llvm-project/mlir/lib/Target/LLVMIR/ModuleTranslation.cpp
River Riddle a4c3a6455c Move the emitError/Warning/Remark utility methods out of MLIRContext and into the mlir namespace.
Now that Locations are attributes, they have direct access to the MLIR context. This allows for simplifying error emission by removing unnecessary context lookups.

PiperOrigin-RevId: 255112791
2019-06-25 21:32:23 -07:00

432 lines
17 KiB
C++

//===- ModuleTranslation.cpp - MLIR to LLVM conversion --------------------===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
//
// This file implements the translation between an MLIR LLVM dialect module and
// the corresponding LLVMIR module. It only handles core LLVM IR operations.
//
//===----------------------------------------------------------------------===//
#include "mlir/Target/LLVMIR/ModuleTranslation.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/Module.h"
#include "mlir/LLVMIR/LLVMDialect.h"
#include "mlir/StandardOps/Ops.h"
#include "mlir/Support/LLVM.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/Transforms/Utils/Cloning.h"
namespace mlir {
namespace LLVM {
// Convert an MLIR function type to LLVM IR. Arguments of the function must of
// MLIR LLVM IR dialect types. Use `loc` as a location when reporting errors.
// Return nullptr on errors.
static llvm::FunctionType *convertFunctionType(llvm::LLVMContext &llvmContext,
FunctionType type, Location loc,
bool isVarArgs) {
assert(type && "expected non-null type");
if (type.getNumResults() > 1)
return emitError(loc, "LLVM functions can only have 0 or 1 result"),
nullptr;
SmallVector<llvm::Type *, 8> argTypes;
argTypes.reserve(type.getNumInputs());
for (auto t : type.getInputs()) {
auto wrappedLLVMType = t.dyn_cast<LLVM::LLVMType>();
if (!wrappedLLVMType)
return emitError(loc, "non-LLVM function argument type"), nullptr;
argTypes.push_back(wrappedLLVMType.getUnderlyingType());
}
if (type.getNumResults() == 0)
return llvm::FunctionType::get(llvm::Type::getVoidTy(llvmContext), argTypes,
isVarArgs);
auto wrappedResultType = type.getResult(0).dyn_cast<LLVM::LLVMType>();
if (!wrappedResultType)
return emitError(loc, "non-LLVM function result"), nullptr;
return llvm::FunctionType::get(wrappedResultType.getUnderlyingType(),
argTypes, isVarArgs);
}
// Create an LLVM IR constant of `llvmType` from the MLIR attribute `attr`.
// This currently supports integer, floating point, splat and dense element
// attributes and combinations thereof. In case of error, report it to `loc`
// and return nullptr.
llvm::Constant *ModuleTranslation::getLLVMConstant(llvm::Type *llvmType,
Attribute attr,
Location loc) {
if (auto intAttr = attr.dyn_cast<IntegerAttr>())
return llvm::ConstantInt::get(llvmType, intAttr.getValue());
if (auto floatAttr = attr.dyn_cast<FloatAttr>())
return llvm::ConstantFP::get(llvmType, floatAttr.getValue());
if (auto funcAttr = attr.dyn_cast<FunctionAttr>())
return functionMapping.lookup(funcAttr.getValue());
if (auto splatAttr = attr.dyn_cast<SplatElementsAttr>()) {
auto *vectorType = cast<llvm::VectorType>(llvmType);
auto *child = getLLVMConstant(vectorType->getElementType(),
splatAttr.getSplatValue(), loc);
return llvm::ConstantVector::getSplat(vectorType->getNumElements(), child);
}
if (auto denseAttr = attr.dyn_cast<DenseElementsAttr>()) {
auto *vectorType = cast<llvm::VectorType>(llvmType);
SmallVector<llvm::Constant *, 8> constants;
uint64_t numElements = vectorType->getNumElements();
constants.reserve(numElements);
SmallVector<Attribute, 8> nested;
denseAttr.getValues(nested);
for (auto n : nested) {
constants.push_back(
getLLVMConstant(vectorType->getElementType(), n, loc));
if (!constants.back())
return nullptr;
}
return llvm::ConstantVector::get(constants);
}
if (auto stringAttr = attr.dyn_cast<StringAttr>()) {
return llvm::ConstantDataArray::get(
llvmModule->getContext(), ArrayRef<char>{stringAttr.getValue().data(),
stringAttr.getValue().size()});
}
emitError(loc, "unsupported constant value");
return nullptr;
}
// Convert MLIR integer comparison predicate to LLVM IR comparison predicate.
static llvm::CmpInst::Predicate getLLVMCmpPredicate(CmpIPredicate p) {
switch (p) {
case CmpIPredicate::EQ:
return llvm::CmpInst::Predicate::ICMP_EQ;
case CmpIPredicate::NE:
return llvm::CmpInst::Predicate::ICMP_NE;
case CmpIPredicate::SLT:
return llvm::CmpInst::Predicate::ICMP_SLT;
case CmpIPredicate::SLE:
return llvm::CmpInst::Predicate::ICMP_SLE;
case CmpIPredicate::SGT:
return llvm::CmpInst::Predicate::ICMP_SGT;
case CmpIPredicate::SGE:
return llvm::CmpInst::Predicate::ICMP_SGE;
case CmpIPredicate::ULT:
return llvm::CmpInst::Predicate::ICMP_ULT;
case CmpIPredicate::ULE:
return llvm::CmpInst::Predicate::ICMP_ULE;
case CmpIPredicate::UGT:
return llvm::CmpInst::Predicate::ICMP_UGT;
case CmpIPredicate::UGE:
return llvm::CmpInst::Predicate::ICMP_UGE;
default:
llvm_unreachable("incorrect comparison predicate");
}
}
// A helper to look up remapped operands in the value remapping table.
template <typename Range>
SmallVector<llvm::Value *, 8> ModuleTranslation::lookupValues(Range &&values) {
SmallVector<llvm::Value *, 8> remapped;
remapped.reserve(llvm::size(values));
for (Value *v : values) {
remapped.push_back(valueMapping.lookup(v));
}
return remapped;
}
// Given a single MLIR operation, create the corresponding LLVM IR operation
// using the `builder`. LLVM IR Builder does not have a generic interface so
// this has to be a long chain of `if`s calling different functions with a
// different number of arguments.
bool ModuleTranslation::convertOperation(Operation &opInst,
llvm::IRBuilder<> &builder) {
auto extractPosition = [](ArrayAttr attr) {
SmallVector<unsigned, 4> position;
position.reserve(attr.size());
for (Attribute v : attr)
position.push_back(v.cast<IntegerAttr>().getValue().getZExtValue());
return position;
};
#include "mlir/LLVMIR/LLVMConversions.inc"
// Emit function calls. If the "callee" attribute is present, this is a
// direct function call and we also need to look up the remapped function
// itself. Otherwise, this is an indirect call and the callee is the first
// operand, look it up as a normal value. Return the llvm::Value representing
// the function result, which may be of llvm::VoidTy type.
auto convertCall = [this, &builder](Operation &op) -> llvm::Value * {
auto operands = lookupValues(op.getOperands());
ArrayRef<llvm::Value *> operandsRef(operands);
if (auto attr = op.getAttrOfType<FunctionAttr>("callee")) {
return builder.CreateCall(functionMapping.lookup(attr.getValue()),
operandsRef);
} else {
return builder.CreateCall(operandsRef.front(), operandsRef.drop_front());
}
};
// Emit calls. If the called function has a result, remap the corresponding
// value. Note that LLVM IR dialect CallOp has either 0 or 1 result.
if (isa<LLVM::CallOp>(opInst)) {
llvm::Value *result = convertCall(opInst);
if (opInst.getNumResults() != 0) {
valueMapping[opInst.getResult(0)] = result;
return false;
}
// Check that LLVM call returns void for 0-result functions.
return !result->getType()->isVoidTy();
}
// Emit branches. We need to look up the remapped blocks and ignore the block
// arguments that were transformed into PHI nodes.
if (auto brOp = dyn_cast<LLVM::BrOp>(opInst)) {
builder.CreateBr(blockMapping[brOp.getSuccessor(0)]);
return false;
}
if (auto condbrOp = dyn_cast<LLVM::CondBrOp>(opInst)) {
builder.CreateCondBr(valueMapping.lookup(condbrOp.getOperand(0)),
blockMapping[condbrOp.getSuccessor(0)],
blockMapping[condbrOp.getSuccessor(1)]);
return false;
}
opInst.emitError("unsupported or non-LLVM operation: ") << opInst.getName();
return true;
}
// Convert block to LLVM IR. Unless `ignoreArguments` is set, emit PHI nodes
// to define values corresponding to the MLIR block arguments. These nodes
// are not connected to the source basic blocks, which may not exist yet.
bool ModuleTranslation::convertBlock(Block &bb, bool ignoreArguments) {
llvm::IRBuilder<> builder(blockMapping[&bb]);
// Before traversing operations, make block arguments available through
// value remapping and PHI nodes, but do not add incoming edges for the PHI
// nodes just yet: those values may be defined by this or following blocks.
// This step is omitted if "ignoreArguments" is set. The arguments of the
// first block have been already made available through the remapping of
// LLVM function arguments.
if (!ignoreArguments) {
auto predecessors = bb.getPredecessors();
unsigned numPredecessors =
std::distance(predecessors.begin(), predecessors.end());
for (auto *arg : bb.getArguments()) {
auto wrappedType = arg->getType().dyn_cast<LLVM::LLVMType>();
if (!wrappedType) {
emitError(bb.front().getLoc(),
"block argument does not have an LLVM type");
return true;
}
llvm::Type *type = wrappedType.getUnderlyingType();
llvm::PHINode *phi = builder.CreatePHI(type, numPredecessors);
valueMapping[arg] = phi;
}
}
// Traverse operations.
for (auto &op : bb) {
if (convertOperation(op, builder))
return true;
}
return false;
}
// Get the SSA value passed to the current block from the terminator operation
// of its predecessor.
static Value *getPHISourceValue(Block *current, Block *pred,
unsigned numArguments, unsigned index) {
auto &terminator = *pred->getTerminator();
if (isa<LLVM::BrOp>(terminator)) {
return terminator.getOperand(index);
}
// For conditional branches, we need to check if the current block is reached
// through the "true" or the "false" branch and take the relevant operands.
auto condBranchOp = dyn_cast<LLVM::CondBrOp>(terminator);
assert(condBranchOp &&
"only branch operations can be terminators of a block that "
"has successors");
assert((condBranchOp.getSuccessor(0) != condBranchOp.getSuccessor(1)) &&
"successors with arguments in LLVM conditional branches must be "
"different blocks");
return condBranchOp.getSuccessor(0) == current
? terminator.getSuccessorOperand(0, index)
: terminator.getSuccessorOperand(1, index);
}
void ModuleTranslation::connectPHINodes(Function &func) {
// Skip the first block, it cannot be branched to and its arguments correspond
// to the arguments of the LLVM function.
for (auto it = std::next(func.begin()), eit = func.end(); it != eit; ++it) {
Block *bb = &*it;
llvm::BasicBlock *llvmBB = blockMapping.lookup(bb);
auto phis = llvmBB->phis();
auto numArguments = bb->getNumArguments();
assert(numArguments == std::distance(phis.begin(), phis.end()));
for (auto &numberedPhiNode : llvm::enumerate(phis)) {
auto &phiNode = numberedPhiNode.value();
unsigned index = numberedPhiNode.index();
for (auto *pred : bb->getPredecessors()) {
phiNode.addIncoming(valueMapping.lookup(getPHISourceValue(
bb, pred, numArguments, index)),
blockMapping.lookup(pred));
}
}
}
}
// TODO(mlir-team): implement an iterative version
static void topologicalSortImpl(llvm::SetVector<Block *> &blocks, Block *b) {
blocks.insert(b);
for (Block *bb : b->getSuccessors()) {
if (blocks.count(bb) == 0)
topologicalSortImpl(blocks, bb);
}
}
// Sort function blocks topologically.
static llvm::SetVector<Block *> topologicalSort(Function &f) {
// For each blocks that has not been visited yet (i.e. that has no
// predecessors), add it to the list and traverse its successors in DFS
// preorder.
llvm::SetVector<Block *> blocks;
for (Block &b : f.getBlocks()) {
if (blocks.count(&b) == 0)
topologicalSortImpl(blocks, &b);
}
assert(blocks.size() == f.getBlocks().size() && "some blocks are not sorted");
return blocks;
}
bool ModuleTranslation::convertOneFunction(Function &func) {
// Clear the block and value mappings, they are only relevant within one
// function.
blockMapping.clear();
valueMapping.clear();
llvm::Function *llvmFunc = functionMapping.lookup(func.getName());
// Add function arguments to the value remapping table.
// If there was noalias info then we decorate each argument accordingly.
unsigned int argIdx = 0;
for (const auto &kvp : llvm::zip(func.getArguments(), llvmFunc->args())) {
llvm::Argument &llvmArg = std::get<1>(kvp);
BlockArgument *mlirArg = std::get<0>(kvp);
if (auto attr = func.getArgAttrOfType<BoolAttr>(argIdx, "llvm.noalias")) {
// NB: Attribute already verified to be boolean, so check if we can indeed
// attach the attribute to this argument, based on its type.
auto argTy = mlirArg->getType().dyn_cast<LLVM::LLVMType>();
if (!argTy.getUnderlyingType()->isPointerTy()) {
func.emitError(
"llvm.noalias attribute attached to LLVM non-pointer argument");
return true;
}
if (attr.getValue())
llvmArg.addAttr(llvm::Attribute::AttrKind::NoAlias);
}
valueMapping[mlirArg] = &llvmArg;
argIdx++;
}
// First, create all blocks so we can jump to them.
llvm::LLVMContext &llvmContext = llvmFunc->getContext();
for (auto &bb : func) {
auto *llvmBB = llvm::BasicBlock::Create(llvmContext);
llvmBB->insertInto(llvmFunc);
blockMapping[&bb] = llvmBB;
}
// Then, convert blocks one by one in topological order to ensure defs are
// converted before uses.
auto blocks = topologicalSort(func);
for (auto indexedBB : llvm::enumerate(blocks)) {
auto *bb = indexedBB.value();
if (convertBlock(*bb, /*ignoreArguments=*/indexedBB.index() == 0))
return true;
}
// Finally, after all blocks have been traversed and values mapped, connect
// the PHI nodes to the results of preceding blocks.
connectPHINodes(func);
return false;
}
bool ModuleTranslation::convertFunctions() {
// Declare all functions first because there may be function calls that form a
// call graph with cycles.
for (Function &function : mlirModule) {
mlir::BoolAttr isVarArgsAttr =
function.getAttrOfType<BoolAttr>("std.varargs");
bool isVarArgs = isVarArgsAttr && isVarArgsAttr.getValue();
llvm::FunctionType *functionType =
convertFunctionType(llvmModule->getContext(), function.getType(),
function.getLoc(), isVarArgs);
if (!functionType)
return true;
llvm::FunctionCallee llvmFuncCst =
llvmModule->getOrInsertFunction(function.getName(), functionType);
assert(isa<llvm::Function>(llvmFuncCst.getCallee()));
functionMapping[function.getName()] =
cast<llvm::Function>(llvmFuncCst.getCallee());
}
// Convert functions.
for (Function &function : mlirModule) {
// Ignore external functions.
if (function.isExternal())
continue;
if (convertOneFunction(function))
return true;
}
return false;
}
std::unique_ptr<llvm::Module> ModuleTranslation::prepareLLVMModule(Module &m) {
auto *dialect = m.getContext()->getRegisteredDialect<LLVM::LLVMDialect>();
assert(dialect && "LLVM dialect must be registered");
auto llvmModule = llvm::CloneModule(dialect->getLLVMModule());
if (!llvmModule)
return nullptr;
llvm::LLVMContext &llvmContext = llvmModule->getContext();
llvm::IRBuilder<> builder(llvmContext);
// Inject declarations for `malloc` and `free` functions that can be used in
// memref allocation/deallocation coming from standard ops lowering.
llvmModule->getOrInsertFunction("malloc", builder.getInt8PtrTy(),
builder.getInt64Ty());
llvmModule->getOrInsertFunction("free", builder.getVoidTy(),
builder.getInt8PtrTy());
return llvmModule;
}
} // namespace LLVM
} // namespace mlir