
The optimization involves eagerly pruning ExplodedNodes from the ExplodedGraph that contain practically no difference between the predecessor and successor nodes. For example, if the state is different between a predecessor and a node, the node is left in. Only for the 'environment' component of the state do we not care if the ExplodedNodes are different. This paves the way for future optimizations where we can reclaim the environment objects. llvm-svn: 125154
846 lines
26 KiB
C++
846 lines
26 KiB
C++
//==- CoreEngine.cpp - Path-Sensitive Dataflow Engine ------------*- C++ -*-//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines a generic engine for intraprocedural, path-sensitive,
|
|
// dataflow analysis via graph reachability engine.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/StaticAnalyzer/PathSensitive/AnalysisManager.h"
|
|
#include "clang/StaticAnalyzer/PathSensitive/CoreEngine.h"
|
|
#include "clang/StaticAnalyzer/PathSensitive/ExprEngine.h"
|
|
#include "clang/Index/TranslationUnit.h"
|
|
#include "clang/AST/Expr.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include <vector>
|
|
#include <queue>
|
|
|
|
using llvm::cast;
|
|
using llvm::isa;
|
|
using namespace clang;
|
|
using namespace ento;
|
|
|
|
// This should be removed in the future.
|
|
namespace clang {
|
|
namespace ento {
|
|
TransferFuncs* MakeCFRefCountTF(ASTContext& Ctx, bool GCEnabled,
|
|
const LangOptions& lopts);
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Worklist classes for exploration of reachable states.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
WorkList::Visitor::~Visitor() {}
|
|
|
|
namespace {
|
|
class DFS : public WorkList {
|
|
llvm::SmallVector<WorkListUnit,20> Stack;
|
|
public:
|
|
virtual bool hasWork() const {
|
|
return !Stack.empty();
|
|
}
|
|
|
|
virtual void enqueue(const WorkListUnit& U) {
|
|
Stack.push_back(U);
|
|
}
|
|
|
|
virtual WorkListUnit dequeue() {
|
|
assert (!Stack.empty());
|
|
const WorkListUnit& U = Stack.back();
|
|
Stack.pop_back(); // This technically "invalidates" U, but we are fine.
|
|
return U;
|
|
}
|
|
|
|
virtual bool visitItemsInWorkList(Visitor &V) {
|
|
for (llvm::SmallVectorImpl<WorkListUnit>::iterator
|
|
I = Stack.begin(), E = Stack.end(); I != E; ++I) {
|
|
if (V.visit(*I))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
};
|
|
|
|
class BFS : public WorkList {
|
|
std::deque<WorkListUnit> Queue;
|
|
public:
|
|
virtual bool hasWork() const {
|
|
return !Queue.empty();
|
|
}
|
|
|
|
virtual void enqueue(const WorkListUnit& U) {
|
|
Queue.push_front(U);
|
|
}
|
|
|
|
virtual WorkListUnit dequeue() {
|
|
WorkListUnit U = Queue.front();
|
|
Queue.pop_front();
|
|
return U;
|
|
}
|
|
|
|
virtual bool visitItemsInWorkList(Visitor &V) {
|
|
for (std::deque<WorkListUnit>::iterator
|
|
I = Queue.begin(), E = Queue.end(); I != E; ++I) {
|
|
if (V.visit(*I))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
// Place the dstor for WorkList here because it contains virtual member
|
|
// functions, and we the code for the dstor generated in one compilation unit.
|
|
WorkList::~WorkList() {}
|
|
|
|
WorkList *WorkList::makeDFS() { return new DFS(); }
|
|
WorkList *WorkList::makeBFS() { return new BFS(); }
|
|
|
|
namespace {
|
|
class BFSBlockDFSContents : public WorkList {
|
|
std::deque<WorkListUnit> Queue;
|
|
llvm::SmallVector<WorkListUnit,20> Stack;
|
|
public:
|
|
virtual bool hasWork() const {
|
|
return !Queue.empty() || !Stack.empty();
|
|
}
|
|
|
|
virtual void enqueue(const WorkListUnit& U) {
|
|
if (isa<BlockEntrance>(U.getNode()->getLocation()))
|
|
Queue.push_front(U);
|
|
else
|
|
Stack.push_back(U);
|
|
}
|
|
|
|
virtual WorkListUnit dequeue() {
|
|
// Process all basic blocks to completion.
|
|
if (!Stack.empty()) {
|
|
const WorkListUnit& U = Stack.back();
|
|
Stack.pop_back(); // This technically "invalidates" U, but we are fine.
|
|
return U;
|
|
}
|
|
|
|
assert(!Queue.empty());
|
|
// Don't use const reference. The subsequent pop_back() might make it
|
|
// unsafe.
|
|
WorkListUnit U = Queue.front();
|
|
Queue.pop_front();
|
|
return U;
|
|
}
|
|
virtual bool visitItemsInWorkList(Visitor &V) {
|
|
for (llvm::SmallVectorImpl<WorkListUnit>::iterator
|
|
I = Stack.begin(), E = Stack.end(); I != E; ++I) {
|
|
if (V.visit(*I))
|
|
return true;
|
|
}
|
|
for (std::deque<WorkListUnit>::iterator
|
|
I = Queue.begin(), E = Queue.end(); I != E; ++I) {
|
|
if (V.visit(*I))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
WorkList* WorkList::makeBFSBlockDFSContents() {
|
|
return new BFSBlockDFSContents();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Core analysis engine.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// ExecuteWorkList - Run the worklist algorithm for a maximum number of steps.
|
|
bool CoreEngine::ExecuteWorkList(const LocationContext *L, unsigned Steps,
|
|
const GRState *InitState) {
|
|
|
|
if (G->num_roots() == 0) { // Initialize the analysis by constructing
|
|
// the root if none exists.
|
|
|
|
const CFGBlock* Entry = &(L->getCFG()->getEntry());
|
|
|
|
assert (Entry->empty() &&
|
|
"Entry block must be empty.");
|
|
|
|
assert (Entry->succ_size() == 1 &&
|
|
"Entry block must have 1 successor.");
|
|
|
|
// Get the solitary successor.
|
|
const CFGBlock* Succ = *(Entry->succ_begin());
|
|
|
|
// Construct an edge representing the
|
|
// starting location in the function.
|
|
BlockEdge StartLoc(Entry, Succ, L);
|
|
|
|
// Set the current block counter to being empty.
|
|
WList->setBlockCounter(BCounterFactory.GetEmptyCounter());
|
|
|
|
if (!InitState)
|
|
// Generate the root.
|
|
generateNode(StartLoc, SubEng.getInitialState(L), 0);
|
|
else
|
|
generateNode(StartLoc, InitState, 0);
|
|
}
|
|
|
|
// Check if we have a steps limit
|
|
bool UnlimitedSteps = Steps == 0;
|
|
|
|
while (WList->hasWork()) {
|
|
if (!UnlimitedSteps) {
|
|
if (Steps == 0)
|
|
break;
|
|
--Steps;
|
|
}
|
|
|
|
const WorkListUnit& WU = WList->dequeue();
|
|
|
|
// Set the current block counter.
|
|
WList->setBlockCounter(WU.getBlockCounter());
|
|
|
|
// Retrieve the node.
|
|
ExplodedNode* Node = WU.getNode();
|
|
|
|
// Dispatch on the location type.
|
|
switch (Node->getLocation().getKind()) {
|
|
case ProgramPoint::BlockEdgeKind:
|
|
HandleBlockEdge(cast<BlockEdge>(Node->getLocation()), Node);
|
|
break;
|
|
|
|
case ProgramPoint::BlockEntranceKind:
|
|
HandleBlockEntrance(cast<BlockEntrance>(Node->getLocation()), Node);
|
|
break;
|
|
|
|
case ProgramPoint::BlockExitKind:
|
|
assert (false && "BlockExit location never occur in forward analysis.");
|
|
break;
|
|
|
|
case ProgramPoint::CallEnterKind:
|
|
HandleCallEnter(cast<CallEnter>(Node->getLocation()), WU.getBlock(),
|
|
WU.getIndex(), Node);
|
|
break;
|
|
|
|
case ProgramPoint::CallExitKind:
|
|
HandleCallExit(cast<CallExit>(Node->getLocation()), Node);
|
|
break;
|
|
|
|
default:
|
|
assert(isa<PostStmt>(Node->getLocation()) ||
|
|
isa<PostInitializer>(Node->getLocation()));
|
|
HandlePostStmt(WU.getBlock(), WU.getIndex(), Node);
|
|
break;
|
|
}
|
|
}
|
|
|
|
SubEng.processEndWorklist(hasWorkRemaining());
|
|
return WList->hasWork();
|
|
}
|
|
|
|
void CoreEngine::ExecuteWorkListWithInitialState(const LocationContext *L,
|
|
unsigned Steps,
|
|
const GRState *InitState,
|
|
ExplodedNodeSet &Dst) {
|
|
ExecuteWorkList(L, Steps, InitState);
|
|
for (llvm::SmallVectorImpl<ExplodedNode*>::iterator I = G->EndNodes.begin(),
|
|
E = G->EndNodes.end(); I != E; ++I) {
|
|
Dst.Add(*I);
|
|
}
|
|
}
|
|
|
|
void CoreEngine::HandleCallEnter(const CallEnter &L, const CFGBlock *Block,
|
|
unsigned Index, ExplodedNode *Pred) {
|
|
CallEnterNodeBuilder Builder(*this, Pred, L.getCallExpr(),
|
|
L.getCalleeContext(), Block, Index);
|
|
SubEng.processCallEnter(Builder);
|
|
}
|
|
|
|
void CoreEngine::HandleCallExit(const CallExit &L, ExplodedNode *Pred) {
|
|
CallExitNodeBuilder Builder(*this, Pred);
|
|
SubEng.processCallExit(Builder);
|
|
}
|
|
|
|
void CoreEngine::HandleBlockEdge(const BlockEdge& L, ExplodedNode* Pred) {
|
|
|
|
const CFGBlock* Blk = L.getDst();
|
|
|
|
// Check if we are entering the EXIT block.
|
|
if (Blk == &(L.getLocationContext()->getCFG()->getExit())) {
|
|
|
|
assert (L.getLocationContext()->getCFG()->getExit().size() == 0
|
|
&& "EXIT block cannot contain Stmts.");
|
|
|
|
// Process the final state transition.
|
|
EndOfFunctionNodeBuilder Builder(Blk, Pred, this);
|
|
SubEng.processEndOfFunction(Builder);
|
|
|
|
// This path is done. Don't enqueue any more nodes.
|
|
return;
|
|
}
|
|
|
|
// Call into the subengine to process entering the CFGBlock.
|
|
ExplodedNodeSet dstNodes;
|
|
BlockEntrance BE(Blk, Pred->getLocationContext());
|
|
GenericNodeBuilder<BlockEntrance> nodeBuilder(*this, Pred, BE);
|
|
SubEng.processCFGBlockEntrance(dstNodes, nodeBuilder);
|
|
|
|
if (dstNodes.empty()) {
|
|
if (!nodeBuilder.hasGeneratedNode) {
|
|
// Auto-generate a node and enqueue it to the worklist.
|
|
generateNode(BE, Pred->State, Pred);
|
|
}
|
|
}
|
|
else {
|
|
for (ExplodedNodeSet::iterator I = dstNodes.begin(), E = dstNodes.end();
|
|
I != E; ++I) {
|
|
WList->enqueue(*I);
|
|
}
|
|
}
|
|
|
|
for (llvm::SmallVectorImpl<ExplodedNode*>::const_iterator
|
|
I = nodeBuilder.sinks().begin(), E = nodeBuilder.sinks().end();
|
|
I != E; ++I) {
|
|
blocksAborted.push_back(std::make_pair(L, *I));
|
|
}
|
|
}
|
|
|
|
void CoreEngine::HandleBlockEntrance(const BlockEntrance& L,
|
|
ExplodedNode* Pred) {
|
|
|
|
// Increment the block counter.
|
|
BlockCounter Counter = WList->getBlockCounter();
|
|
Counter = BCounterFactory.IncrementCount(Counter,
|
|
Pred->getLocationContext()->getCurrentStackFrame(),
|
|
L.getBlock()->getBlockID());
|
|
WList->setBlockCounter(Counter);
|
|
|
|
// Process the entrance of the block.
|
|
if (CFGElement E = L.getFirstElement()) {
|
|
StmtNodeBuilder Builder(L.getBlock(), 0, Pred, this,
|
|
SubEng.getStateManager());
|
|
SubEng.processCFGElement(E, Builder);
|
|
}
|
|
else
|
|
HandleBlockExit(L.getBlock(), Pred);
|
|
}
|
|
|
|
void CoreEngine::HandleBlockExit(const CFGBlock * B, ExplodedNode* Pred) {
|
|
|
|
if (const Stmt* Term = B->getTerminator()) {
|
|
switch (Term->getStmtClass()) {
|
|
default:
|
|
assert(false && "Analysis for this terminator not implemented.");
|
|
break;
|
|
|
|
case Stmt::BinaryOperatorClass: // '&&' and '||'
|
|
HandleBranch(cast<BinaryOperator>(Term)->getLHS(), Term, B, Pred);
|
|
return;
|
|
|
|
case Stmt::ConditionalOperatorClass:
|
|
HandleBranch(cast<ConditionalOperator>(Term)->getCond(), Term, B, Pred);
|
|
return;
|
|
|
|
// FIXME: Use constant-folding in CFG construction to simplify this
|
|
// case.
|
|
|
|
case Stmt::ChooseExprClass:
|
|
HandleBranch(cast<ChooseExpr>(Term)->getCond(), Term, B, Pred);
|
|
return;
|
|
|
|
case Stmt::DoStmtClass:
|
|
HandleBranch(cast<DoStmt>(Term)->getCond(), Term, B, Pred);
|
|
return;
|
|
|
|
case Stmt::ForStmtClass:
|
|
HandleBranch(cast<ForStmt>(Term)->getCond(), Term, B, Pred);
|
|
return;
|
|
|
|
case Stmt::ContinueStmtClass:
|
|
case Stmt::BreakStmtClass:
|
|
case Stmt::GotoStmtClass:
|
|
break;
|
|
|
|
case Stmt::IfStmtClass:
|
|
HandleBranch(cast<IfStmt>(Term)->getCond(), Term, B, Pred);
|
|
return;
|
|
|
|
case Stmt::IndirectGotoStmtClass: {
|
|
// Only 1 successor: the indirect goto dispatch block.
|
|
assert (B->succ_size() == 1);
|
|
|
|
IndirectGotoNodeBuilder
|
|
builder(Pred, B, cast<IndirectGotoStmt>(Term)->getTarget(),
|
|
*(B->succ_begin()), this);
|
|
|
|
SubEng.processIndirectGoto(builder);
|
|
return;
|
|
}
|
|
|
|
case Stmt::ObjCForCollectionStmtClass: {
|
|
// In the case of ObjCForCollectionStmt, it appears twice in a CFG:
|
|
//
|
|
// (1) inside a basic block, which represents the binding of the
|
|
// 'element' variable to a value.
|
|
// (2) in a terminator, which represents the branch.
|
|
//
|
|
// For (1), subengines will bind a value (i.e., 0 or 1) indicating
|
|
// whether or not collection contains any more elements. We cannot
|
|
// just test to see if the element is nil because a container can
|
|
// contain nil elements.
|
|
HandleBranch(Term, Term, B, Pred);
|
|
return;
|
|
}
|
|
|
|
case Stmt::SwitchStmtClass: {
|
|
SwitchNodeBuilder builder(Pred, B, cast<SwitchStmt>(Term)->getCond(),
|
|
this);
|
|
|
|
SubEng.processSwitch(builder);
|
|
return;
|
|
}
|
|
|
|
case Stmt::WhileStmtClass:
|
|
HandleBranch(cast<WhileStmt>(Term)->getCond(), Term, B, Pred);
|
|
return;
|
|
}
|
|
}
|
|
|
|
assert (B->succ_size() == 1 &&
|
|
"Blocks with no terminator should have at most 1 successor.");
|
|
|
|
generateNode(BlockEdge(B, *(B->succ_begin()), Pred->getLocationContext()),
|
|
Pred->State, Pred);
|
|
}
|
|
|
|
void CoreEngine::HandleBranch(const Stmt* Cond, const Stmt* Term,
|
|
const CFGBlock * B, ExplodedNode* Pred) {
|
|
assert(B->succ_size() == 2);
|
|
BranchNodeBuilder Builder(B, *(B->succ_begin()), *(B->succ_begin()+1),
|
|
Pred, this);
|
|
SubEng.processBranch(Cond, Term, Builder);
|
|
}
|
|
|
|
void CoreEngine::HandlePostStmt(const CFGBlock* B, unsigned StmtIdx,
|
|
ExplodedNode* Pred) {
|
|
assert (!B->empty());
|
|
|
|
if (StmtIdx == B->size())
|
|
HandleBlockExit(B, Pred);
|
|
else {
|
|
StmtNodeBuilder Builder(B, StmtIdx, Pred, this,
|
|
SubEng.getStateManager());
|
|
SubEng.processCFGElement((*B)[StmtIdx], Builder);
|
|
}
|
|
}
|
|
|
|
/// generateNode - Utility method to generate nodes, hook up successors,
|
|
/// and add nodes to the worklist.
|
|
void CoreEngine::generateNode(const ProgramPoint& Loc,
|
|
const GRState* State, ExplodedNode* Pred) {
|
|
|
|
bool IsNew;
|
|
ExplodedNode* Node = G->getNode(Loc, State, &IsNew);
|
|
|
|
if (Pred)
|
|
Node->addPredecessor(Pred, *G); // Link 'Node' with its predecessor.
|
|
else {
|
|
assert (IsNew);
|
|
G->addRoot(Node); // 'Node' has no predecessor. Make it a root.
|
|
}
|
|
|
|
// Only add 'Node' to the worklist if it was freshly generated.
|
|
if (IsNew) WList->enqueue(Node);
|
|
}
|
|
|
|
ExplodedNode *
|
|
GenericNodeBuilderImpl::generateNodeImpl(const GRState *state,
|
|
ExplodedNode *pred,
|
|
ProgramPoint programPoint,
|
|
bool asSink) {
|
|
|
|
hasGeneratedNode = true;
|
|
bool isNew;
|
|
ExplodedNode *node = engine.getGraph().getNode(programPoint, state, &isNew);
|
|
if (pred)
|
|
node->addPredecessor(pred, engine.getGraph());
|
|
if (isNew) {
|
|
if (asSink) {
|
|
node->markAsSink();
|
|
sinksGenerated.push_back(node);
|
|
}
|
|
return node;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
StmtNodeBuilder::StmtNodeBuilder(const CFGBlock* b, unsigned idx,
|
|
ExplodedNode* N, CoreEngine* e,
|
|
GRStateManager &mgr)
|
|
: Eng(*e), B(*b), Idx(idx), Pred(N), Mgr(mgr),
|
|
PurgingDeadSymbols(false), BuildSinks(false), hasGeneratedNode(false),
|
|
PointKind(ProgramPoint::PostStmtKind), Tag(0) {
|
|
Deferred.insert(N);
|
|
CleanedState = Pred->getState();
|
|
}
|
|
|
|
StmtNodeBuilder::~StmtNodeBuilder() {
|
|
for (DeferredTy::iterator I=Deferred.begin(), E=Deferred.end(); I!=E; ++I)
|
|
if (!(*I)->isSink())
|
|
GenerateAutoTransition(*I);
|
|
}
|
|
|
|
void StmtNodeBuilder::GenerateAutoTransition(ExplodedNode* N) {
|
|
assert (!N->isSink());
|
|
|
|
// Check if this node entered a callee.
|
|
if (isa<CallEnter>(N->getLocation())) {
|
|
// Still use the index of the CallExpr. It's needed to create the callee
|
|
// StackFrameContext.
|
|
Eng.WList->enqueue(N, &B, Idx);
|
|
return;
|
|
}
|
|
|
|
// Do not create extra nodes. Move to the next CFG element.
|
|
if (isa<PostInitializer>(N->getLocation())) {
|
|
Eng.WList->enqueue(N, &B, Idx+1);
|
|
return;
|
|
}
|
|
|
|
PostStmt Loc(getStmt(), N->getLocationContext());
|
|
|
|
if (Loc == N->getLocation()) {
|
|
// Note: 'N' should be a fresh node because otherwise it shouldn't be
|
|
// a member of Deferred.
|
|
Eng.WList->enqueue(N, &B, Idx+1);
|
|
return;
|
|
}
|
|
|
|
bool IsNew;
|
|
ExplodedNode* Succ = Eng.G->getNode(Loc, N->State, &IsNew);
|
|
Succ->addPredecessor(N, *Eng.G);
|
|
|
|
if (IsNew)
|
|
Eng.WList->enqueue(Succ, &B, Idx+1);
|
|
}
|
|
|
|
ExplodedNode* StmtNodeBuilder::MakeNode(ExplodedNodeSet& Dst, const Stmt* S,
|
|
ExplodedNode* Pred, const GRState* St,
|
|
ProgramPoint::Kind K) {
|
|
|
|
ExplodedNode* N = generateNode(S, St, Pred, K);
|
|
|
|
if (N) {
|
|
if (BuildSinks)
|
|
N->markAsSink();
|
|
else
|
|
Dst.Add(N);
|
|
}
|
|
|
|
return N;
|
|
}
|
|
|
|
static ProgramPoint GetProgramPoint(const Stmt *S, ProgramPoint::Kind K,
|
|
const LocationContext *LC, const void *tag){
|
|
switch (K) {
|
|
default:
|
|
assert(false && "Unhandled ProgramPoint kind");
|
|
case ProgramPoint::PreStmtKind:
|
|
return PreStmt(S, LC, tag);
|
|
case ProgramPoint::PostStmtKind:
|
|
return PostStmt(S, LC, tag);
|
|
case ProgramPoint::PreLoadKind:
|
|
return PreLoad(S, LC, tag);
|
|
case ProgramPoint::PostLoadKind:
|
|
return PostLoad(S, LC, tag);
|
|
case ProgramPoint::PreStoreKind:
|
|
return PreStore(S, LC, tag);
|
|
case ProgramPoint::PostStoreKind:
|
|
return PostStore(S, LC, tag);
|
|
case ProgramPoint::PostLValueKind:
|
|
return PostLValue(S, LC, tag);
|
|
case ProgramPoint::PostPurgeDeadSymbolsKind:
|
|
return PostPurgeDeadSymbols(S, LC, tag);
|
|
}
|
|
}
|
|
|
|
ExplodedNode*
|
|
StmtNodeBuilder::generateNodeInternal(const Stmt* S, const GRState* state,
|
|
ExplodedNode* Pred,
|
|
ProgramPoint::Kind K,
|
|
const void *tag) {
|
|
|
|
const ProgramPoint &L = GetProgramPoint(S, K, Pred->getLocationContext(),tag);
|
|
return generateNodeInternal(L, state, Pred);
|
|
}
|
|
|
|
ExplodedNode*
|
|
StmtNodeBuilder::generateNodeInternal(const ProgramPoint &Loc,
|
|
const GRState* State,
|
|
ExplodedNode* Pred) {
|
|
bool IsNew;
|
|
ExplodedNode* N = Eng.G->getNode(Loc, State, &IsNew);
|
|
N->addPredecessor(Pred, *Eng.G);
|
|
Deferred.erase(Pred);
|
|
|
|
if (IsNew) {
|
|
Deferred.insert(N);
|
|
return N;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
ExplodedNode* BranchNodeBuilder::generateNode(const GRState* State,
|
|
bool branch) {
|
|
|
|
// If the branch has been marked infeasible we should not generate a node.
|
|
if (!isFeasible(branch))
|
|
return NULL;
|
|
|
|
bool IsNew;
|
|
|
|
ExplodedNode* Succ =
|
|
Eng.G->getNode(BlockEdge(Src,branch ? DstT:DstF,Pred->getLocationContext()),
|
|
State, &IsNew);
|
|
|
|
Succ->addPredecessor(Pred, *Eng.G);
|
|
|
|
if (branch)
|
|
GeneratedTrue = true;
|
|
else
|
|
GeneratedFalse = true;
|
|
|
|
if (IsNew) {
|
|
Deferred.push_back(Succ);
|
|
return Succ;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
BranchNodeBuilder::~BranchNodeBuilder() {
|
|
if (!GeneratedTrue) generateNode(Pred->State, true);
|
|
if (!GeneratedFalse) generateNode(Pred->State, false);
|
|
|
|
for (DeferredTy::iterator I=Deferred.begin(), E=Deferred.end(); I!=E; ++I)
|
|
if (!(*I)->isSink()) Eng.WList->enqueue(*I);
|
|
}
|
|
|
|
|
|
ExplodedNode*
|
|
IndirectGotoNodeBuilder::generateNode(const iterator& I, const GRState* St,
|
|
bool isSink) {
|
|
bool IsNew;
|
|
|
|
ExplodedNode* Succ = Eng.G->getNode(BlockEdge(Src, I.getBlock(),
|
|
Pred->getLocationContext()), St, &IsNew);
|
|
|
|
Succ->addPredecessor(Pred, *Eng.G);
|
|
|
|
if (IsNew) {
|
|
|
|
if (isSink)
|
|
Succ->markAsSink();
|
|
else
|
|
Eng.WList->enqueue(Succ);
|
|
|
|
return Succ;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
|
|
ExplodedNode*
|
|
SwitchNodeBuilder::generateCaseStmtNode(const iterator& I, const GRState* St){
|
|
|
|
bool IsNew;
|
|
|
|
ExplodedNode* Succ = Eng.G->getNode(BlockEdge(Src, I.getBlock(),
|
|
Pred->getLocationContext()), St, &IsNew);
|
|
Succ->addPredecessor(Pred, *Eng.G);
|
|
|
|
if (IsNew) {
|
|
Eng.WList->enqueue(Succ);
|
|
return Succ;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
|
|
ExplodedNode*
|
|
SwitchNodeBuilder::generateDefaultCaseNode(const GRState* St, bool isSink) {
|
|
|
|
// Get the block for the default case.
|
|
assert (Src->succ_rbegin() != Src->succ_rend());
|
|
CFGBlock* DefaultBlock = *Src->succ_rbegin();
|
|
|
|
bool IsNew;
|
|
|
|
ExplodedNode* Succ = Eng.G->getNode(BlockEdge(Src, DefaultBlock,
|
|
Pred->getLocationContext()), St, &IsNew);
|
|
Succ->addPredecessor(Pred, *Eng.G);
|
|
|
|
if (IsNew) {
|
|
if (isSink)
|
|
Succ->markAsSink();
|
|
else
|
|
Eng.WList->enqueue(Succ);
|
|
|
|
return Succ;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
EndOfFunctionNodeBuilder::~EndOfFunctionNodeBuilder() {
|
|
// Auto-generate an EOP node if one has not been generated.
|
|
if (!hasGeneratedNode) {
|
|
// If we are in an inlined call, generate CallExit node.
|
|
if (Pred->getLocationContext()->getParent())
|
|
GenerateCallExitNode(Pred->State);
|
|
else
|
|
generateNode(Pred->State);
|
|
}
|
|
}
|
|
|
|
ExplodedNode*
|
|
EndOfFunctionNodeBuilder::generateNode(const GRState* State, const void *tag,
|
|
ExplodedNode* P) {
|
|
hasGeneratedNode = true;
|
|
bool IsNew;
|
|
|
|
ExplodedNode* Node = Eng.G->getNode(BlockEntrance(&B,
|
|
Pred->getLocationContext(), tag), State, &IsNew);
|
|
|
|
Node->addPredecessor(P ? P : Pred, *Eng.G);
|
|
|
|
if (IsNew) {
|
|
Eng.G->addEndOfPath(Node);
|
|
return Node;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
void EndOfFunctionNodeBuilder::GenerateCallExitNode(const GRState *state) {
|
|
hasGeneratedNode = true;
|
|
// Create a CallExit node and enqueue it.
|
|
const StackFrameContext *LocCtx
|
|
= cast<StackFrameContext>(Pred->getLocationContext());
|
|
const Stmt *CE = LocCtx->getCallSite();
|
|
|
|
// Use the the callee location context.
|
|
CallExit Loc(CE, LocCtx);
|
|
|
|
bool isNew;
|
|
ExplodedNode *Node = Eng.G->getNode(Loc, state, &isNew);
|
|
Node->addPredecessor(Pred, *Eng.G);
|
|
|
|
if (isNew)
|
|
Eng.WList->enqueue(Node);
|
|
}
|
|
|
|
|
|
void CallEnterNodeBuilder::generateNode(const GRState *state) {
|
|
// Check if the callee is in the same translation unit.
|
|
if (CalleeCtx->getTranslationUnit() !=
|
|
Pred->getLocationContext()->getTranslationUnit()) {
|
|
// Create a new engine. We must be careful that the new engine should not
|
|
// reference data structures owned by the old engine.
|
|
|
|
AnalysisManager &OldMgr = Eng.SubEng.getAnalysisManager();
|
|
|
|
// Get the callee's translation unit.
|
|
idx::TranslationUnit *TU = CalleeCtx->getTranslationUnit();
|
|
|
|
// Create a new AnalysisManager with components of the callee's
|
|
// TranslationUnit.
|
|
// The Diagnostic is actually shared when we create ASTUnits from AST files.
|
|
AnalysisManager AMgr(TU->getASTContext(), TU->getDiagnostic(),
|
|
OldMgr.getLangOptions(),
|
|
OldMgr.getPathDiagnosticClient(),
|
|
OldMgr.getStoreManagerCreator(),
|
|
OldMgr.getConstraintManagerCreator(),
|
|
OldMgr.getIndexer(),
|
|
OldMgr.getMaxNodes(), OldMgr.getMaxVisit(),
|
|
OldMgr.shouldVisualizeGraphviz(),
|
|
OldMgr.shouldVisualizeUbigraph(),
|
|
OldMgr.shouldPurgeDead(),
|
|
OldMgr.shouldEagerlyAssume(),
|
|
OldMgr.shouldTrimGraph(),
|
|
OldMgr.shouldInlineCall(),
|
|
OldMgr.getAnalysisContextManager().getUseUnoptimizedCFG(),
|
|
OldMgr.getAnalysisContextManager().getAddImplicitDtors(),
|
|
OldMgr.getAnalysisContextManager().getAddInitializers(),
|
|
OldMgr.shouldEagerlyTrimExplodedGraph());
|
|
llvm::OwningPtr<TransferFuncs> TF(MakeCFRefCountTF(AMgr.getASTContext(),
|
|
/* GCEnabled */ false,
|
|
AMgr.getLangOptions()));
|
|
// Create the new engine.
|
|
ExprEngine NewEng(AMgr, TF.take());
|
|
|
|
// Create the new LocationContext.
|
|
AnalysisContext *NewAnaCtx = AMgr.getAnalysisContext(CalleeCtx->getDecl(),
|
|
CalleeCtx->getTranslationUnit());
|
|
const StackFrameContext *OldLocCtx = CalleeCtx;
|
|
const StackFrameContext *NewLocCtx = AMgr.getStackFrame(NewAnaCtx,
|
|
OldLocCtx->getParent(),
|
|
OldLocCtx->getCallSite(),
|
|
OldLocCtx->getCallSiteBlock(),
|
|
OldLocCtx->getIndex());
|
|
|
|
// Now create an initial state for the new engine.
|
|
const GRState *NewState = NewEng.getStateManager().MarshalState(state,
|
|
NewLocCtx);
|
|
ExplodedNodeSet ReturnNodes;
|
|
NewEng.ExecuteWorkListWithInitialState(NewLocCtx, AMgr.getMaxNodes(),
|
|
NewState, ReturnNodes);
|
|
return;
|
|
}
|
|
|
|
// Get the callee entry block.
|
|
const CFGBlock *Entry = &(CalleeCtx->getCFG()->getEntry());
|
|
assert(Entry->empty());
|
|
assert(Entry->succ_size() == 1);
|
|
|
|
// Get the solitary successor.
|
|
const CFGBlock *SuccB = *(Entry->succ_begin());
|
|
|
|
// Construct an edge representing the starting location in the callee.
|
|
BlockEdge Loc(Entry, SuccB, CalleeCtx);
|
|
|
|
bool isNew;
|
|
ExplodedNode *Node = Eng.G->getNode(Loc, state, &isNew);
|
|
Node->addPredecessor(const_cast<ExplodedNode*>(Pred), *Eng.G);
|
|
|
|
if (isNew)
|
|
Eng.WList->enqueue(Node);
|
|
}
|
|
|
|
void CallExitNodeBuilder::generateNode(const GRState *state) {
|
|
// Get the callee's location context.
|
|
const StackFrameContext *LocCtx
|
|
= cast<StackFrameContext>(Pred->getLocationContext());
|
|
// When exiting an implicit automatic obj dtor call, the callsite is the Stmt
|
|
// that triggers the dtor.
|
|
PostStmt Loc(LocCtx->getCallSite(), LocCtx->getParent());
|
|
bool isNew;
|
|
ExplodedNode *Node = Eng.G->getNode(Loc, state, &isNew);
|
|
Node->addPredecessor(const_cast<ExplodedNode*>(Pred), *Eng.G);
|
|
if (isNew)
|
|
Eng.WList->enqueue(Node, LocCtx->getCallSiteBlock(),
|
|
LocCtx->getIndex() + 1);
|
|
}
|