
This addresses issue #141051. XRay uses a special event kind for tail calls on some architectures. This feature is implemented on AArch64, but wasn't fully activated. Tests in `llvm/test/CodeGen/AArch64/xray-tail-call-sled.ll` were incomplete and did not check for the emitted sled type. This patch correctly enables emission of tail call sleds on AArch64 and fixes the tests to check the sled kind.
336 lines
12 KiB
C++
336 lines
12 KiB
C++
//===- XRayInstrumentation.cpp - Adds XRay instrumentation to functions. --===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements a MachineFunctionPass that inserts the appropriate
|
|
// XRay instrumentation instructions. We look for XRay-specific attributes
|
|
// on the function to determine whether we should insert the replacement
|
|
// operations.
|
|
//
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
#include "llvm/CodeGen/XRayInstrumentation.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
|
#include "llvm/CodeGen/MachineDominators.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineFunctionAnalysis.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineLoopInfo.h"
|
|
#include "llvm/CodeGen/MachinePassManager.h"
|
|
#include "llvm/CodeGen/TargetInstrInfo.h"
|
|
#include "llvm/CodeGen/TargetSubtargetInfo.h"
|
|
#include "llvm/IR/Attributes.h"
|
|
#include "llvm/IR/DiagnosticInfo.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/TargetParser/Triple.h"
|
|
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
|
|
struct InstrumentationOptions {
|
|
// Whether to emit PATCHABLE_TAIL_CALL.
|
|
bool HandleTailcall;
|
|
|
|
// Whether to emit PATCHABLE_RET/PATCHABLE_FUNCTION_EXIT for all forms of
|
|
// return, e.g. conditional return.
|
|
bool HandleAllReturns;
|
|
};
|
|
|
|
struct XRayInstrumentationLegacy : public MachineFunctionPass {
|
|
static char ID;
|
|
|
|
XRayInstrumentationLegacy() : MachineFunctionPass(ID) {
|
|
initializeXRayInstrumentationLegacyPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.setPreservesCFG();
|
|
AU.addPreserved<MachineLoopInfoWrapperPass>();
|
|
AU.addPreserved<MachineDominatorTreeWrapperPass>();
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
bool runOnMachineFunction(MachineFunction &MF) override;
|
|
};
|
|
|
|
struct XRayInstrumentation {
|
|
XRayInstrumentation(MachineDominatorTree *MDT, MachineLoopInfo *MLI)
|
|
: MDT(MDT), MLI(MLI) {}
|
|
|
|
bool run(MachineFunction &MF);
|
|
|
|
// Methods for use in the NPM and legacy passes, can be removed once migration
|
|
// is complete.
|
|
static bool alwaysInstrument(Function &F) {
|
|
auto InstrAttr = F.getFnAttribute("function-instrument");
|
|
return InstrAttr.isStringAttribute() &&
|
|
InstrAttr.getValueAsString() == "xray-always";
|
|
}
|
|
|
|
static bool needMDTAndMLIAnalyses(Function &F) {
|
|
auto IgnoreLoopsAttr = F.getFnAttribute("xray-ignore-loops");
|
|
auto AlwaysInstrument = XRayInstrumentation::alwaysInstrument(F);
|
|
return !AlwaysInstrument && !IgnoreLoopsAttr.isValid();
|
|
}
|
|
|
|
private:
|
|
// Replace the original RET instruction with the exit sled code ("patchable
|
|
// ret" pseudo-instruction), so that at runtime XRay can replace the sled
|
|
// with a code jumping to XRay trampoline, which calls the tracing handler
|
|
// and, in the end, issues the RET instruction.
|
|
// This is the approach to go on CPUs which have a single RET instruction,
|
|
// like x86/x86_64.
|
|
void replaceRetWithPatchableRet(MachineFunction &MF,
|
|
const TargetInstrInfo *TII,
|
|
InstrumentationOptions);
|
|
|
|
// Prepend the original return instruction with the exit sled code ("patchable
|
|
// function exit" pseudo-instruction), preserving the original return
|
|
// instruction just after the exit sled code.
|
|
// This is the approach to go on CPUs which have multiple options for the
|
|
// return instruction, like ARM. For such CPUs we can't just jump into the
|
|
// XRay trampoline and issue a single return instruction there. We rather
|
|
// have to call the trampoline and return from it to the original return
|
|
// instruction of the function being instrumented.
|
|
void prependRetWithPatchableExit(MachineFunction &MF,
|
|
const TargetInstrInfo *TII,
|
|
InstrumentationOptions);
|
|
|
|
MachineDominatorTree *MDT;
|
|
MachineLoopInfo *MLI;
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
void XRayInstrumentation::replaceRetWithPatchableRet(
|
|
MachineFunction &MF, const TargetInstrInfo *TII,
|
|
InstrumentationOptions op) {
|
|
// We look for *all* terminators and returns, then replace those with
|
|
// PATCHABLE_RET instructions.
|
|
SmallVector<MachineInstr *, 4> Terminators;
|
|
for (auto &MBB : MF) {
|
|
for (auto &T : MBB.terminators()) {
|
|
unsigned Opc = 0;
|
|
if (T.isReturn() &&
|
|
(op.HandleAllReturns || T.getOpcode() == TII->getReturnOpcode())) {
|
|
// Replace return instructions with:
|
|
// PATCHABLE_RET <Opcode>, <Operand>...
|
|
Opc = TargetOpcode::PATCHABLE_RET;
|
|
}
|
|
if (TII->isTailCall(T) && op.HandleTailcall) {
|
|
// Treat the tail call as a return instruction, which has a
|
|
// different-looking sled than the normal return case.
|
|
Opc = TargetOpcode::PATCHABLE_TAIL_CALL;
|
|
}
|
|
if (Opc != 0) {
|
|
auto MIB = BuildMI(MBB, T, T.getDebugLoc(), TII->get(Opc))
|
|
.addImm(T.getOpcode());
|
|
for (auto &MO : T.operands())
|
|
MIB.add(MO);
|
|
Terminators.push_back(&T);
|
|
if (T.shouldUpdateAdditionalCallInfo())
|
|
MF.eraseAdditionalCallInfo(&T);
|
|
}
|
|
}
|
|
}
|
|
|
|
for (auto &I : Terminators)
|
|
I->eraseFromParent();
|
|
}
|
|
|
|
void XRayInstrumentation::prependRetWithPatchableExit(
|
|
MachineFunction &MF, const TargetInstrInfo *TII,
|
|
InstrumentationOptions op) {
|
|
for (auto &MBB : MF)
|
|
for (auto &T : MBB.terminators()) {
|
|
unsigned Opc = 0;
|
|
if (T.isReturn() &&
|
|
(op.HandleAllReturns || T.getOpcode() == TII->getReturnOpcode())) {
|
|
Opc = TargetOpcode::PATCHABLE_FUNCTION_EXIT;
|
|
}
|
|
if (TII->isTailCall(T) && op.HandleTailcall) {
|
|
Opc = TargetOpcode::PATCHABLE_TAIL_CALL;
|
|
}
|
|
if (Opc != 0) {
|
|
// Prepend the return instruction with PATCHABLE_FUNCTION_EXIT or
|
|
// PATCHABLE_TAIL_CALL .
|
|
BuildMI(MBB, T, T.getDebugLoc(), TII->get(Opc));
|
|
}
|
|
}
|
|
}
|
|
|
|
PreservedAnalyses
|
|
XRayInstrumentationPass::run(MachineFunction &MF,
|
|
MachineFunctionAnalysisManager &MFAM) {
|
|
MachineDominatorTree *MDT = nullptr;
|
|
MachineLoopInfo *MLI = nullptr;
|
|
|
|
if (XRayInstrumentation::needMDTAndMLIAnalyses(MF.getFunction())) {
|
|
MDT = MFAM.getCachedResult<MachineDominatorTreeAnalysis>(MF);
|
|
MLI = MFAM.getCachedResult<MachineLoopAnalysis>(MF);
|
|
}
|
|
|
|
if (!XRayInstrumentation(MDT, MLI).run(MF))
|
|
return PreservedAnalyses::all();
|
|
|
|
auto PA = getMachineFunctionPassPreservedAnalyses();
|
|
PA.preserveSet<CFGAnalyses>();
|
|
return PA;
|
|
}
|
|
|
|
bool XRayInstrumentationLegacy::runOnMachineFunction(MachineFunction &MF) {
|
|
MachineDominatorTree *MDT = nullptr;
|
|
MachineLoopInfo *MLI = nullptr;
|
|
if (XRayInstrumentation::needMDTAndMLIAnalyses(MF.getFunction())) {
|
|
auto *MDTWrapper =
|
|
getAnalysisIfAvailable<MachineDominatorTreeWrapperPass>();
|
|
MDT = MDTWrapper ? &MDTWrapper->getDomTree() : nullptr;
|
|
auto *MLIWrapper = getAnalysisIfAvailable<MachineLoopInfoWrapperPass>();
|
|
MLI = MLIWrapper ? &MLIWrapper->getLI() : nullptr;
|
|
}
|
|
return XRayInstrumentation(MDT, MLI).run(MF);
|
|
}
|
|
|
|
bool XRayInstrumentation::run(MachineFunction &MF) {
|
|
auto &F = MF.getFunction();
|
|
auto InstrAttr = F.getFnAttribute("function-instrument");
|
|
bool AlwaysInstrument = alwaysInstrument(F);
|
|
bool NeverInstrument = InstrAttr.isStringAttribute() &&
|
|
InstrAttr.getValueAsString() == "xray-never";
|
|
if (NeverInstrument && !AlwaysInstrument)
|
|
return false;
|
|
auto IgnoreLoopsAttr = F.getFnAttribute("xray-ignore-loops");
|
|
|
|
uint64_t XRayThreshold = 0;
|
|
if (!AlwaysInstrument) {
|
|
bool IgnoreLoops = IgnoreLoopsAttr.isValid();
|
|
XRayThreshold = F.getFnAttributeAsParsedInteger(
|
|
"xray-instruction-threshold", std::numeric_limits<uint64_t>::max());
|
|
if (XRayThreshold == std::numeric_limits<uint64_t>::max())
|
|
return false;
|
|
|
|
// Count the number of MachineInstr`s in MachineFunction
|
|
uint64_t MICount = 0;
|
|
for (const auto &MBB : MF)
|
|
MICount += MBB.size();
|
|
|
|
bool TooFewInstrs = MICount < XRayThreshold;
|
|
|
|
if (!IgnoreLoops) {
|
|
// Get MachineDominatorTree or compute it on the fly if it's unavailable
|
|
MachineDominatorTree ComputedMDT;
|
|
if (!MDT) {
|
|
ComputedMDT.recalculate(MF);
|
|
MDT = &ComputedMDT;
|
|
}
|
|
|
|
// Get MachineLoopInfo or compute it on the fly if it's unavailable
|
|
MachineLoopInfo ComputedMLI;
|
|
if (!MLI) {
|
|
ComputedMLI.analyze(*MDT);
|
|
MLI = &ComputedMLI;
|
|
}
|
|
|
|
// Check if we have a loop.
|
|
// FIXME: Maybe make this smarter, and see whether the loops are dependent
|
|
// on inputs or side-effects?
|
|
if (MLI->empty() && TooFewInstrs)
|
|
return false; // Function is too small and has no loops.
|
|
} else if (TooFewInstrs) {
|
|
// Function is too small
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// We look for the first non-empty MachineBasicBlock, so that we can insert
|
|
// the function instrumentation in the appropriate place.
|
|
auto MBI = llvm::find_if(
|
|
MF, [&](const MachineBasicBlock &MBB) { return !MBB.empty(); });
|
|
if (MBI == MF.end())
|
|
return false; // The function is empty.
|
|
|
|
auto *TII = MF.getSubtarget().getInstrInfo();
|
|
auto &FirstMBB = *MBI;
|
|
auto &FirstMI = *FirstMBB.begin();
|
|
|
|
if (!MF.getSubtarget().isXRaySupported()) {
|
|
|
|
const Function &Fn = FirstMBB.getParent()->getFunction();
|
|
Fn.getContext().diagnose(DiagnosticInfoUnsupported(
|
|
Fn, "An attempt to perform XRay instrumentation for an"
|
|
" unsupported target."));
|
|
|
|
return false;
|
|
}
|
|
|
|
if (!F.hasFnAttribute("xray-skip-entry")) {
|
|
// First, insert an PATCHABLE_FUNCTION_ENTER as the first instruction of the
|
|
// MachineFunction.
|
|
BuildMI(FirstMBB, FirstMI, FirstMI.getDebugLoc(),
|
|
TII->get(TargetOpcode::PATCHABLE_FUNCTION_ENTER));
|
|
}
|
|
|
|
if (!F.hasFnAttribute("xray-skip-exit")) {
|
|
switch (MF.getTarget().getTargetTriple().getArch()) {
|
|
case Triple::ArchType::arm:
|
|
case Triple::ArchType::thumb:
|
|
case Triple::ArchType::aarch64:
|
|
case Triple::ArchType::hexagon:
|
|
case Triple::ArchType::loongarch64:
|
|
case Triple::ArchType::mips:
|
|
case Triple::ArchType::mipsel:
|
|
case Triple::ArchType::mips64:
|
|
case Triple::ArchType::mips64el:
|
|
case Triple::ArchType::riscv32:
|
|
case Triple::ArchType::riscv64: {
|
|
// For the architectures which don't have a single return instruction
|
|
InstrumentationOptions op;
|
|
// AArch64 and RISC-V support patching tail calls.
|
|
op.HandleTailcall = MF.getTarget().getTargetTriple().isAArch64() ||
|
|
MF.getTarget().getTargetTriple().isRISCV();
|
|
op.HandleAllReturns = true;
|
|
prependRetWithPatchableExit(MF, TII, op);
|
|
break;
|
|
}
|
|
case Triple::ArchType::ppc64le:
|
|
case Triple::ArchType::systemz: {
|
|
// PPC has conditional returns. Turn them into branch and plain returns.
|
|
InstrumentationOptions op;
|
|
op.HandleTailcall = false;
|
|
op.HandleAllReturns = true;
|
|
replaceRetWithPatchableRet(MF, TII, op);
|
|
break;
|
|
}
|
|
default: {
|
|
// For the architectures that have a single return instruction (such as
|
|
// RETQ on x86_64).
|
|
InstrumentationOptions op;
|
|
op.HandleTailcall = true;
|
|
op.HandleAllReturns = false;
|
|
replaceRetWithPatchableRet(MF, TII, op);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
char XRayInstrumentationLegacy::ID = 0;
|
|
char &llvm::XRayInstrumentationID = XRayInstrumentationLegacy::ID;
|
|
INITIALIZE_PASS_BEGIN(XRayInstrumentationLegacy, "xray-instrumentation",
|
|
"Insert XRay ops", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass)
|
|
INITIALIZE_PASS_END(XRayInstrumentationLegacy, "xray-instrumentation",
|
|
"Insert XRay ops", false, false)
|