Peter Hawkins 5cd4274772
[mlir python] Port in-tree dialects to nanobind. (#119924)
This is a companion to #118583, although it can be landed independently
because since #117922 dialects do not have to use the same Python
binding framework as the Python core code.

This PR ports all of the in-tree dialect and pass extensions to
nanobind, with the exception of those that remain for testing pybind11
support.

This PR also:
* removes CollectDiagnosticsToStringScope from NanobindAdaptors.h. This
was overlooked in a previous PR and it is duplicated in Diagnostics.h.

---------

Co-authored-by: Jacques Pienaar <jpienaar@google.com>
2024-12-20 20:32:32 -08:00

91 lines
3.8 KiB
C++

//===- DialectGPU.cpp - Pybind module for the GPU passes ------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===---------------------------------------------------------------------===//
#include "mlir-c/Dialect/GPU.h"
#include "mlir-c/IR.h"
#include "mlir-c/Support.h"
#include "mlir/Bindings/Python/NanobindAdaptors.h"
#include "mlir/Bindings/Python/Nanobind.h"
namespace nb = nanobind;
using namespace nanobind::literals;
using namespace mlir;
using namespace mlir::python;
using namespace mlir::python::nanobind_adaptors;
// -----------------------------------------------------------------------------
// Module initialization.
// -----------------------------------------------------------------------------
NB_MODULE(_mlirDialectsGPU, m) {
m.doc() = "MLIR GPU Dialect";
//===-------------------------------------------------------------------===//
// AsyncTokenType
//===-------------------------------------------------------------------===//
auto mlirGPUAsyncTokenType =
mlir_type_subclass(m, "AsyncTokenType", mlirTypeIsAGPUAsyncTokenType);
mlirGPUAsyncTokenType.def_classmethod(
"get",
[](nb::object cls, MlirContext ctx) {
return cls(mlirGPUAsyncTokenTypeGet(ctx));
},
"Gets an instance of AsyncTokenType in the same context", nb::arg("cls"),
nb::arg("ctx").none() = nb::none());
//===-------------------------------------------------------------------===//
// ObjectAttr
//===-------------------------------------------------------------------===//
mlir_attribute_subclass(m, "ObjectAttr", mlirAttributeIsAGPUObjectAttr)
.def_classmethod(
"get",
[](nb::object cls, MlirAttribute target, uint32_t format,
nb::bytes object, std::optional<MlirAttribute> mlirObjectProps,
std::optional<MlirAttribute> mlirKernelsAttr) {
MlirStringRef objectStrRef = mlirStringRefCreate(
static_cast<char *>(const_cast<void *>(object.data())),
object.size());
return cls(mlirGPUObjectAttrGetWithKernels(
mlirAttributeGetContext(target), target, format, objectStrRef,
mlirObjectProps.has_value() ? *mlirObjectProps
: MlirAttribute{nullptr},
mlirKernelsAttr.has_value() ? *mlirKernelsAttr
: MlirAttribute{nullptr}));
},
"cls"_a, "target"_a, "format"_a, "object"_a,
"properties"_a.none() = nb::none(), "kernels"_a.none() = nb::none(),
"Gets a gpu.object from parameters.")
.def_property_readonly(
"target",
[](MlirAttribute self) { return mlirGPUObjectAttrGetTarget(self); })
.def_property_readonly(
"format",
[](MlirAttribute self) { return mlirGPUObjectAttrGetFormat(self); })
.def_property_readonly(
"object",
[](MlirAttribute self) {
MlirStringRef stringRef = mlirGPUObjectAttrGetObject(self);
return nb::bytes(stringRef.data, stringRef.length);
})
.def_property_readonly("properties",
[](MlirAttribute self) -> nb::object {
if (mlirGPUObjectAttrHasProperties(self))
return nb::cast(
mlirGPUObjectAttrGetProperties(self));
return nb::none();
})
.def_property_readonly("kernels", [](MlirAttribute self) -> nb::object {
if (mlirGPUObjectAttrHasKernels(self))
return nb::cast(mlirGPUObjectAttrGetKernels(self));
return nb::none();
});
}