llvm-project/llvm/lib/CodeGen/RegAllocBasic.cpp
Kyungwoo Lee 52bcc7b170
[NFC][RA] Refactor RABasic into a Separate Header (#149555)
This change refactors the RABasic type by moving it from
RegAllocBasic.cpp to a new header file, RegAllocBasic.h. This separation
of header and implementation aligns with the structure used by other
register allocators, such as RegAllocGreedy. The refactoring is intended
to facilitate future use of RABasic in other contexts.
2025-07-19 12:43:48 -07:00

260 lines
9.6 KiB
C++

//===-- RegAllocBasic.cpp - Basic Register Allocator ----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file defines the RABasic function pass, which provides a minimal
/// implementation of the basic register allocator.
///
//===----------------------------------------------------------------------===//
#include "RegAllocBasic.h"
#include "AllocationOrder.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/ProfileSummaryInfo.h"
#include "llvm/CodeGen/CalcSpillWeights.h"
#include "llvm/CodeGen/LiveDebugVariables.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/LiveRegMatrix.h"
#include "llvm/CodeGen/LiveStacks.h"
#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/RegAllocRegistry.h"
#include "llvm/CodeGen/VirtRegMap.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
#define DEBUG_TYPE "regalloc"
static RegisterRegAlloc basicRegAlloc("basic", "basic register allocator",
createBasicRegisterAllocator);
char RABasic::ID = 0;
char &llvm::RABasicID = RABasic::ID;
INITIALIZE_PASS_BEGIN(RABasic, "regallocbasic", "Basic Register Allocator",
false, false)
INITIALIZE_PASS_DEPENDENCY(LiveDebugVariablesWrapperLegacy)
INITIALIZE_PASS_DEPENDENCY(SlotIndexesWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LiveIntervalsWrapperPass)
INITIALIZE_PASS_DEPENDENCY(RegisterCoalescerLegacy)
INITIALIZE_PASS_DEPENDENCY(MachineSchedulerLegacy)
INITIALIZE_PASS_DEPENDENCY(LiveStacksWrapperLegacy)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(VirtRegMapWrapperLegacy)
INITIALIZE_PASS_DEPENDENCY(LiveRegMatrixWrapperLegacy)
INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
INITIALIZE_PASS_END(RABasic, "regallocbasic", "Basic Register Allocator", false,
false)
bool RABasic::LRE_CanEraseVirtReg(Register VirtReg) {
LiveInterval &LI = LIS->getInterval(VirtReg);
if (VRM->hasPhys(VirtReg)) {
Matrix->unassign(LI);
aboutToRemoveInterval(LI);
return true;
}
// Unassigned virtreg is probably in the priority queue.
// RegAllocBase will erase it after dequeueing.
// Nonetheless, clear the live-range so that the debug
// dump will show the right state for that VirtReg.
LI.clear();
return false;
}
void RABasic::LRE_WillShrinkVirtReg(Register VirtReg) {
if (!VRM->hasPhys(VirtReg))
return;
// Register is assigned, put it back on the queue for reassignment.
LiveInterval &LI = LIS->getInterval(VirtReg);
Matrix->unassign(LI);
enqueue(&LI);
}
RABasic::RABasic(RegAllocFilterFunc F)
: MachineFunctionPass(ID), RegAllocBase(F) {}
void RABasic::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
AU.addRequired<AAResultsWrapperPass>();
AU.addPreserved<AAResultsWrapperPass>();
AU.addRequired<LiveIntervalsWrapperPass>();
AU.addPreserved<LiveIntervalsWrapperPass>();
AU.addPreserved<SlotIndexesWrapperPass>();
AU.addRequired<LiveDebugVariablesWrapperLegacy>();
AU.addPreserved<LiveDebugVariablesWrapperLegacy>();
AU.addRequired<LiveStacksWrapperLegacy>();
AU.addPreserved<LiveStacksWrapperLegacy>();
AU.addRequired<ProfileSummaryInfoWrapperPass>();
AU.addRequired<MachineBlockFrequencyInfoWrapperPass>();
AU.addPreserved<MachineBlockFrequencyInfoWrapperPass>();
AU.addRequired<MachineDominatorTreeWrapperPass>();
AU.addRequiredID(MachineDominatorsID);
AU.addPreservedID(MachineDominatorsID);
AU.addRequired<MachineLoopInfoWrapperPass>();
AU.addPreserved<MachineLoopInfoWrapperPass>();
AU.addRequired<VirtRegMapWrapperLegacy>();
AU.addPreserved<VirtRegMapWrapperLegacy>();
AU.addRequired<LiveRegMatrixWrapperLegacy>();
AU.addPreserved<LiveRegMatrixWrapperLegacy>();
MachineFunctionPass::getAnalysisUsage(AU);
}
void RABasic::releaseMemory() {
SpillerInstance.reset();
}
// Spill or split all live virtual registers currently unified under PhysReg
// that interfere with VirtReg. The newly spilled or split live intervals are
// returned by appending them to SplitVRegs.
bool RABasic::spillInterferences(const LiveInterval &VirtReg,
MCRegister PhysReg,
SmallVectorImpl<Register> &SplitVRegs) {
// Record each interference and determine if all are spillable before mutating
// either the union or live intervals.
SmallVector<const LiveInterval *, 8> Intfs;
// Collect interferences assigned to any alias of the physical register.
for (MCRegUnit Unit : TRI->regunits(PhysReg)) {
LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, Unit);
for (const auto *Intf : reverse(Q.interferingVRegs())) {
if (!Intf->isSpillable() || Intf->weight() > VirtReg.weight())
return false;
Intfs.push_back(Intf);
}
}
LLVM_DEBUG(dbgs() << "spilling " << printReg(PhysReg, TRI)
<< " interferences with " << VirtReg << "\n");
assert(!Intfs.empty() && "expected interference");
// Spill each interfering vreg allocated to PhysReg or an alias.
for (const LiveInterval *Spill : Intfs) {
// Skip duplicates.
if (!VRM->hasPhys(Spill->reg()))
continue;
// Deallocate the interfering vreg by removing it from the union.
// A LiveInterval instance may not be in a union during modification!
Matrix->unassign(*Spill);
// Spill the extracted interval.
LiveRangeEdit LRE(Spill, SplitVRegs, *MF, *LIS, VRM, this, &DeadRemats);
spiller().spill(LRE);
}
return true;
}
// Driver for the register assignment and splitting heuristics.
// Manages iteration over the LiveIntervalUnions.
//
// This is a minimal implementation of register assignment and splitting that
// spills whenever we run out of registers.
//
// selectOrSplit can only be called once per live virtual register. We then do a
// single interference test for each register the correct class until we find an
// available register. So, the number of interference tests in the worst case is
// |vregs| * |machineregs|. And since the number of interference tests is
// minimal, there is no value in caching them outside the scope of
// selectOrSplit().
MCRegister RABasic::selectOrSplit(const LiveInterval &VirtReg,
SmallVectorImpl<Register> &SplitVRegs) {
// Populate a list of physical register spill candidates.
SmallVector<MCRegister, 8> PhysRegSpillCands;
// Check for an available register in this class.
auto Order =
AllocationOrder::create(VirtReg.reg(), *VRM, RegClassInfo, Matrix);
for (MCRegister PhysReg : Order) {
assert(PhysReg.isValid());
// Check for interference in PhysReg
switch (Matrix->checkInterference(VirtReg, PhysReg)) {
case LiveRegMatrix::IK_Free:
// PhysReg is available, allocate it.
return PhysReg;
case LiveRegMatrix::IK_VirtReg:
// Only virtual registers in the way, we may be able to spill them.
PhysRegSpillCands.push_back(PhysReg);
continue;
default:
// RegMask or RegUnit interference.
continue;
}
}
// Try to spill another interfering reg with less spill weight.
for (MCRegister &PhysReg : PhysRegSpillCands) {
if (!spillInterferences(VirtReg, PhysReg, SplitVRegs))
continue;
assert(!Matrix->checkInterference(VirtReg, PhysReg) &&
"Interference after spill.");
// Tell the caller to allocate to this newly freed physical register.
return PhysReg;
}
// No other spill candidates were found, so spill the current VirtReg.
LLVM_DEBUG(dbgs() << "spilling: " << VirtReg << '\n');
if (!VirtReg.isSpillable())
return ~0u;
LiveRangeEdit LRE(&VirtReg, SplitVRegs, *MF, *LIS, VRM, this, &DeadRemats);
spiller().spill(LRE);
// The live virtual register requesting allocation was spilled, so tell
// the caller not to allocate anything during this round.
return 0;
}
bool RABasic::runOnMachineFunction(MachineFunction &mf) {
LLVM_DEBUG(dbgs() << "********** BASIC REGISTER ALLOCATION **********\n"
<< "********** Function: " << mf.getName() << '\n');
MF = &mf;
auto &MBFI = getAnalysis<MachineBlockFrequencyInfoWrapperPass>().getMBFI();
auto &LiveStks = getAnalysis<LiveStacksWrapperLegacy>().getLS();
auto &MDT = getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree();
RegAllocBase::init(getAnalysis<VirtRegMapWrapperLegacy>().getVRM(),
getAnalysis<LiveIntervalsWrapperPass>().getLIS(),
getAnalysis<LiveRegMatrixWrapperLegacy>().getLRM());
VirtRegAuxInfo VRAI(*MF, *LIS, *VRM,
getAnalysis<MachineLoopInfoWrapperPass>().getLI(), MBFI,
&getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI());
VRAI.calculateSpillWeightsAndHints();
SpillerInstance.reset(
createInlineSpiller({*LIS, LiveStks, MDT, MBFI}, *MF, *VRM, VRAI));
allocatePhysRegs();
postOptimization();
// Diagnostic output before rewriting
LLVM_DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << *VRM << "\n");
releaseMemory();
return true;
}
FunctionPass* llvm::createBasicRegisterAllocator() {
return new RABasic();
}
FunctionPass *llvm::createBasicRegisterAllocator(RegAllocFilterFunc F) {
return new RABasic(F);
}