Rainer Orth 63a7786111
[builtins] Fix divtc3.c etc. compilation on Solaris/SPARC with gcc (#101662)
`compiler-rt/lib/builtins/divtc3.c` and `multc3.c` don't compile on
Solaris/sparcv9 with `gcc -m32`:
```
FAILED: projects/compiler-rt/lib/builtins/CMakeFiles/clang_rt.builtins-sparc.dir/divtc3.c.o
[...]
compiler-rt/lib/builtins/divtc3.c: In function ‘__divtc3’:
compiler-rt/lib/builtins/divtc3.c:22:18: error: implicit declaration of function ‘__compiler_rt_logbtf’ [-Wimplicit-function-declaration]
   22 |   fp_t __logbw = __compiler_rt_logbtf(
      |                  ^~~~~~~~~~~~~~~~~~~~
```
and many more. It turns out that while the definition of `__divtc3` is
guarded with `CRT_HAS_F128`, the `__compiler_rt_logbtf` and other
declarations use `CRT_HAS_128BIT && CRT_HAS_F128` as guard. This only
shows up with `gcc` since, as documented in Issue #41838, `clang`
violates the SPARC psABI in not using 128-bit `long double`, so this
code path isn't used.

Fixed by changing the guards to match.

Tested on `sparcv9-sun-solaris2.11`.
2024-08-03 22:18:11 +02:00

57 lines
2.3 KiB
C

//===-- divtc3.c - Implement __divtc3 -------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements __divtc3 for the compiler_rt library.
//
//===----------------------------------------------------------------------===//
#define QUAD_PRECISION
#include "fp_lib.h"
#if defined(CRT_HAS_128BIT) && defined(CRT_HAS_F128)
// Returns: the quotient of (a + ib) / (c + id)
COMPILER_RT_ABI Qcomplex __divtc3(fp_t __a, fp_t __b, fp_t __c, fp_t __d) {
int __ilogbw = 0;
fp_t __logbw = __compiler_rt_logbtf(
__compiler_rt_fmaxtf(crt_fabstf(__c), crt_fabstf(__d)));
if (crt_isfinite(__logbw)) {
__ilogbw = (int)__logbw;
__c = __compiler_rt_scalbntf(__c, -__ilogbw);
__d = __compiler_rt_scalbntf(__d, -__ilogbw);
}
fp_t __denom = __c * __c + __d * __d;
Qcomplex z;
COMPLEXTF_REAL(z) =
__compiler_rt_scalbntf((__a * __c + __b * __d) / __denom, -__ilogbw);
COMPLEXTF_IMAGINARY(z) =
__compiler_rt_scalbntf((__b * __c - __a * __d) / __denom, -__ilogbw);
if (crt_isnan(COMPLEXTF_REAL(z)) && crt_isnan(COMPLEXTF_IMAGINARY(z))) {
if ((__denom == 0.0) && (!crt_isnan(__a) || !crt_isnan(__b))) {
COMPLEXTF_REAL(z) = crt_copysigntf(CRT_INFINITY, __c) * __a;
COMPLEXTF_IMAGINARY(z) = crt_copysigntf(CRT_INFINITY, __c) * __b;
} else if ((crt_isinf(__a) || crt_isinf(__b)) && crt_isfinite(__c) &&
crt_isfinite(__d)) {
__a = crt_copysigntf(crt_isinf(__a) ? (fp_t)1.0 : (fp_t)0.0, __a);
__b = crt_copysigntf(crt_isinf(__b) ? (fp_t)1.0 : (fp_t)0.0, __b);
COMPLEXTF_REAL(z) = CRT_INFINITY * (__a * __c + __b * __d);
COMPLEXTF_IMAGINARY(z) = CRT_INFINITY * (__b * __c - __a * __d);
} else if (crt_isinf(__logbw) && __logbw > 0.0 && crt_isfinite(__a) &&
crt_isfinite(__b)) {
__c = crt_copysigntf(crt_isinf(__c) ? (fp_t)1.0 : (fp_t)0.0, __c);
__d = crt_copysigntf(crt_isinf(__d) ? (fp_t)1.0 : (fp_t)0.0, __d);
COMPLEXTF_REAL(z) = 0.0 * (__a * __c + __b * __d);
COMPLEXTF_IMAGINARY(z) = 0.0 * (__b * __c - __a * __d);
}
}
return z;
}
#endif