
to reflect the new license. We understand that people may be surprised that we're moving the header entirely to discuss the new license. We checked this carefully with the Foundation's lawyer and we believe this is the correct approach. Essentially, all code in the project is now made available by the LLVM project under our new license, so you will see that the license headers include that license only. Some of our contributors have contributed code under our old license, and accordingly, we have retained a copy of our old license notice in the top-level files in each project and repository. llvm-svn: 351636
350 lines
9.7 KiB
C++
350 lines
9.7 KiB
C++
//===- BasicValueFactory.cpp - Basic values for Path Sens analysis --------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines BasicValueFactory, a class that manages the lifetime
|
|
// of APSInt objects and symbolic constraints used by ExprEngine
|
|
// and related classes.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/BasicValueFactory.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/APSIntType.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/StoreRef.h"
|
|
#include "llvm/ADT/APSInt.h"
|
|
#include "llvm/ADT/FoldingSet.h"
|
|
#include "llvm/ADT/ImmutableList.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <utility>
|
|
|
|
using namespace clang;
|
|
using namespace ento;
|
|
|
|
void CompoundValData::Profile(llvm::FoldingSetNodeID& ID, QualType T,
|
|
llvm::ImmutableList<SVal> L) {
|
|
T.Profile(ID);
|
|
ID.AddPointer(L.getInternalPointer());
|
|
}
|
|
|
|
void LazyCompoundValData::Profile(llvm::FoldingSetNodeID& ID,
|
|
const StoreRef &store,
|
|
const TypedValueRegion *region) {
|
|
ID.AddPointer(store.getStore());
|
|
ID.AddPointer(region);
|
|
}
|
|
|
|
void PointerToMemberData::Profile(
|
|
llvm::FoldingSetNodeID& ID, const DeclaratorDecl *D,
|
|
llvm::ImmutableList<const CXXBaseSpecifier *> L) {
|
|
ID.AddPointer(D);
|
|
ID.AddPointer(L.getInternalPointer());
|
|
}
|
|
|
|
using SValData = std::pair<SVal, uintptr_t>;
|
|
using SValPair = std::pair<SVal, SVal>;
|
|
|
|
namespace llvm {
|
|
|
|
template<> struct FoldingSetTrait<SValData> {
|
|
static inline void Profile(const SValData& X, llvm::FoldingSetNodeID& ID) {
|
|
X.first.Profile(ID);
|
|
ID.AddPointer( (void*) X.second);
|
|
}
|
|
};
|
|
|
|
template<> struct FoldingSetTrait<SValPair> {
|
|
static inline void Profile(const SValPair& X, llvm::FoldingSetNodeID& ID) {
|
|
X.first.Profile(ID);
|
|
X.second.Profile(ID);
|
|
}
|
|
};
|
|
|
|
} // namespace llvm
|
|
|
|
using PersistentSValsTy =
|
|
llvm::FoldingSet<llvm::FoldingSetNodeWrapper<SValData>>;
|
|
|
|
using PersistentSValPairsTy =
|
|
llvm::FoldingSet<llvm::FoldingSetNodeWrapper<SValPair>>;
|
|
|
|
BasicValueFactory::~BasicValueFactory() {
|
|
// Note that the dstor for the contents of APSIntSet will never be called,
|
|
// so we iterate over the set and invoke the dstor for each APSInt. This
|
|
// frees an aux. memory allocated to represent very large constants.
|
|
for (const auto &I : APSIntSet)
|
|
I.getValue().~APSInt();
|
|
|
|
delete (PersistentSValsTy*) PersistentSVals;
|
|
delete (PersistentSValPairsTy*) PersistentSValPairs;
|
|
}
|
|
|
|
const llvm::APSInt& BasicValueFactory::getValue(const llvm::APSInt& X) {
|
|
llvm::FoldingSetNodeID ID;
|
|
void *InsertPos;
|
|
|
|
using FoldNodeTy = llvm::FoldingSetNodeWrapper<llvm::APSInt>;
|
|
|
|
X.Profile(ID);
|
|
FoldNodeTy* P = APSIntSet.FindNodeOrInsertPos(ID, InsertPos);
|
|
|
|
if (!P) {
|
|
P = (FoldNodeTy*) BPAlloc.Allocate<FoldNodeTy>();
|
|
new (P) FoldNodeTy(X);
|
|
APSIntSet.InsertNode(P, InsertPos);
|
|
}
|
|
|
|
return *P;
|
|
}
|
|
|
|
const llvm::APSInt& BasicValueFactory::getValue(const llvm::APInt& X,
|
|
bool isUnsigned) {
|
|
llvm::APSInt V(X, isUnsigned);
|
|
return getValue(V);
|
|
}
|
|
|
|
const llvm::APSInt& BasicValueFactory::getValue(uint64_t X, unsigned BitWidth,
|
|
bool isUnsigned) {
|
|
llvm::APSInt V(BitWidth, isUnsigned);
|
|
V = X;
|
|
return getValue(V);
|
|
}
|
|
|
|
const llvm::APSInt& BasicValueFactory::getValue(uint64_t X, QualType T) {
|
|
return getValue(getAPSIntType(T).getValue(X));
|
|
}
|
|
|
|
const CompoundValData*
|
|
BasicValueFactory::getCompoundValData(QualType T,
|
|
llvm::ImmutableList<SVal> Vals) {
|
|
llvm::FoldingSetNodeID ID;
|
|
CompoundValData::Profile(ID, T, Vals);
|
|
void *InsertPos;
|
|
|
|
CompoundValData* D = CompoundValDataSet.FindNodeOrInsertPos(ID, InsertPos);
|
|
|
|
if (!D) {
|
|
D = (CompoundValData*) BPAlloc.Allocate<CompoundValData>();
|
|
new (D) CompoundValData(T, Vals);
|
|
CompoundValDataSet.InsertNode(D, InsertPos);
|
|
}
|
|
|
|
return D;
|
|
}
|
|
|
|
const LazyCompoundValData*
|
|
BasicValueFactory::getLazyCompoundValData(const StoreRef &store,
|
|
const TypedValueRegion *region) {
|
|
llvm::FoldingSetNodeID ID;
|
|
LazyCompoundValData::Profile(ID, store, region);
|
|
void *InsertPos;
|
|
|
|
LazyCompoundValData *D =
|
|
LazyCompoundValDataSet.FindNodeOrInsertPos(ID, InsertPos);
|
|
|
|
if (!D) {
|
|
D = (LazyCompoundValData*) BPAlloc.Allocate<LazyCompoundValData>();
|
|
new (D) LazyCompoundValData(store, region);
|
|
LazyCompoundValDataSet.InsertNode(D, InsertPos);
|
|
}
|
|
|
|
return D;
|
|
}
|
|
|
|
const PointerToMemberData *BasicValueFactory::getPointerToMemberData(
|
|
const DeclaratorDecl *DD, llvm::ImmutableList<const CXXBaseSpecifier *> L) {
|
|
llvm::FoldingSetNodeID ID;
|
|
PointerToMemberData::Profile(ID, DD, L);
|
|
void *InsertPos;
|
|
|
|
PointerToMemberData *D =
|
|
PointerToMemberDataSet.FindNodeOrInsertPos(ID, InsertPos);
|
|
|
|
if (!D) {
|
|
D = (PointerToMemberData*) BPAlloc.Allocate<PointerToMemberData>();
|
|
new (D) PointerToMemberData(DD, L);
|
|
PointerToMemberDataSet.InsertNode(D, InsertPos);
|
|
}
|
|
|
|
return D;
|
|
}
|
|
|
|
const PointerToMemberData *BasicValueFactory::accumCXXBase(
|
|
llvm::iterator_range<CastExpr::path_const_iterator> PathRange,
|
|
const nonloc::PointerToMember &PTM) {
|
|
nonloc::PointerToMember::PTMDataType PTMDT = PTM.getPTMData();
|
|
const DeclaratorDecl *DD = nullptr;
|
|
llvm::ImmutableList<const CXXBaseSpecifier *> PathList;
|
|
|
|
if (PTMDT.isNull() || PTMDT.is<const DeclaratorDecl *>()) {
|
|
if (PTMDT.is<const DeclaratorDecl *>())
|
|
DD = PTMDT.get<const DeclaratorDecl *>();
|
|
|
|
PathList = CXXBaseListFactory.getEmptyList();
|
|
} else { // const PointerToMemberData *
|
|
const PointerToMemberData *PTMD =
|
|
PTMDT.get<const PointerToMemberData *>();
|
|
DD = PTMD->getDeclaratorDecl();
|
|
|
|
PathList = PTMD->getCXXBaseList();
|
|
}
|
|
|
|
for (const auto &I : llvm::reverse(PathRange))
|
|
PathList = prependCXXBase(I, PathList);
|
|
return getPointerToMemberData(DD, PathList);
|
|
}
|
|
|
|
const llvm::APSInt*
|
|
BasicValueFactory::evalAPSInt(BinaryOperator::Opcode Op,
|
|
const llvm::APSInt& V1, const llvm::APSInt& V2) {
|
|
switch (Op) {
|
|
default:
|
|
llvm_unreachable("Invalid Opcode.");
|
|
|
|
case BO_Mul:
|
|
return &getValue( V1 * V2 );
|
|
|
|
case BO_Div:
|
|
if (V2 == 0) // Avoid division by zero
|
|
return nullptr;
|
|
return &getValue( V1 / V2 );
|
|
|
|
case BO_Rem:
|
|
if (V2 == 0) // Avoid division by zero
|
|
return nullptr;
|
|
return &getValue( V1 % V2 );
|
|
|
|
case BO_Add:
|
|
return &getValue( V1 + V2 );
|
|
|
|
case BO_Sub:
|
|
return &getValue( V1 - V2 );
|
|
|
|
case BO_Shl: {
|
|
// FIXME: This logic should probably go higher up, where we can
|
|
// test these conditions symbolically.
|
|
|
|
if (V1.isSigned() && V1.isNegative())
|
|
return nullptr;
|
|
|
|
if (V2.isSigned() && V2.isNegative())
|
|
return nullptr;
|
|
|
|
uint64_t Amt = V2.getZExtValue();
|
|
|
|
if (Amt >= V1.getBitWidth())
|
|
return nullptr;
|
|
|
|
if (V1.isSigned() && Amt > V1.countLeadingZeros())
|
|
return nullptr;
|
|
|
|
return &getValue( V1.operator<<( (unsigned) Amt ));
|
|
}
|
|
|
|
case BO_Shr: {
|
|
// FIXME: This logic should probably go higher up, where we can
|
|
// test these conditions symbolically.
|
|
|
|
if (V2.isSigned() && V2.isNegative())
|
|
return nullptr;
|
|
|
|
uint64_t Amt = V2.getZExtValue();
|
|
|
|
if (Amt >= V1.getBitWidth())
|
|
return nullptr;
|
|
|
|
return &getValue( V1.operator>>( (unsigned) Amt ));
|
|
}
|
|
|
|
case BO_LT:
|
|
return &getTruthValue( V1 < V2 );
|
|
|
|
case BO_GT:
|
|
return &getTruthValue( V1 > V2 );
|
|
|
|
case BO_LE:
|
|
return &getTruthValue( V1 <= V2 );
|
|
|
|
case BO_GE:
|
|
return &getTruthValue( V1 >= V2 );
|
|
|
|
case BO_EQ:
|
|
return &getTruthValue( V1 == V2 );
|
|
|
|
case BO_NE:
|
|
return &getTruthValue( V1 != V2 );
|
|
|
|
// Note: LAnd, LOr, Comma are handled specially by higher-level logic.
|
|
|
|
case BO_And:
|
|
return &getValue( V1 & V2 );
|
|
|
|
case BO_Or:
|
|
return &getValue( V1 | V2 );
|
|
|
|
case BO_Xor:
|
|
return &getValue( V1 ^ V2 );
|
|
}
|
|
}
|
|
|
|
const std::pair<SVal, uintptr_t>&
|
|
BasicValueFactory::getPersistentSValWithData(const SVal& V, uintptr_t Data) {
|
|
// Lazily create the folding set.
|
|
if (!PersistentSVals) PersistentSVals = new PersistentSValsTy();
|
|
|
|
llvm::FoldingSetNodeID ID;
|
|
void *InsertPos;
|
|
V.Profile(ID);
|
|
ID.AddPointer((void*) Data);
|
|
|
|
PersistentSValsTy& Map = *((PersistentSValsTy*) PersistentSVals);
|
|
|
|
using FoldNodeTy = llvm::FoldingSetNodeWrapper<SValData>;
|
|
|
|
FoldNodeTy* P = Map.FindNodeOrInsertPos(ID, InsertPos);
|
|
|
|
if (!P) {
|
|
P = (FoldNodeTy*) BPAlloc.Allocate<FoldNodeTy>();
|
|
new (P) FoldNodeTy(std::make_pair(V, Data));
|
|
Map.InsertNode(P, InsertPos);
|
|
}
|
|
|
|
return P->getValue();
|
|
}
|
|
|
|
const std::pair<SVal, SVal>&
|
|
BasicValueFactory::getPersistentSValPair(const SVal& V1, const SVal& V2) {
|
|
// Lazily create the folding set.
|
|
if (!PersistentSValPairs) PersistentSValPairs = new PersistentSValPairsTy();
|
|
|
|
llvm::FoldingSetNodeID ID;
|
|
void *InsertPos;
|
|
V1.Profile(ID);
|
|
V2.Profile(ID);
|
|
|
|
PersistentSValPairsTy& Map = *((PersistentSValPairsTy*) PersistentSValPairs);
|
|
|
|
using FoldNodeTy = llvm::FoldingSetNodeWrapper<SValPair>;
|
|
|
|
FoldNodeTy* P = Map.FindNodeOrInsertPos(ID, InsertPos);
|
|
|
|
if (!P) {
|
|
P = (FoldNodeTy*) BPAlloc.Allocate<FoldNodeTy>();
|
|
new (P) FoldNodeTy(std::make_pair(V1, V2));
|
|
Map.InsertNode(P, InsertPos);
|
|
}
|
|
|
|
return P->getValue();
|
|
}
|
|
|
|
const SVal* BasicValueFactory::getPersistentSVal(SVal X) {
|
|
return &getPersistentSValWithData(X, 0).first;
|
|
}
|