default value Attribute() indicates that it is not set. 2. Implicit value means the "zero" value in a sparse tensor. If implicitVal is set, then the "zero" value in the tensor is equal to the implicit value. For now, we only support `0` as the implicit value but it could be extended in the future. The default value Attribute() indicates that the implicit value is `0` (same type as the tensor element type). Example: ``` #CSR = #sparse_tensor.encoding<{ map = (d0, d1) -> (d0 : dense, d1 : compressed), posWidth = 64, crdWidth = 64, explicitVal = 1 : i64, implicitVal = 0 : i64 }> ``` Note: this PR tests that implicitVal could be set to other values as well. The following PR will add verifier and reject any value that's not zero for implicitVal.
149 lines
6.4 KiB
C++
149 lines
6.4 KiB
C++
//===- DialectSparseTensor.cpp - 'sparse_tensor' dialect submodule --------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir-c/AffineMap.h"
|
|
#include "mlir-c/Dialect/SparseTensor.h"
|
|
#include "mlir-c/IR.h"
|
|
#include "mlir/Bindings/Python/PybindAdaptors.h"
|
|
#include <optional>
|
|
#include <pybind11/cast.h>
|
|
#include <pybind11/detail/common.h>
|
|
#include <pybind11/pybind11.h>
|
|
#include <pybind11/pytypes.h>
|
|
#include <vector>
|
|
|
|
namespace py = pybind11;
|
|
using namespace llvm;
|
|
using namespace mlir;
|
|
using namespace mlir::python::adaptors;
|
|
|
|
static void populateDialectSparseTensorSubmodule(const py::module &m) {
|
|
py::enum_<MlirSparseTensorLevelFormat>(m, "LevelFormat", py::module_local())
|
|
.value("dense", MLIR_SPARSE_TENSOR_LEVEL_DENSE)
|
|
.value("n_out_of_m", MLIR_SPARSE_TENSOR_LEVEL_N_OUT_OF_M)
|
|
.value("compressed", MLIR_SPARSE_TENSOR_LEVEL_COMPRESSED)
|
|
.value("singleton", MLIR_SPARSE_TENSOR_LEVEL_SINGLETON)
|
|
.value("loose_compressed", MLIR_SPARSE_TENSOR_LEVEL_LOOSE_COMPRESSED);
|
|
|
|
py::enum_<MlirSparseTensorLevelPropertyNondefault>(m, "LevelProperty",
|
|
py::module_local())
|
|
.value("non_ordered", MLIR_SPARSE_PROPERTY_NON_ORDERED)
|
|
.value("non_unique", MLIR_SPARSE_PROPERTY_NON_UNIQUE);
|
|
|
|
mlir_attribute_subclass(m, "EncodingAttr",
|
|
mlirAttributeIsASparseTensorEncodingAttr)
|
|
.def_classmethod(
|
|
"get",
|
|
[](py::object cls, std::vector<MlirSparseTensorLevelType> lvlTypes,
|
|
std::optional<MlirAffineMap> dimToLvl,
|
|
std::optional<MlirAffineMap> lvlToDim, int posWidth, int crdWidth,
|
|
std::optional<MlirAttribute> explicitVal,
|
|
std::optional<MlirAttribute> implicitVal, MlirContext context) {
|
|
return cls(mlirSparseTensorEncodingAttrGet(
|
|
context, lvlTypes.size(), lvlTypes.data(),
|
|
dimToLvl ? *dimToLvl : MlirAffineMap{nullptr},
|
|
lvlToDim ? *lvlToDim : MlirAffineMap{nullptr}, posWidth,
|
|
crdWidth, explicitVal ? *explicitVal : MlirAttribute{nullptr},
|
|
implicitVal ? *implicitVal : MlirAttribute{nullptr}));
|
|
},
|
|
py::arg("cls"), py::arg("lvl_types"), py::arg("dim_to_lvl"),
|
|
py::arg("lvl_to_dim"), py::arg("pos_width"), py::arg("crd_width"),
|
|
py::arg("explicit_val") = py::none(),
|
|
py::arg("implicit_val") = py::none(), py::arg("context") = py::none(),
|
|
"Gets a sparse_tensor.encoding from parameters.")
|
|
.def_classmethod(
|
|
"build_level_type",
|
|
[](py::object cls, MlirSparseTensorLevelFormat lvlFmt,
|
|
const std::vector<MlirSparseTensorLevelPropertyNondefault>
|
|
&properties,
|
|
unsigned n, unsigned m) {
|
|
return mlirSparseTensorEncodingAttrBuildLvlType(
|
|
lvlFmt, properties.data(), properties.size(), n, m);
|
|
},
|
|
py::arg("cls"), py::arg("lvl_fmt"),
|
|
py::arg("properties") =
|
|
std::vector<MlirSparseTensorLevelPropertyNondefault>(),
|
|
py::arg("n") = 0, py::arg("m") = 0,
|
|
"Builds a sparse_tensor.encoding.level_type from parameters.")
|
|
.def_property_readonly(
|
|
"lvl_types",
|
|
[](MlirAttribute self) {
|
|
const int lvlRank = mlirSparseTensorEncodingGetLvlRank(self);
|
|
std::vector<MlirSparseTensorLevelType> ret;
|
|
ret.reserve(lvlRank);
|
|
for (int l = 0; l < lvlRank; ++l)
|
|
ret.push_back(mlirSparseTensorEncodingAttrGetLvlType(self, l));
|
|
return ret;
|
|
})
|
|
.def_property_readonly(
|
|
"dim_to_lvl",
|
|
[](MlirAttribute self) -> std::optional<MlirAffineMap> {
|
|
MlirAffineMap ret = mlirSparseTensorEncodingAttrGetDimToLvl(self);
|
|
if (mlirAffineMapIsNull(ret))
|
|
return {};
|
|
return ret;
|
|
})
|
|
.def_property_readonly(
|
|
"lvl_to_dim",
|
|
[](MlirAttribute self) -> std::optional<MlirAffineMap> {
|
|
MlirAffineMap ret = mlirSparseTensorEncodingAttrGetLvlToDim(self);
|
|
if (mlirAffineMapIsNull(ret))
|
|
return {};
|
|
return ret;
|
|
})
|
|
.def_property_readonly("pos_width",
|
|
mlirSparseTensorEncodingAttrGetPosWidth)
|
|
.def_property_readonly("crd_width",
|
|
mlirSparseTensorEncodingAttrGetCrdWidth)
|
|
.def_property_readonly(
|
|
"explicit_val",
|
|
[](MlirAttribute self) -> std::optional<MlirAttribute> {
|
|
MlirAttribute ret =
|
|
mlirSparseTensorEncodingAttrGetExplicitVal(self);
|
|
if (mlirAttributeIsNull(ret))
|
|
return {};
|
|
return ret;
|
|
})
|
|
.def_property_readonly(
|
|
"implicit_val",
|
|
[](MlirAttribute self) -> std::optional<MlirAttribute> {
|
|
MlirAttribute ret =
|
|
mlirSparseTensorEncodingAttrGetImplicitVal(self);
|
|
if (mlirAttributeIsNull(ret))
|
|
return {};
|
|
return ret;
|
|
})
|
|
.def_property_readonly(
|
|
"structured_n",
|
|
[](MlirAttribute self) -> unsigned {
|
|
const int lvlRank = mlirSparseTensorEncodingGetLvlRank(self);
|
|
return mlirSparseTensorEncodingAttrGetStructuredN(
|
|
mlirSparseTensorEncodingAttrGetLvlType(self, lvlRank - 1));
|
|
})
|
|
.def_property_readonly(
|
|
"structured_m",
|
|
[](MlirAttribute self) -> unsigned {
|
|
const int lvlRank = mlirSparseTensorEncodingGetLvlRank(self);
|
|
return mlirSparseTensorEncodingAttrGetStructuredM(
|
|
mlirSparseTensorEncodingAttrGetLvlType(self, lvlRank - 1));
|
|
})
|
|
.def_property_readonly("lvl_formats_enum", [](MlirAttribute self) {
|
|
const int lvlRank = mlirSparseTensorEncodingGetLvlRank(self);
|
|
std::vector<MlirSparseTensorLevelFormat> ret;
|
|
ret.reserve(lvlRank);
|
|
for (int l = 0; l < lvlRank; l++)
|
|
ret.push_back(mlirSparseTensorEncodingAttrGetLvlFmt(self, l));
|
|
return ret;
|
|
});
|
|
}
|
|
|
|
PYBIND11_MODULE(_mlirDialectsSparseTensor, m) {
|
|
m.doc() = "MLIR SparseTensor dialect.";
|
|
populateDialectSparseTensorSubmodule(m);
|
|
}
|