llvm-project/llvm/lib/CodeGen/SelectOptimize.cpp
David Green 98b6f8dc69
[CostModel] Remove optional from InstructionCost::getValue() (#135596)
InstructionCost is already an optional value, containing an Invalid
state that can be checked with isValid(). There is little point in
returning another optional from getValue(). Most uses do not make use of
it being a std::optional, dereferencing the value directly (either
isValid has been checked previously or the Cost is assumed to be valid).
The one case that does in AMDGPU used value_or which has been replaced
by a isValid() check.
2025-04-23 07:46:27 +01:00

1444 lines
58 KiB
C++

//===--- SelectOptimize.cpp - Convert select to branches if profitable ---===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass converts selects to conditional jumps when profitable.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/SelectOptimize.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/ProfileSummaryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/CodeGen/TargetSchedule.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/ProfDataUtils.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/ScaledNumber.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/Utils/SizeOpts.h"
#include <algorithm>
#include <queue>
#include <stack>
using namespace llvm;
using namespace llvm::PatternMatch;
#define DEBUG_TYPE "select-optimize"
STATISTIC(NumSelectOptAnalyzed,
"Number of select groups considered for conversion to branch");
STATISTIC(NumSelectConvertedExpColdOperand,
"Number of select groups converted due to expensive cold operand");
STATISTIC(NumSelectConvertedHighPred,
"Number of select groups converted due to high-predictability");
STATISTIC(NumSelectUnPred,
"Number of select groups not converted due to unpredictability");
STATISTIC(NumSelectColdBB,
"Number of select groups not converted due to cold basic block");
STATISTIC(NumSelectConvertedLoop,
"Number of select groups converted due to loop-level analysis");
STATISTIC(NumSelectsConverted, "Number of selects converted");
static cl::opt<unsigned> ColdOperandThreshold(
"cold-operand-threshold",
cl::desc("Maximum frequency of path for an operand to be considered cold."),
cl::init(20), cl::Hidden);
static cl::opt<unsigned> ColdOperandMaxCostMultiplier(
"cold-operand-max-cost-multiplier",
cl::desc("Maximum cost multiplier of TCC_expensive for the dependence "
"slice of a cold operand to be considered inexpensive."),
cl::init(1), cl::Hidden);
static cl::opt<unsigned>
GainGradientThreshold("select-opti-loop-gradient-gain-threshold",
cl::desc("Gradient gain threshold (%)."),
cl::init(25), cl::Hidden);
static cl::opt<unsigned>
GainCycleThreshold("select-opti-loop-cycle-gain-threshold",
cl::desc("Minimum gain per loop (in cycles) threshold."),
cl::init(4), cl::Hidden);
static cl::opt<unsigned> GainRelativeThreshold(
"select-opti-loop-relative-gain-threshold",
cl::desc(
"Minimum relative gain per loop threshold (1/X). Defaults to 12.5%"),
cl::init(8), cl::Hidden);
static cl::opt<unsigned> MispredictDefaultRate(
"mispredict-default-rate", cl::Hidden, cl::init(25),
cl::desc("Default mispredict rate (initialized to 25%)."));
static cl::opt<bool>
DisableLoopLevelHeuristics("disable-loop-level-heuristics", cl::Hidden,
cl::init(false),
cl::desc("Disable loop-level heuristics."));
namespace {
class SelectOptimizeImpl {
const TargetMachine *TM = nullptr;
const TargetSubtargetInfo *TSI = nullptr;
const TargetLowering *TLI = nullptr;
const TargetTransformInfo *TTI = nullptr;
const LoopInfo *LI = nullptr;
BlockFrequencyInfo *BFI;
ProfileSummaryInfo *PSI = nullptr;
OptimizationRemarkEmitter *ORE = nullptr;
TargetSchedModel TSchedModel;
public:
SelectOptimizeImpl() = default;
SelectOptimizeImpl(const TargetMachine *TM) : TM(TM){};
PreservedAnalyses run(Function &F, FunctionAnalysisManager &FAM);
bool runOnFunction(Function &F, Pass &P);
using Scaled64 = ScaledNumber<uint64_t>;
struct CostInfo {
/// Predicated cost (with selects as conditional moves).
Scaled64 PredCost;
/// Non-predicated cost (with selects converted to branches).
Scaled64 NonPredCost;
};
/// SelectLike is an abstraction over SelectInst and other operations that can
/// act like selects. For example Or(Zext(icmp), X) can be treated like
/// select(icmp, X|1, X).
class SelectLike {
/// The select (/or) instruction.
Instruction *I;
/// Whether this select is inverted, "not(cond), FalseVal, TrueVal", as
/// opposed to the original condition.
bool Inverted = false;
/// The index of the operand that depends on condition. Only for select-like
/// instruction such as Or/Add.
unsigned CondIdx;
public:
SelectLike(Instruction *I, bool Inverted = false, unsigned CondIdx = 0)
: I(I), Inverted(Inverted), CondIdx(CondIdx) {}
Instruction *getI() { return I; }
const Instruction *getI() const { return I; }
Type *getType() const { return I->getType(); }
unsigned getConditionOpIndex() { return CondIdx; };
/// Return the true value for the SelectLike instruction. Note this may not
/// exist for all SelectLike instructions. For example, for `or(zext(c), x)`
/// the true value would be `or(x,1)`. As this value does not exist, nullptr
/// is returned.
Value *getTrueValue(bool HonorInverts = true) const {
if (Inverted && HonorInverts)
return getFalseValue(/*HonorInverts=*/false);
if (auto *Sel = dyn_cast<SelectInst>(I))
return Sel->getTrueValue();
// Or(zext) case - The true value is Or(X), so return nullptr as the value
// does not yet exist.
if (isa<BinaryOperator>(I))
return nullptr;
llvm_unreachable("Unhandled case in getTrueValue");
}
/// Return the false value for the SelectLike instruction. For example the
/// getFalseValue of a select or `x` in `or(zext(c), x)` (which is
/// `select(c, x|1, x)`)
Value *getFalseValue(bool HonorInverts = true) const {
if (Inverted && HonorInverts)
return getTrueValue(/*HonorInverts=*/false);
if (auto *Sel = dyn_cast<SelectInst>(I))
return Sel->getFalseValue();
// We are on the branch where the condition is zero, which means BinOp
// does not perform any computation, and we can simply return the operand
// that is not related to the condition
if (auto *BO = dyn_cast<BinaryOperator>(I))
return BO->getOperand(1 - CondIdx);
llvm_unreachable("Unhandled case in getFalseValue");
}
/// Return the NonPredCost cost of the op on \p isTrue branch, given the
/// costs in \p InstCostMap. This may need to be generated for select-like
/// instructions.
Scaled64 getOpCostOnBranch(
bool IsTrue, const DenseMap<const Instruction *, CostInfo> &InstCostMap,
const TargetTransformInfo *TTI) {
auto *V = IsTrue ? getTrueValue() : getFalseValue();
if (V) {
if (auto *IV = dyn_cast<Instruction>(V)) {
auto It = InstCostMap.find(IV);
return It != InstCostMap.end() ? It->second.NonPredCost
: Scaled64::getZero();
}
return Scaled64::getZero();
}
// If getTrue(False)Value() return nullptr, it means we are dealing with
// select-like instructions on the branch where the actual computation is
// happening. In that case the cost is equal to the cost of computation +
// cost of non-dependant on condition operand
InstructionCost Cost = TTI->getArithmeticInstrCost(
getI()->getOpcode(), I->getType(), TargetTransformInfo::TCK_Latency,
{TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
{TTI::OK_UniformConstantValue, TTI::OP_PowerOf2});
auto TotalCost = Scaled64::get(Cost.getValue());
if (auto *OpI = dyn_cast<Instruction>(I->getOperand(1 - CondIdx))) {
auto It = InstCostMap.find(OpI);
if (It != InstCostMap.end())
TotalCost += It->second.NonPredCost;
}
return TotalCost;
}
};
private:
// Select groups consist of consecutive select-like instructions with the same
// condition. Between select-likes could be any number of auxiliary
// instructions related to the condition like not, zext, ashr/lshr
struct SelectGroup {
Value *Condition;
SmallVector<SelectLike, 2> Selects;
};
using SelectGroups = SmallVector<SelectGroup, 2>;
// Converts select instructions of a function to conditional jumps when deemed
// profitable. Returns true if at least one select was converted.
bool optimizeSelects(Function &F);
// Heuristics for determining which select instructions can be profitably
// conveted to branches. Separate heuristics for selects in inner-most loops
// and the rest of code regions (base heuristics for non-inner-most loop
// regions).
void optimizeSelectsBase(Function &F, SelectGroups &ProfSIGroups);
void optimizeSelectsInnerLoops(Function &F, SelectGroups &ProfSIGroups);
// Converts to branches the select groups that were deemed
// profitable-to-convert.
void convertProfitableSIGroups(SelectGroups &ProfSIGroups);
// Splits selects of a given basic block into select groups.
void collectSelectGroups(BasicBlock &BB, SelectGroups &SIGroups);
// Determines for which select groups it is profitable converting to branches
// (base and inner-most-loop heuristics).
void findProfitableSIGroupsBase(SelectGroups &SIGroups,
SelectGroups &ProfSIGroups);
void findProfitableSIGroupsInnerLoops(const Loop *L, SelectGroups &SIGroups,
SelectGroups &ProfSIGroups);
// Determines if a select group should be converted to a branch (base
// heuristics).
bool isConvertToBranchProfitableBase(const SelectGroup &ASI);
// Returns true if there are expensive instructions in the cold value
// operand's (if any) dependence slice of any of the selects of the given
// group.
bool hasExpensiveColdOperand(const SelectGroup &ASI);
// For a given source instruction, collect its backwards dependence slice
// consisting of instructions exclusively computed for producing the operands
// of the source instruction.
void getExclBackwardsSlice(Instruction *I, std::stack<Instruction *> &Slice,
Instruction *SI, bool ForSinking = false);
// Returns true if the condition of the select is highly predictable.
bool isSelectHighlyPredictable(const SelectLike SI);
// Loop-level checks to determine if a non-predicated version (with branches)
// of the given loop is more profitable than its predicated version.
bool checkLoopHeuristics(const Loop *L, const CostInfo LoopDepth[2]);
// Computes instruction and loop-critical-path costs for both the predicated
// and non-predicated version of the given loop.
bool computeLoopCosts(const Loop *L, const SelectGroups &SIGroups,
DenseMap<const Instruction *, CostInfo> &InstCostMap,
CostInfo *LoopCost);
// Returns a set of all the select instructions in the given select groups.
SmallDenseMap<const Instruction *, SelectLike, 2>
getSImap(const SelectGroups &SIGroups);
// Returns a map from select-like instructions to the corresponding select
// group.
SmallDenseMap<const Instruction *, const SelectGroup *, 2>
getSGmap(const SelectGroups &SIGroups);
// Returns the latency cost of a given instruction.
std::optional<uint64_t> computeInstCost(const Instruction *I);
// Returns the misprediction cost of a given select when converted to branch.
Scaled64 getMispredictionCost(const SelectLike SI, const Scaled64 CondCost);
// Returns the cost of a branch when the prediction is correct.
Scaled64 getPredictedPathCost(Scaled64 TrueCost, Scaled64 FalseCost,
const SelectLike SI);
// Returns true if the target architecture supports lowering a given select.
bool isSelectKindSupported(const SelectLike SI);
};
class SelectOptimize : public FunctionPass {
SelectOptimizeImpl Impl;
public:
static char ID;
SelectOptimize() : FunctionPass(ID) {
initializeSelectOptimizePass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F) override {
return Impl.runOnFunction(F, *this);
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<ProfileSummaryInfoWrapperPass>();
AU.addRequired<TargetPassConfig>();
AU.addRequired<TargetTransformInfoWrapperPass>();
AU.addRequired<LoopInfoWrapperPass>();
AU.addRequired<BlockFrequencyInfoWrapperPass>();
AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
}
};
} // namespace
PreservedAnalyses SelectOptimizePass::run(Function &F,
FunctionAnalysisManager &FAM) {
SelectOptimizeImpl Impl(TM);
return Impl.run(F, FAM);
}
char SelectOptimize::ID = 0;
INITIALIZE_PASS_BEGIN(SelectOptimize, DEBUG_TYPE, "Optimize selects", false,
false)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
INITIALIZE_PASS_END(SelectOptimize, DEBUG_TYPE, "Optimize selects", false,
false)
FunctionPass *llvm::createSelectOptimizePass() { return new SelectOptimize(); }
PreservedAnalyses SelectOptimizeImpl::run(Function &F,
FunctionAnalysisManager &FAM) {
TSI = TM->getSubtargetImpl(F);
TLI = TSI->getTargetLowering();
// If none of the select types are supported then skip this pass.
// This is an optimization pass. Legality issues will be handled by
// instruction selection.
if (!TLI->isSelectSupported(TargetLowering::ScalarValSelect) &&
!TLI->isSelectSupported(TargetLowering::ScalarCondVectorVal) &&
!TLI->isSelectSupported(TargetLowering::VectorMaskSelect))
return PreservedAnalyses::all();
TTI = &FAM.getResult<TargetIRAnalysis>(F);
if (!TTI->enableSelectOptimize())
return PreservedAnalyses::all();
PSI = FAM.getResult<ModuleAnalysisManagerFunctionProxy>(F)
.getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
assert(PSI && "This pass requires module analysis pass `profile-summary`!");
BFI = &FAM.getResult<BlockFrequencyAnalysis>(F);
// When optimizing for size, selects are preferable over branches.
if (llvm::shouldOptimizeForSize(&F, PSI, BFI))
return PreservedAnalyses::all();
LI = &FAM.getResult<LoopAnalysis>(F);
ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
TSchedModel.init(TSI);
bool Changed = optimizeSelects(F);
return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all();
}
bool SelectOptimizeImpl::runOnFunction(Function &F, Pass &P) {
TM = &P.getAnalysis<TargetPassConfig>().getTM<TargetMachine>();
TSI = TM->getSubtargetImpl(F);
TLI = TSI->getTargetLowering();
// If none of the select types are supported then skip this pass.
// This is an optimization pass. Legality issues will be handled by
// instruction selection.
if (!TLI->isSelectSupported(TargetLowering::ScalarValSelect) &&
!TLI->isSelectSupported(TargetLowering::ScalarCondVectorVal) &&
!TLI->isSelectSupported(TargetLowering::VectorMaskSelect))
return false;
TTI = &P.getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
if (!TTI->enableSelectOptimize())
return false;
LI = &P.getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
BFI = &P.getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
PSI = &P.getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
ORE = &P.getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
TSchedModel.init(TSI);
// When optimizing for size, selects are preferable over branches.
if (llvm::shouldOptimizeForSize(&F, PSI, BFI))
return false;
return optimizeSelects(F);
}
bool SelectOptimizeImpl::optimizeSelects(Function &F) {
// Determine for which select groups it is profitable converting to branches.
SelectGroups ProfSIGroups;
// Base heuristics apply only to non-loops and outer loops.
optimizeSelectsBase(F, ProfSIGroups);
// Separate heuristics for inner-most loops.
optimizeSelectsInnerLoops(F, ProfSIGroups);
// Convert to branches the select groups that were deemed
// profitable-to-convert.
convertProfitableSIGroups(ProfSIGroups);
// Code modified if at least one select group was converted.
return !ProfSIGroups.empty();
}
void SelectOptimizeImpl::optimizeSelectsBase(Function &F,
SelectGroups &ProfSIGroups) {
// Collect all the select groups.
SelectGroups SIGroups;
for (BasicBlock &BB : F) {
// Base heuristics apply only to non-loops and outer loops.
Loop *L = LI->getLoopFor(&BB);
if (L && L->isInnermost())
continue;
collectSelectGroups(BB, SIGroups);
}
// Determine for which select groups it is profitable converting to branches.
findProfitableSIGroupsBase(SIGroups, ProfSIGroups);
}
void SelectOptimizeImpl::optimizeSelectsInnerLoops(Function &F,
SelectGroups &ProfSIGroups) {
SmallVector<Loop *, 4> Loops(LI->begin(), LI->end());
// Need to check size on each iteration as we accumulate child loops.
for (unsigned long i = 0; i < Loops.size(); ++i)
llvm::append_range(Loops, Loops[i]->getSubLoops());
for (Loop *L : Loops) {
if (!L->isInnermost())
continue;
SelectGroups SIGroups;
for (BasicBlock *BB : L->getBlocks())
collectSelectGroups(*BB, SIGroups);
findProfitableSIGroupsInnerLoops(L, SIGroups, ProfSIGroups);
}
}
/// Returns optimised value on \p IsTrue branch. For SelectInst that would be
/// either True or False value. For (BinaryOperator) instructions, where the
/// condition may be skipped, the operation will use a non-conditional operand.
/// For example, for `or(V,zext(cond))` this function would return V.
/// However, if the conditional operand on \p IsTrue branch matters, we create a
/// clone of instruction at the end of that branch \p B and replace the
/// condition operand with a constant.
///
/// Also /p OptSelects contains previously optimised select-like instructions.
/// If the current value uses one of the optimised values, we can optimise it
/// further by replacing it with the corresponding value on the given branch
static Value *getTrueOrFalseValue(
SelectOptimizeImpl::SelectLike &SI, bool isTrue,
SmallDenseMap<Instruction *, std::pair<Value *, Value *>, 2> &OptSelects,
BasicBlock *B) {
Value *V = isTrue ? SI.getTrueValue() : SI.getFalseValue();
if (V) {
if (auto *IV = dyn_cast<Instruction>(V))
if (auto It = OptSelects.find(IV); It != OptSelects.end())
return isTrue ? It->second.first : It->second.second;
return V;
}
auto *BO = cast<BinaryOperator>(SI.getI());
assert((BO->getOpcode() == Instruction::Add ||
BO->getOpcode() == Instruction::Or ||
BO->getOpcode() == Instruction::Sub) &&
"Only currently handling Add, Or and Sub binary operators.");
auto *CBO = BO->clone();
auto CondIdx = SI.getConditionOpIndex();
auto *AuxI = cast<Instruction>(CBO->getOperand(CondIdx));
if (isa<ZExtInst>(AuxI) || isa<LShrOperator>(AuxI)) {
CBO->setOperand(CondIdx, ConstantInt::get(CBO->getType(), 1));
} else {
assert((isa<AShrOperator>(AuxI) || isa<SExtInst>(AuxI)) &&
"Unexpected opcode");
CBO->setOperand(CondIdx, ConstantInt::get(CBO->getType(), -1));
}
unsigned OtherIdx = 1 - CondIdx;
if (auto *IV = dyn_cast<Instruction>(CBO->getOperand(OtherIdx))) {
if (auto It = OptSelects.find(IV); It != OptSelects.end())
CBO->setOperand(OtherIdx, isTrue ? It->second.first : It->second.second);
}
CBO->insertBefore(B->getTerminator()->getIterator());
return CBO;
}
void SelectOptimizeImpl::convertProfitableSIGroups(SelectGroups &ProfSIGroups) {
for (SelectGroup &ASI : ProfSIGroups) {
// The code transformation here is a modified version of the sinking
// transformation in CodeGenPrepare::optimizeSelectInst with a more
// aggressive strategy of which instructions to sink.
//
// TODO: eliminate the redundancy of logic transforming selects to branches
// by removing CodeGenPrepare::optimizeSelectInst and optimizing here
// selects for all cases (with and without profile information).
// Transform a sequence like this:
// start:
// %cmp = cmp uge i32 %a, %b
// %sel = select i1 %cmp, i32 %c, i32 %d
//
// Into:
// start:
// %cmp = cmp uge i32 %a, %b
// %cmp.frozen = freeze %cmp
// br i1 %cmp.frozen, label %select.true, label %select.false
// select.true:
// br label %select.end
// select.false:
// br label %select.end
// select.end:
// %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ]
//
// %cmp should be frozen, otherwise it may introduce undefined behavior.
// In addition, we may sink instructions that produce %c or %d into the
// destination(s) of the new branch.
// If the true or false blocks do not contain a sunken instruction, that
// block and its branch may be optimized away. In that case, one side of the
// first branch will point directly to select.end, and the corresponding PHI
// predecessor block will be the start block.
// Find all the instructions that can be soundly sunk to the true/false
// blocks. These are instructions that are computed solely for producing the
// operands of the select instructions in the group and can be sunk without
// breaking the semantics of the LLVM IR (e.g., cannot sink instructions
// with side effects).
SmallVector<std::stack<Instruction *>, 2> TrueSlices, FalseSlices;
typedef std::stack<Instruction *>::size_type StackSizeType;
StackSizeType maxTrueSliceLen = 0, maxFalseSliceLen = 0;
for (SelectLike &SI : ASI.Selects) {
if (!isa<SelectInst>(SI.getI()))
continue;
// For each select, compute the sinkable dependence chains of the true and
// false operands.
if (auto *TI = dyn_cast_or_null<Instruction>(SI.getTrueValue())) {
std::stack<Instruction *> TrueSlice;
getExclBackwardsSlice(TI, TrueSlice, SI.getI(), true);
maxTrueSliceLen = std::max(maxTrueSliceLen, TrueSlice.size());
TrueSlices.push_back(TrueSlice);
}
if (auto *FI = dyn_cast_or_null<Instruction>(SI.getFalseValue())) {
if (isa<SelectInst>(SI.getI()) || !FI->hasOneUse()) {
std::stack<Instruction *> FalseSlice;
getExclBackwardsSlice(FI, FalseSlice, SI.getI(), true);
maxFalseSliceLen = std::max(maxFalseSliceLen, FalseSlice.size());
FalseSlices.push_back(FalseSlice);
}
}
}
// In the case of multiple select instructions in the same group, the order
// of non-dependent instructions (instructions of different dependence
// slices) in the true/false blocks appears to affect performance.
// Interleaving the slices seems to experimentally be the optimal approach.
// This interleaving scheduling allows for more ILP (with a natural downside
// of increasing a bit register pressure) compared to a simple ordering of
// one whole chain after another. One would expect that this ordering would
// not matter since the scheduling in the backend of the compiler would
// take care of it, but apparently the scheduler fails to deliver optimal
// ILP with a naive ordering here.
SmallVector<Instruction *, 2> TrueSlicesInterleaved, FalseSlicesInterleaved;
for (StackSizeType IS = 0; IS < maxTrueSliceLen; ++IS) {
for (auto &S : TrueSlices) {
if (!S.empty()) {
TrueSlicesInterleaved.push_back(S.top());
S.pop();
}
}
}
for (StackSizeType IS = 0; IS < maxFalseSliceLen; ++IS) {
for (auto &S : FalseSlices) {
if (!S.empty()) {
FalseSlicesInterleaved.push_back(S.top());
S.pop();
}
}
}
// We split the block containing the select(s) into two blocks.
SelectLike &SI = ASI.Selects.front();
SelectLike &LastSI = ASI.Selects.back();
BasicBlock *StartBlock = SI.getI()->getParent();
BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI.getI()));
// With RemoveDIs turned off, SplitPt can be a dbg.* intrinsic. With
// RemoveDIs turned on, SplitPt would instead point to the next
// instruction. To match existing dbg.* intrinsic behaviour with RemoveDIs,
// tell splitBasicBlock that we want to include any DbgVariableRecords
// attached to SplitPt in the splice.
SplitPt.setHeadBit(true);
BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end");
BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock));
// Delete the unconditional branch that was just created by the split.
StartBlock->getTerminator()->eraseFromParent();
// Move any debug/pseudo and auxiliary instructions that were in-between the
// select group to the newly-created end block.
SmallVector<Instruction *, 2> SinkInstrs;
auto DIt = SI.getI()->getIterator();
auto NIt = ASI.Selects.begin();
while (&*DIt != LastSI.getI()) {
if (NIt != ASI.Selects.end() && &*DIt == NIt->getI())
++NIt;
else
SinkInstrs.push_back(&*DIt);
DIt++;
}
auto InsertionPoint = EndBlock->getFirstInsertionPt();
for (auto *DI : SinkInstrs)
DI->moveBeforePreserving(InsertionPoint);
// Duplicate implementation for DbgRecords, the non-instruction debug-info
// format. Helper lambda for moving DbgRecords to the end block.
auto TransferDbgRecords = [&](Instruction &I) {
for (auto &DbgRecord :
llvm::make_early_inc_range(I.getDbgRecordRange())) {
DbgRecord.removeFromParent();
EndBlock->insertDbgRecordBefore(&DbgRecord,
EndBlock->getFirstInsertionPt());
}
};
// Iterate over all instructions in between SI and LastSI, not including
// SI itself. These are all the variable assignments that happen "in the
// middle" of the select group.
auto R = make_range(std::next(SI.getI()->getIterator()),
std::next(LastSI.getI()->getIterator()));
llvm::for_each(R, TransferDbgRecords);
// These are the new basic blocks for the conditional branch.
// At least one will become an actual new basic block.
BasicBlock *TrueBlock = nullptr, *FalseBlock = nullptr;
BranchInst *TrueBranch = nullptr, *FalseBranch = nullptr;
// Checks if select-like instruction would materialise on the given branch
auto HasSelectLike = [](SelectGroup &SG, bool IsTrue) {
for (auto &SL : SG.Selects) {
if ((IsTrue ? SL.getTrueValue() : SL.getFalseValue()) == nullptr)
return true;
}
return false;
};
if (!TrueSlicesInterleaved.empty() || HasSelectLike(ASI, true)) {
TrueBlock = BasicBlock::Create(EndBlock->getContext(), "select.true.sink",
EndBlock->getParent(), EndBlock);
TrueBranch = BranchInst::Create(EndBlock, TrueBlock);
TrueBranch->setDebugLoc(LastSI.getI()->getDebugLoc());
for (Instruction *TrueInst : TrueSlicesInterleaved)
TrueInst->moveBefore(TrueBranch->getIterator());
}
if (!FalseSlicesInterleaved.empty() || HasSelectLike(ASI, false)) {
FalseBlock =
BasicBlock::Create(EndBlock->getContext(), "select.false.sink",
EndBlock->getParent(), EndBlock);
FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
FalseBranch->setDebugLoc(LastSI.getI()->getDebugLoc());
for (Instruction *FalseInst : FalseSlicesInterleaved)
FalseInst->moveBefore(FalseBranch->getIterator());
}
// If there was nothing to sink, then arbitrarily choose the 'false' side
// for a new input value to the PHI.
if (TrueBlock == FalseBlock) {
assert(TrueBlock == nullptr &&
"Unexpected basic block transform while optimizing select");
FalseBlock = BasicBlock::Create(StartBlock->getContext(), "select.false",
EndBlock->getParent(), EndBlock);
auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
FalseBranch->setDebugLoc(SI.getI()->getDebugLoc());
}
// Insert the real conditional branch based on the original condition.
// If we did not create a new block for one of the 'true' or 'false' paths
// of the condition, it means that side of the branch goes to the end block
// directly and the path originates from the start block from the point of
// view of the new PHI.
BasicBlock *TT, *FT;
if (TrueBlock == nullptr) {
TT = EndBlock;
FT = FalseBlock;
TrueBlock = StartBlock;
} else if (FalseBlock == nullptr) {
TT = TrueBlock;
FT = EndBlock;
FalseBlock = StartBlock;
} else {
TT = TrueBlock;
FT = FalseBlock;
}
IRBuilder<> IB(SI.getI());
auto *CondFr =
IB.CreateFreeze(ASI.Condition, ASI.Condition->getName() + ".frozen");
SmallDenseMap<Instruction *, std::pair<Value *, Value *>, 2> INS;
// Use reverse iterator because later select may use the value of the
// earlier select, and we need to propagate value through earlier select
// to get the PHI operand.
InsertionPoint = EndBlock->begin();
for (SelectLike &SI : ASI.Selects) {
// The select itself is replaced with a PHI Node.
PHINode *PN = PHINode::Create(SI.getType(), 2, "");
PN->insertBefore(InsertionPoint);
PN->takeName(SI.getI());
// Current instruction might be a condition of some other group, so we
// need to replace it there to avoid dangling pointer
if (PN->getType()->isIntegerTy(1)) {
for (auto &SG : ProfSIGroups) {
if (SG.Condition == SI.getI())
SG.Condition = PN;
}
}
SI.getI()->replaceAllUsesWith(PN);
auto *TV = getTrueOrFalseValue(SI, true, INS, TrueBlock);
auto *FV = getTrueOrFalseValue(SI, false, INS, FalseBlock);
INS[PN] = {TV, FV};
PN->addIncoming(TV, TrueBlock);
PN->addIncoming(FV, FalseBlock);
PN->setDebugLoc(SI.getI()->getDebugLoc());
++NumSelectsConverted;
}
IB.CreateCondBr(CondFr, TT, FT, SI.getI());
// Remove the old select instructions, now that they are not longer used.
for (SelectLike &SI : ASI.Selects)
SI.getI()->eraseFromParent();
}
}
void SelectOptimizeImpl::collectSelectGroups(BasicBlock &BB,
SelectGroups &SIGroups) {
// Represents something that can be considered as select instruction.
// Auxiliary instruction are instructions that depends on a condition and have
// zero or some constant value on True/False branch, such as:
// * ZExt(1bit)
// * SExt(1bit)
// * Not(1bit)
// * A(L)Shr(Val), ValBitSize - 1, where there is a condition like `Val <= 0`
// earlier in the BB. For conditions that check the sign of the Val compiler
// may generate shifts instead of ZExt/SExt.
struct SelectLikeInfo {
Value *Cond;
bool IsAuxiliary;
bool IsInverted;
unsigned ConditionIdx;
};
DenseMap<Value *, SelectLikeInfo> SelectInfo;
// Keeps visited comparisons to help identify AShr/LShr variants of auxiliary
// instructions.
SmallSetVector<CmpInst *, 4> SeenCmp;
// Check if the instruction is SelectLike or might be part of SelectLike
// expression, put information into SelectInfo and return the iterator to the
// inserted position.
auto ProcessSelectInfo = [&SelectInfo, &SeenCmp](Instruction *I) {
if (auto *Cmp = dyn_cast<CmpInst>(I)) {
SeenCmp.insert(Cmp);
return SelectInfo.end();
}
Value *Cond;
if (match(I, m_OneUse(m_ZExtOrSExt(m_Value(Cond)))) &&
Cond->getType()->isIntegerTy(1)) {
bool Inverted = match(Cond, m_Not(m_Value(Cond)));
return SelectInfo.insert({I, {Cond, true, Inverted, 0}}).first;
}
if (match(I, m_Not(m_Value(Cond)))) {
return SelectInfo.insert({I, {Cond, true, true, 0}}).first;
}
// Select instruction are what we are usually looking for.
if (match(I, m_Select(m_Value(Cond), m_Value(), m_Value()))) {
bool Inverted = match(Cond, m_Not(m_Value(Cond)));
return SelectInfo.insert({I, {Cond, false, Inverted, 0}}).first;
}
Value *Val;
ConstantInt *Shift;
if (match(I, m_Shr(m_Value(Val), m_ConstantInt(Shift))) &&
I->getType()->getIntegerBitWidth() == Shift->getZExtValue() + 1) {
for (auto *CmpI : SeenCmp) {
auto Pred = CmpI->getPredicate();
if (Val != CmpI->getOperand(0))
continue;
if ((Pred == CmpInst::ICMP_SGT &&
match(CmpI->getOperand(1), m_ConstantInt<-1>())) ||
(Pred == CmpInst::ICMP_SGE &&
match(CmpI->getOperand(1), m_Zero())) ||
(Pred == CmpInst::ICMP_SLT &&
match(CmpI->getOperand(1), m_Zero())) ||
(Pred == CmpInst::ICMP_SLE &&
match(CmpI->getOperand(1), m_ConstantInt<-1>()))) {
bool Inverted =
Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE;
return SelectInfo.insert({I, {CmpI, true, Inverted, 0}}).first;
}
}
return SelectInfo.end();
}
// An BinOp(Aux(X), Y) can also be treated like a select, with condition X
// and values Y|1 and Y.
// `Aux` can be either `ZExt(1bit)`, `SExt(1bit)` or `XShr(Val), ValBitSize
// - 1` `BinOp` can be Add, Sub, Or
Value *X;
auto MatchZExtOrSExtPattern =
m_c_BinOp(m_Value(), m_OneUse(m_ZExtOrSExt(m_Value(X))));
auto MatchShiftPattern =
m_c_BinOp(m_Value(), m_OneUse(m_Shr(m_Value(X), m_ConstantInt(Shift))));
// This check is unnecessary, but it prevents costly access to the
// SelectInfo map.
if ((match(I, MatchZExtOrSExtPattern) && X->getType()->isIntegerTy(1)) ||
(match(I, MatchShiftPattern) &&
X->getType()->getIntegerBitWidth() == Shift->getZExtValue() + 1)) {
if (I->getOpcode() != Instruction::Add &&
I->getOpcode() != Instruction::Sub &&
I->getOpcode() != Instruction::Or)
return SelectInfo.end();
if (I->getOpcode() == Instruction::Or && I->getType()->isIntegerTy(1))
return SelectInfo.end();
// Iterate through operands and find dependant on recognised sign
// extending auxiliary select-like instructions. The operand index does
// not matter for Add and Or. However, for Sub, we can only safely
// transform when the operand is second.
unsigned Idx = I->getOpcode() == Instruction::Sub ? 1 : 0;
for (; Idx < 2; Idx++) {
auto *Op = I->getOperand(Idx);
auto It = SelectInfo.find(Op);
if (It != SelectInfo.end() && It->second.IsAuxiliary) {
Cond = It->second.Cond;
bool Inverted = It->second.IsInverted;
return SelectInfo.insert({I, {Cond, false, Inverted, Idx}}).first;
}
}
}
return SelectInfo.end();
};
bool AlreadyProcessed = false;
BasicBlock::iterator BBIt = BB.begin();
DenseMap<Value *, SelectLikeInfo>::iterator It;
while (BBIt != BB.end()) {
Instruction *I = &*BBIt++;
if (I->isDebugOrPseudoInst())
continue;
if (!AlreadyProcessed)
It = ProcessSelectInfo(I);
else
AlreadyProcessed = false;
if (It == SelectInfo.end() || It->second.IsAuxiliary)
continue;
if (!TTI->shouldTreatInstructionLikeSelect(I))
continue;
Value *Cond = It->second.Cond;
// Vector conditions are not supported.
if (!Cond->getType()->isIntegerTy(1))
continue;
SelectGroup SIGroup = {Cond, {}};
SIGroup.Selects.emplace_back(I, It->second.IsInverted,
It->second.ConditionIdx);
// If the select type is not supported, no point optimizing it.
// Instruction selection will take care of it.
if (!isSelectKindSupported(SIGroup.Selects.front()))
continue;
while (BBIt != BB.end()) {
Instruction *NI = &*BBIt;
// Debug/pseudo instructions should be skipped and not prevent the
// formation of a select group.
if (NI->isDebugOrPseudoInst()) {
++BBIt;
continue;
}
It = ProcessSelectInfo(NI);
if (It == SelectInfo.end()) {
AlreadyProcessed = true;
break;
}
// Auxiliary with same condition
auto [CurrCond, IsAux, IsRev, CondIdx] = It->second;
if (Cond != CurrCond) {
AlreadyProcessed = true;
break;
}
if (!IsAux)
SIGroup.Selects.emplace_back(NI, IsRev, CondIdx);
++BBIt;
}
LLVM_DEBUG({
dbgs() << "New Select group (" << SIGroup.Selects.size() << ") with\n";
for (auto &SI : SIGroup.Selects)
dbgs() << " " << *SI.getI() << "\n";
});
SIGroups.push_back(SIGroup);
}
}
void SelectOptimizeImpl::findProfitableSIGroupsBase(
SelectGroups &SIGroups, SelectGroups &ProfSIGroups) {
for (SelectGroup &ASI : SIGroups) {
++NumSelectOptAnalyzed;
if (isConvertToBranchProfitableBase(ASI))
ProfSIGroups.push_back(ASI);
}
}
static void EmitAndPrintRemark(OptimizationRemarkEmitter *ORE,
DiagnosticInfoOptimizationBase &Rem) {
LLVM_DEBUG(dbgs() << Rem.getMsg() << "\n");
ORE->emit(Rem);
}
void SelectOptimizeImpl::findProfitableSIGroupsInnerLoops(
const Loop *L, SelectGroups &SIGroups, SelectGroups &ProfSIGroups) {
NumSelectOptAnalyzed += SIGroups.size();
// For each select group in an inner-most loop,
// a branch is more preferable than a select/conditional-move if:
// i) conversion to branches for all the select groups of the loop satisfies
// loop-level heuristics including reducing the loop's critical path by
// some threshold (see SelectOptimizeImpl::checkLoopHeuristics); and
// ii) the total cost of the select group is cheaper with a branch compared
// to its predicated version. The cost is in terms of latency and the cost
// of a select group is the cost of its most expensive select instruction
// (assuming infinite resources and thus fully leveraging available ILP).
DenseMap<const Instruction *, CostInfo> InstCostMap;
CostInfo LoopCost[2] = {{Scaled64::getZero(), Scaled64::getZero()},
{Scaled64::getZero(), Scaled64::getZero()}};
if (!computeLoopCosts(L, SIGroups, InstCostMap, LoopCost) ||
!checkLoopHeuristics(L, LoopCost)) {
return;
}
for (SelectGroup &ASI : SIGroups) {
// Assuming infinite resources, the cost of a group of instructions is the
// cost of the most expensive instruction of the group.
Scaled64 SelectCost = Scaled64::getZero(), BranchCost = Scaled64::getZero();
for (SelectLike &SI : ASI.Selects) {
const auto &ICM = InstCostMap[SI.getI()];
SelectCost = std::max(SelectCost, ICM.PredCost);
BranchCost = std::max(BranchCost, ICM.NonPredCost);
}
if (BranchCost < SelectCost) {
OptimizationRemark OR(DEBUG_TYPE, "SelectOpti",
ASI.Selects.front().getI());
OR << "Profitable to convert to branch (loop analysis). BranchCost="
<< BranchCost.toString() << ", SelectCost=" << SelectCost.toString()
<< ". ";
EmitAndPrintRemark(ORE, OR);
++NumSelectConvertedLoop;
ProfSIGroups.push_back(ASI);
} else {
OptimizationRemarkMissed ORmiss(DEBUG_TYPE, "SelectOpti",
ASI.Selects.front().getI());
ORmiss << "Select is more profitable (loop analysis). BranchCost="
<< BranchCost.toString()
<< ", SelectCost=" << SelectCost.toString() << ". ";
EmitAndPrintRemark(ORE, ORmiss);
}
}
}
bool SelectOptimizeImpl::isConvertToBranchProfitableBase(
const SelectGroup &ASI) {
const SelectLike &SI = ASI.Selects.front();
LLVM_DEBUG(dbgs() << "Analyzing select group containing " << *SI.getI()
<< "\n");
OptimizationRemark OR(DEBUG_TYPE, "SelectOpti", SI.getI());
OptimizationRemarkMissed ORmiss(DEBUG_TYPE, "SelectOpti", SI.getI());
// Skip cold basic blocks. Better to optimize for size for cold blocks.
if (PSI->isColdBlock(SI.getI()->getParent(), BFI)) {
++NumSelectColdBB;
ORmiss << "Not converted to branch because of cold basic block. ";
EmitAndPrintRemark(ORE, ORmiss);
return false;
}
// If unpredictable, branch form is less profitable.
if (SI.getI()->getMetadata(LLVMContext::MD_unpredictable)) {
++NumSelectUnPred;
ORmiss << "Not converted to branch because of unpredictable branch. ";
EmitAndPrintRemark(ORE, ORmiss);
return false;
}
// If highly predictable, branch form is more profitable, unless a
// predictable select is inexpensive in the target architecture.
if (isSelectHighlyPredictable(SI) && TLI->isPredictableSelectExpensive()) {
++NumSelectConvertedHighPred;
OR << "Converted to branch because of highly predictable branch. ";
EmitAndPrintRemark(ORE, OR);
return true;
}
// Look for expensive instructions in the cold operand's (if any) dependence
// slice of any of the selects in the group.
if (hasExpensiveColdOperand(ASI)) {
++NumSelectConvertedExpColdOperand;
OR << "Converted to branch because of expensive cold operand.";
EmitAndPrintRemark(ORE, OR);
return true;
}
// If latch has a select group with several elements, it is usually profitable
// to convert it to branches. We let `optimizeSelectsInnerLoops` decide if
// conversion is profitable for innermost loops.
auto *BB = SI.getI()->getParent();
auto *L = LI->getLoopFor(BB);
if (L && !L->isInnermost() && L->getLoopLatch() == BB &&
ASI.Selects.size() >= 3) {
OR << "Converted to branch because select group in the latch block is big.";
EmitAndPrintRemark(ORE, OR);
return true;
}
ORmiss << "Not profitable to convert to branch (base heuristic).";
EmitAndPrintRemark(ORE, ORmiss);
return false;
}
static InstructionCost divideNearest(InstructionCost Numerator,
uint64_t Denominator) {
return (Numerator + (Denominator / 2)) / Denominator;
}
static bool extractBranchWeights(const SelectOptimizeImpl::SelectLike SI,
uint64_t &TrueVal, uint64_t &FalseVal) {
if (isa<SelectInst>(SI.getI()))
return extractBranchWeights(*SI.getI(), TrueVal, FalseVal);
return false;
}
bool SelectOptimizeImpl::hasExpensiveColdOperand(const SelectGroup &ASI) {
bool ColdOperand = false;
uint64_t TrueWeight, FalseWeight, TotalWeight;
if (extractBranchWeights(ASI.Selects.front(), TrueWeight, FalseWeight)) {
uint64_t MinWeight = std::min(TrueWeight, FalseWeight);
TotalWeight = TrueWeight + FalseWeight;
// Is there a path with frequency <ColdOperandThreshold% (default:20%) ?
ColdOperand = TotalWeight * ColdOperandThreshold > 100 * MinWeight;
} else if (PSI->hasProfileSummary()) {
OptimizationRemarkMissed ORmiss(DEBUG_TYPE, "SelectOpti",
ASI.Selects.front().getI());
ORmiss << "Profile data available but missing branch-weights metadata for "
"select instruction. ";
EmitAndPrintRemark(ORE, ORmiss);
}
if (!ColdOperand)
return false;
// Check if the cold path's dependence slice is expensive for any of the
// selects of the group.
for (SelectLike SI : ASI.Selects) {
Instruction *ColdI = nullptr;
uint64_t HotWeight;
if (TrueWeight < FalseWeight) {
ColdI = dyn_cast_or_null<Instruction>(SI.getTrueValue());
HotWeight = FalseWeight;
} else {
ColdI = dyn_cast_or_null<Instruction>(SI.getFalseValue());
HotWeight = TrueWeight;
}
if (ColdI) {
std::stack<Instruction *> ColdSlice;
getExclBackwardsSlice(ColdI, ColdSlice, SI.getI());
InstructionCost SliceCost = 0;
while (!ColdSlice.empty()) {
SliceCost += TTI->getInstructionCost(ColdSlice.top(),
TargetTransformInfo::TCK_Latency);
ColdSlice.pop();
}
// The colder the cold value operand of the select is the more expensive
// the cmov becomes for computing the cold value operand every time. Thus,
// the colder the cold operand is the more its cost counts.
// Get nearest integer cost adjusted for coldness.
InstructionCost AdjSliceCost =
divideNearest(SliceCost * HotWeight, TotalWeight);
if (AdjSliceCost >=
ColdOperandMaxCostMultiplier * TargetTransformInfo::TCC_Expensive)
return true;
}
}
return false;
}
// Check if it is safe to move LoadI next to the SI.
// Conservatively assume it is safe only if there is no instruction
// modifying memory in-between the load and the select instruction.
static bool isSafeToSinkLoad(Instruction *LoadI, Instruction *SI) {
// Assume loads from different basic blocks are unsafe to move.
if (LoadI->getParent() != SI->getParent())
return false;
auto It = LoadI->getIterator();
while (&*It != SI) {
if (It->mayWriteToMemory())
return false;
It++;
}
return true;
}
// For a given source instruction, collect its backwards dependence slice
// consisting of instructions exclusively computed for the purpose of producing
// the operands of the source instruction. As an approximation
// (sufficiently-accurate in practice), we populate this set with the
// instructions of the backwards dependence slice that only have one-use and
// form an one-use chain that leads to the source instruction.
void SelectOptimizeImpl::getExclBackwardsSlice(Instruction *I,
std::stack<Instruction *> &Slice,
Instruction *SI,
bool ForSinking) {
SmallPtrSet<Instruction *, 2> Visited;
std::queue<Instruction *> Worklist;
Worklist.push(I);
while (!Worklist.empty()) {
Instruction *II = Worklist.front();
Worklist.pop();
// Avoid cycles.
if (!Visited.insert(II).second)
continue;
if (!II->hasOneUse())
continue;
// Cannot soundly sink instructions with side-effects.
// Terminator or phi instructions cannot be sunk.
// Avoid sinking other select instructions (should be handled separetely).
if (ForSinking && (II->isTerminator() || II->mayHaveSideEffects() ||
isa<SelectInst>(II) || isa<PHINode>(II)))
continue;
// Avoid sinking loads in order not to skip state-modifying instructions,
// that may alias with the loaded address.
// Only allow sinking of loads within the same basic block that are
// conservatively proven to be safe.
if (ForSinking && II->mayReadFromMemory() && !isSafeToSinkLoad(II, SI))
continue;
// Avoid considering instructions with less frequency than the source
// instruction (i.e., avoid colder code regions of the dependence slice).
if (BFI->getBlockFreq(II->getParent()) < BFI->getBlockFreq(I->getParent()))
continue;
// Eligible one-use instruction added to the dependence slice.
Slice.push(II);
// Explore all the operands of the current instruction to expand the slice.
for (Value *Op : II->operand_values())
if (auto *OpI = dyn_cast<Instruction>(Op))
Worklist.push(OpI);
}
}
bool SelectOptimizeImpl::isSelectHighlyPredictable(const SelectLike SI) {
uint64_t TrueWeight, FalseWeight;
if (extractBranchWeights(SI, TrueWeight, FalseWeight)) {
uint64_t Max = std::max(TrueWeight, FalseWeight);
uint64_t Sum = TrueWeight + FalseWeight;
if (Sum != 0) {
auto Probability = BranchProbability::getBranchProbability(Max, Sum);
if (Probability > TTI->getPredictableBranchThreshold())
return true;
}
}
return false;
}
bool SelectOptimizeImpl::checkLoopHeuristics(const Loop *L,
const CostInfo LoopCost[2]) {
// Loop-level checks to determine if a non-predicated version (with branches)
// of the loop is more profitable than its predicated version.
if (DisableLoopLevelHeuristics)
return true;
OptimizationRemarkMissed ORmissL(DEBUG_TYPE, "SelectOpti",
&*L->getHeader()->getFirstNonPHIIt());
if (LoopCost[0].NonPredCost > LoopCost[0].PredCost ||
LoopCost[1].NonPredCost >= LoopCost[1].PredCost) {
ORmissL << "No select conversion in the loop due to no reduction of loop's "
"critical path. ";
EmitAndPrintRemark(ORE, ORmissL);
return false;
}
Scaled64 Gain[2] = {LoopCost[0].PredCost - LoopCost[0].NonPredCost,
LoopCost[1].PredCost - LoopCost[1].NonPredCost};
// Profitably converting to branches need to reduce the loop's critical path
// by at least some threshold (absolute gain of GainCycleThreshold cycles and
// relative gain of 12.5%).
if (Gain[1] < Scaled64::get(GainCycleThreshold) ||
Gain[1] * Scaled64::get(GainRelativeThreshold) < LoopCost[1].PredCost) {
Scaled64 RelativeGain = Scaled64::get(100) * Gain[1] / LoopCost[1].PredCost;
ORmissL << "No select conversion in the loop due to small reduction of "
"loop's critical path. Gain="
<< Gain[1].toString()
<< ", RelativeGain=" << RelativeGain.toString() << "%. ";
EmitAndPrintRemark(ORE, ORmissL);
return false;
}
// If the loop's critical path involves loop-carried dependences, the gradient
// of the gain needs to be at least GainGradientThreshold% (defaults to 25%).
// This check ensures that the latency reduction for the loop's critical path
// keeps decreasing with sufficient rate beyond the two analyzed loop
// iterations.
if (Gain[1] > Gain[0]) {
Scaled64 GradientGain = Scaled64::get(100) * (Gain[1] - Gain[0]) /
(LoopCost[1].PredCost - LoopCost[0].PredCost);
if (GradientGain < Scaled64::get(GainGradientThreshold)) {
ORmissL << "No select conversion in the loop due to small gradient gain. "
"GradientGain="
<< GradientGain.toString() << "%. ";
EmitAndPrintRemark(ORE, ORmissL);
return false;
}
}
// If the gain decreases it is not profitable to convert.
else if (Gain[1] < Gain[0]) {
ORmissL
<< "No select conversion in the loop due to negative gradient gain. ";
EmitAndPrintRemark(ORE, ORmissL);
return false;
}
// Non-predicated version of the loop is more profitable than its
// predicated version.
return true;
}
// Computes instruction and loop-critical-path costs for both the predicated
// and non-predicated version of the given loop.
// Returns false if unable to compute these costs due to invalid cost of loop
// instruction(s).
bool SelectOptimizeImpl::computeLoopCosts(
const Loop *L, const SelectGroups &SIGroups,
DenseMap<const Instruction *, CostInfo> &InstCostMap, CostInfo *LoopCost) {
LLVM_DEBUG(dbgs() << "Calculating Latency / IPredCost / INonPredCost of loop "
<< L->getHeader()->getName() << "\n");
const auto SImap = getSImap(SIGroups);
const auto SGmap = getSGmap(SIGroups);
// Compute instruction and loop-critical-path costs across two iterations for
// both predicated and non-predicated version.
const unsigned Iterations = 2;
for (unsigned Iter = 0; Iter < Iterations; ++Iter) {
// Cost of the loop's critical path.
CostInfo &MaxCost = LoopCost[Iter];
for (BasicBlock *BB : L->getBlocks()) {
for (const Instruction &I : *BB) {
if (I.isDebugOrPseudoInst())
continue;
// Compute the predicated and non-predicated cost of the instruction.
Scaled64 IPredCost = Scaled64::getZero(),
INonPredCost = Scaled64::getZero();
// Assume infinite resources that allow to fully exploit the available
// instruction-level parallelism.
// InstCost = InstLatency + max(Op1Cost, Op2Cost, … OpNCost)
for (const Use &U : I.operands()) {
auto UI = dyn_cast<Instruction>(U.get());
if (!UI)
continue;
if (auto It = InstCostMap.find(UI); It != InstCostMap.end()) {
IPredCost = std::max(IPredCost, It->second.PredCost);
INonPredCost = std::max(INonPredCost, It->second.NonPredCost);
}
}
auto ILatency = computeInstCost(&I);
if (!ILatency) {
OptimizationRemarkMissed ORmissL(DEBUG_TYPE, "SelectOpti", &I);
ORmissL << "Invalid instruction cost preventing analysis and "
"optimization of the inner-most loop containing this "
"instruction. ";
EmitAndPrintRemark(ORE, ORmissL);
return false;
}
IPredCost += Scaled64::get(*ILatency);
INonPredCost += Scaled64::get(*ILatency);
// For a select that can be converted to branch,
// compute its cost as a branch (non-predicated cost).
//
// BranchCost = PredictedPathCost + MispredictCost
// PredictedPathCost = TrueOpCost * TrueProb + FalseOpCost * FalseProb
// MispredictCost = max(MispredictPenalty, CondCost) * MispredictRate
if (auto It = SImap.find(&I); It != SImap.end()) {
auto SI = It->second;
const auto *SG = SGmap.at(&I);
Scaled64 TrueOpCost = SI.getOpCostOnBranch(true, InstCostMap, TTI);
Scaled64 FalseOpCost = SI.getOpCostOnBranch(false, InstCostMap, TTI);
Scaled64 PredictedPathCost =
getPredictedPathCost(TrueOpCost, FalseOpCost, SI);
Scaled64 CondCost = Scaled64::getZero();
if (auto *CI = dyn_cast<Instruction>(SG->Condition))
if (auto It = InstCostMap.find(CI); It != InstCostMap.end())
CondCost = It->second.NonPredCost;
Scaled64 MispredictCost = getMispredictionCost(SI, CondCost);
INonPredCost = PredictedPathCost + MispredictCost;
}
LLVM_DEBUG(dbgs() << " " << ILatency << "/" << IPredCost << "/"
<< INonPredCost << " for " << I << "\n");
InstCostMap[&I] = {IPredCost, INonPredCost};
MaxCost.PredCost = std::max(MaxCost.PredCost, IPredCost);
MaxCost.NonPredCost = std::max(MaxCost.NonPredCost, INonPredCost);
}
}
LLVM_DEBUG(dbgs() << "Iteration " << Iter + 1
<< " MaxCost = " << MaxCost.PredCost << " "
<< MaxCost.NonPredCost << "\n");
}
return true;
}
SmallDenseMap<const Instruction *, SelectOptimizeImpl::SelectLike, 2>
SelectOptimizeImpl::getSImap(const SelectGroups &SIGroups) {
SmallDenseMap<const Instruction *, SelectLike, 2> SImap;
for (const SelectGroup &ASI : SIGroups)
for (const SelectLike &SI : ASI.Selects)
SImap.try_emplace(SI.getI(), SI);
return SImap;
}
SmallDenseMap<const Instruction *, const SelectOptimizeImpl::SelectGroup *, 2>
SelectOptimizeImpl::getSGmap(const SelectGroups &SIGroups) {
SmallDenseMap<const Instruction *, const SelectGroup *, 2> SImap;
for (const SelectGroup &ASI : SIGroups)
for (const SelectLike &SI : ASI.Selects)
SImap.try_emplace(SI.getI(), &ASI);
return SImap;
}
std::optional<uint64_t>
SelectOptimizeImpl::computeInstCost(const Instruction *I) {
InstructionCost ICost =
TTI->getInstructionCost(I, TargetTransformInfo::TCK_Latency);
if (ICost.isValid())
return std::optional<uint64_t>(ICost.getValue());
return std::nullopt;
}
ScaledNumber<uint64_t>
SelectOptimizeImpl::getMispredictionCost(const SelectLike SI,
const Scaled64 CondCost) {
uint64_t MispredictPenalty = TSchedModel.getMCSchedModel()->MispredictPenalty;
// Account for the default misprediction rate when using a branch
// (conservatively set to 25% by default).
uint64_t MispredictRate = MispredictDefaultRate;
// If the select condition is obviously predictable, then the misprediction
// rate is zero.
if (isSelectHighlyPredictable(SI))
MispredictRate = 0;
// CondCost is included to account for cases where the computation of the
// condition is part of a long dependence chain (potentially loop-carried)
// that would delay detection of a misprediction and increase its cost.
Scaled64 MispredictCost =
std::max(Scaled64::get(MispredictPenalty), CondCost) *
Scaled64::get(MispredictRate);
MispredictCost /= Scaled64::get(100);
return MispredictCost;
}
// Returns the cost of a branch when the prediction is correct.
// TrueCost * TrueProbability + FalseCost * FalseProbability.
ScaledNumber<uint64_t>
SelectOptimizeImpl::getPredictedPathCost(Scaled64 TrueCost, Scaled64 FalseCost,
const SelectLike SI) {
Scaled64 PredPathCost;
uint64_t TrueWeight, FalseWeight;
if (extractBranchWeights(SI, TrueWeight, FalseWeight)) {
uint64_t SumWeight = TrueWeight + FalseWeight;
if (SumWeight != 0) {
PredPathCost = TrueCost * Scaled64::get(TrueWeight) +
FalseCost * Scaled64::get(FalseWeight);
PredPathCost /= Scaled64::get(SumWeight);
return PredPathCost;
}
}
// Without branch weight metadata, we assume 75% for the one path and 25% for
// the other, and pick the result with the biggest cost.
PredPathCost = std::max(TrueCost * Scaled64::get(3) + FalseCost,
FalseCost * Scaled64::get(3) + TrueCost);
PredPathCost /= Scaled64::get(4);
return PredPathCost;
}
bool SelectOptimizeImpl::isSelectKindSupported(const SelectLike SI) {
TargetLowering::SelectSupportKind SelectKind;
if (SI.getType()->isVectorTy())
SelectKind = TargetLowering::ScalarCondVectorVal;
else
SelectKind = TargetLowering::ScalarValSelect;
return TLI->isSelectSupported(SelectKind);
}