Zachary Turner a31347f17d [NativePDB] Don't fail on import modules.
A recent patch to LLD started emitting information about import modules.
These are represented as compile units in the PDB, but with no
additional debug info.  This was confusing the native pdb reader, who
expected that the debug info stream be present.

This should fix failing tests on the Windows bots.

llvm-svn: 357513
2019-04-02 19:39:45 +00:00

226 lines
8.1 KiB
C++

//===-- CompileUnitIndex.cpp ------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "CompileUnitIndex.h"
#include "PdbIndex.h"
#include "PdbUtil.h"
#include "llvm/DebugInfo/CodeView/LazyRandomTypeCollection.h"
#include "llvm/DebugInfo/CodeView/SymbolDeserializer.h"
#include "llvm/DebugInfo/CodeView/TypeDeserializer.h"
#include "llvm/DebugInfo/MSF/MappedBlockStream.h"
#include "llvm/DebugInfo/PDB/Native/DbiModuleDescriptor.h"
#include "llvm/DebugInfo/PDB/Native/DbiStream.h"
#include "llvm/DebugInfo/PDB/Native/InfoStream.h"
#include "llvm/DebugInfo/PDB/Native/ModuleDebugStream.h"
#include "llvm/DebugInfo/PDB/Native/NamedStreamMap.h"
#include "llvm/DebugInfo/PDB/Native/TpiStream.h"
#include "llvm/Support/Path.h"
#include "lldb/Utility/LLDBAssert.h"
using namespace lldb;
using namespace lldb_private;
using namespace lldb_private::npdb;
using namespace llvm::codeview;
using namespace llvm::pdb;
static bool IsMainFile(llvm::StringRef main, llvm::StringRef other) {
if (main == other)
return true;
// If the files refer to the local file system, we can just ask the file
// system if they're equivalent. But if the source isn't present on disk
// then we still want to try.
if (llvm::sys::fs::equivalent(main, other))
return true;
llvm::SmallString<64> normalized(other);
llvm::sys::path::native(normalized);
return main.equals_lower(normalized);
}
static void ParseCompile3(const CVSymbol &sym, CompilandIndexItem &cci) {
cci.m_compile_opts.emplace();
llvm::cantFail(
SymbolDeserializer::deserializeAs<Compile3Sym>(sym, *cci.m_compile_opts));
}
static void ParseObjname(const CVSymbol &sym, CompilandIndexItem &cci) {
cci.m_obj_name.emplace();
llvm::cantFail(
SymbolDeserializer::deserializeAs<ObjNameSym>(sym, *cci.m_obj_name));
}
static void ParseBuildInfo(PdbIndex &index, const CVSymbol &sym,
CompilandIndexItem &cci) {
BuildInfoSym bis(SymbolRecordKind::BuildInfoSym);
llvm::cantFail(SymbolDeserializer::deserializeAs<BuildInfoSym>(sym, bis));
// S_BUILDINFO just points to an LF_BUILDINFO in the IPI stream. Let's do
// a little extra work to pull out the LF_BUILDINFO.
LazyRandomTypeCollection &types = index.ipi().typeCollection();
llvm::Optional<CVType> cvt = types.tryGetType(bis.BuildId);
if (!cvt || cvt->kind() != LF_BUILDINFO)
return;
BuildInfoRecord bir;
llvm::cantFail(TypeDeserializer::deserializeAs<BuildInfoRecord>(*cvt, bir));
cci.m_build_info.assign(bir.ArgIndices.begin(), bir.ArgIndices.end());
}
static void ParseExtendedInfo(PdbIndex &index, CompilandIndexItem &item) {
const CVSymbolArray &syms = item.m_debug_stream.getSymbolArray();
// This is a private function, it shouldn't be called if the information
// has already been parsed.
lldbassert(!item.m_obj_name);
lldbassert(!item.m_compile_opts);
lldbassert(item.m_build_info.empty());
// We're looking for 3 things. S_COMPILE3, S_OBJNAME, and S_BUILDINFO.
int found = 0;
for (const CVSymbol &sym : syms) {
switch (sym.kind()) {
case S_COMPILE3:
ParseCompile3(sym, item);
break;
case S_OBJNAME:
ParseObjname(sym, item);
break;
case S_BUILDINFO:
ParseBuildInfo(index, sym, item);
break;
default:
continue;
}
if (++found >= 3)
break;
}
}
CompilandIndexItem::CompilandIndexItem(
PdbCompilandId id, llvm::pdb::ModuleDebugStreamRef debug_stream,
llvm::pdb::DbiModuleDescriptor descriptor)
: m_id(id), m_debug_stream(std::move(debug_stream)),
m_module_descriptor(std::move(descriptor)) {}
CompilandIndexItem &CompileUnitIndex::GetOrCreateCompiland(uint16_t modi) {
auto result = m_comp_units.try_emplace(modi, nullptr);
if (!result.second)
return *result.first->second;
// Find the module list and load its debug information stream and cache it
// since we need to use it for almost all interesting operations.
const DbiModuleList &modules = m_index.dbi().modules();
llvm::pdb::DbiModuleDescriptor descriptor = modules.getModuleDescriptor(modi);
uint16_t stream = descriptor.getModuleStreamIndex();
std::unique_ptr<llvm::msf::MappedBlockStream> stream_data =
m_index.pdb().createIndexedStream(stream);
std::unique_ptr<CompilandIndexItem>& cci = result.first->second;
if (!stream_data) {
llvm::pdb::ModuleDebugStreamRef debug_stream(descriptor, nullptr);
cci = llvm::make_unique<CompilandIndexItem>(PdbCompilandId{ modi }, debug_stream, std::move(descriptor));
return *cci;
}
llvm::pdb::ModuleDebugStreamRef debug_stream(descriptor,
std::move(stream_data));
cantFail(debug_stream.reload());
cci = llvm::make_unique<CompilandIndexItem>(
PdbCompilandId{modi}, std::move(debug_stream), std::move(descriptor));
ParseExtendedInfo(m_index, *cci);
cci->m_strings.initialize(debug_stream.getSubsectionsArray());
PDBStringTable &strings = cantFail(m_index.pdb().getStringTable());
cci->m_strings.setStrings(strings.getStringTable());
// We want the main source file to always comes first. Note that we can't
// just push_back the main file onto the front because `GetMainSourceFile`
// computes it in such a way that it doesn't own the resulting memory. So we
// have to iterate the module file list comparing each one to the main file
// name until we find it, and we can cache that one since the memory is backed
// by a contiguous chunk inside the mapped PDB.
llvm::SmallString<64> main_file = GetMainSourceFile(*cci);
std::string s = main_file.str();
llvm::sys::path::native(main_file);
uint32_t file_count = modules.getSourceFileCount(modi);
cci->m_file_list.reserve(file_count);
bool found_main_file = false;
for (llvm::StringRef file : modules.source_files(modi)) {
if (!found_main_file && IsMainFile(main_file, file)) {
cci->m_file_list.insert(cci->m_file_list.begin(), file);
found_main_file = true;
continue;
}
cci->m_file_list.push_back(file);
}
return *cci;
}
const CompilandIndexItem *CompileUnitIndex::GetCompiland(uint16_t modi) const {
auto iter = m_comp_units.find(modi);
if (iter == m_comp_units.end())
return nullptr;
return iter->second.get();
}
CompilandIndexItem *CompileUnitIndex::GetCompiland(uint16_t modi) {
auto iter = m_comp_units.find(modi);
if (iter == m_comp_units.end())
return nullptr;
return iter->second.get();
}
llvm::SmallString<64>
CompileUnitIndex::GetMainSourceFile(const CompilandIndexItem &item) const {
// LF_BUILDINFO contains a list of arg indices which point to LF_STRING_ID
// records in the IPI stream. The order of the arg indices is as follows:
// [0] - working directory where compiler was invoked.
// [1] - absolute path to compiler binary
// [2] - source file name
// [3] - path to compiler generated PDB (the /Zi PDB, although this entry gets
// added even when using /Z7)
// [4] - full command line invocation.
//
// We need to form the path [0]\[2] to generate the full path to the main
// file.source
if (item.m_build_info.size() < 3)
return {""};
LazyRandomTypeCollection &types = m_index.ipi().typeCollection();
StringIdRecord working_dir;
StringIdRecord file_name;
CVType dir_cvt = types.getType(item.m_build_info[0]);
CVType file_cvt = types.getType(item.m_build_info[2]);
llvm::cantFail(
TypeDeserializer::deserializeAs<StringIdRecord>(dir_cvt, working_dir));
llvm::cantFail(
TypeDeserializer::deserializeAs<StringIdRecord>(file_cvt, file_name));
llvm::sys::path::Style style = working_dir.String.startswith("/")
? llvm::sys::path::Style::posix
: llvm::sys::path::Style::windows;
if (llvm::sys::path::is_absolute(file_name.String, style))
return file_name.String;
llvm::SmallString<64> absolute_path = working_dir.String;
llvm::sys::path::append(absolute_path, file_name.String);
return absolute_path;
}