Stanislav Funiak a76ee58f3c Multi-root PDL matching using upward traversals.
This is commit 4 of 4 for the multi-root matching in PDL, discussed in https://llvm.discourse.group/t/rfc-multi-root-pdl-patterns-for-kernel-matching/4148 (topic flagged for review).

This PR integrates the various components (root ordering algorithm, nondeterministic execution of PDL bytecode) to implement multi-root PDL matching. The main idea is for the pattern to specify mulitple candidate roots. The PDL-to-PDLInterp lowering selects one of these roots and "hangs" the pattern from this root, traversing the edges downwards (from operation to its operands) when possible and upwards (from values to its uses) when needed. The root is selected by invoking the optimal matching multiple times, once for each candidate root, and the connectors are determined form the optimal matching. The costs in the directed graph are equal to the number of upward edges that need to be traversed when connecting the given two candidate roots. It can be shown that, for this choice of the cost function, "hanging" the pattern an inner node is no better than from the optimal root.

The following three main additions were implemented as a part of this PR:
1. OperationPos predicate has been extended to allow tracing the operation accepting a value (the opposite of operation defining a value).
2. Predicate checking if two values are not equal - this is useful to ensure that we do not traverse the edge back downwards after we traversed it upwards.
3. Function for for building the cost graph among the candidate roots.
4. Updated buildPredicateList, building the predicates optimal branching has been determined.

Testing: unit tests (an integration test to follow once the stack of commits has landed)

Reviewed By: rriddle

Differential Revision: https://reviews.llvm.org/D108550
2021-11-26 18:11:37 +05:30

914 lines
38 KiB
C++

//===- PredicateTree.cpp - Predicate tree merging -------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "PredicateTree.h"
#include "RootOrdering.h"
#include "mlir/Dialect/PDL/IR/PDL.h"
#include "mlir/Dialect/PDL/IR/PDLTypes.h"
#include "mlir/Dialect/PDLInterp/IR/PDLInterp.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/Interfaces/InferTypeOpInterface.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/Support/Debug.h"
#include <queue>
#define DEBUG_TYPE "pdl-predicate-tree"
using namespace mlir;
using namespace mlir::pdl_to_pdl_interp;
//===----------------------------------------------------------------------===//
// Predicate List Building
//===----------------------------------------------------------------------===//
static void getTreePredicates(std::vector<PositionalPredicate> &predList,
Value val, PredicateBuilder &builder,
DenseMap<Value, Position *> &inputs,
Position *pos);
/// Compares the depths of two positions.
static bool comparePosDepth(Position *lhs, Position *rhs) {
return lhs->getOperationDepth() < rhs->getOperationDepth();
}
/// Returns the number of non-range elements within `values`.
static unsigned getNumNonRangeValues(ValueRange values) {
return llvm::count_if(values.getTypes(),
[](Type type) { return !type.isa<pdl::RangeType>(); });
}
static void getTreePredicates(std::vector<PositionalPredicate> &predList,
Value val, PredicateBuilder &builder,
DenseMap<Value, Position *> &inputs,
AttributePosition *pos) {
assert(val.getType().isa<pdl::AttributeType>() && "expected attribute type");
pdl::AttributeOp attr = cast<pdl::AttributeOp>(val.getDefiningOp());
predList.emplace_back(pos, builder.getIsNotNull());
// If the attribute has a type or value, add a constraint.
if (Value type = attr.type())
getTreePredicates(predList, type, builder, inputs, builder.getType(pos));
else if (Attribute value = attr.valueAttr())
predList.emplace_back(pos, builder.getAttributeConstraint(value));
}
/// Collect all of the predicates for the given operand position.
static void getOperandTreePredicates(std::vector<PositionalPredicate> &predList,
Value val, PredicateBuilder &builder,
DenseMap<Value, Position *> &inputs,
Position *pos) {
Type valueType = val.getType();
bool isVariadic = valueType.isa<pdl::RangeType>();
// If this is a typed operand, add a type constraint.
TypeSwitch<Operation *>(val.getDefiningOp())
.Case<pdl::OperandOp, pdl::OperandsOp>([&](auto op) {
// Prevent traversal into a null value if the operand has a proper
// index.
if (std::is_same<pdl::OperandOp, decltype(op)>::value ||
cast<OperandGroupPosition>(pos)->getOperandGroupNumber())
predList.emplace_back(pos, builder.getIsNotNull());
if (Value type = op.type())
getTreePredicates(predList, type, builder, inputs,
builder.getType(pos));
})
.Case<pdl::ResultOp, pdl::ResultsOp>([&](auto op) {
Optional<unsigned> index = op.index();
// Prevent traversal into a null value if the result has a proper index.
if (index)
predList.emplace_back(pos, builder.getIsNotNull());
// Get the parent operation of this operand.
OperationPosition *parentPos = builder.getOperandDefiningOp(pos);
predList.emplace_back(parentPos, builder.getIsNotNull());
// Ensure that the operands match the corresponding results of the
// parent operation.
Position *resultPos = nullptr;
if (std::is_same<pdl::ResultOp, decltype(op)>::value)
resultPos = builder.getResult(parentPos, *index);
else
resultPos = builder.getResultGroup(parentPos, index, isVariadic);
predList.emplace_back(resultPos, builder.getEqualTo(pos));
// Collect the predicates of the parent operation.
getTreePredicates(predList, op.parent(), builder, inputs,
(Position *)parentPos);
});
}
static void getTreePredicates(std::vector<PositionalPredicate> &predList,
Value val, PredicateBuilder &builder,
DenseMap<Value, Position *> &inputs,
OperationPosition *pos,
Optional<unsigned> ignoreOperand = llvm::None) {
assert(val.getType().isa<pdl::OperationType>() && "expected operation");
pdl::OperationOp op = cast<pdl::OperationOp>(val.getDefiningOp());
OperationPosition *opPos = cast<OperationPosition>(pos);
// Ensure getDefiningOp returns a non-null operation.
if (!opPos->isRoot())
predList.emplace_back(pos, builder.getIsNotNull());
// Check that this is the correct root operation.
if (Optional<StringRef> opName = op.name())
predList.emplace_back(pos, builder.getOperationName(*opName));
// Check that the operation has the proper number of operands. If there are
// any variable length operands, we check a minimum instead of an exact count.
OperandRange operands = op.operands();
unsigned minOperands = getNumNonRangeValues(operands);
if (minOperands != operands.size()) {
if (minOperands)
predList.emplace_back(pos, builder.getOperandCountAtLeast(minOperands));
} else {
predList.emplace_back(pos, builder.getOperandCount(minOperands));
}
// Check that the operation has the proper number of results. If there are
// any variable length results, we check a minimum instead of an exact count.
OperandRange types = op.types();
unsigned minResults = getNumNonRangeValues(types);
if (minResults == types.size())
predList.emplace_back(pos, builder.getResultCount(types.size()));
else if (minResults)
predList.emplace_back(pos, builder.getResultCountAtLeast(minResults));
// Recurse into any attributes, operands, or results.
for (auto it : llvm::zip(op.attributeNames(), op.attributes())) {
getTreePredicates(
predList, std::get<1>(it), builder, inputs,
builder.getAttribute(opPos,
std::get<0>(it).cast<StringAttr>().getValue()));
}
// Process the operands and results of the operation. For all values up to
// the first variable length value, we use the concrete operand/result
// number. After that, we use the "group" given that we can't know the
// concrete indices until runtime. If there is only one variadic operand
// group, we treat it as all of the operands/results of the operation.
/// Operands.
if (operands.size() == 1 && operands[0].getType().isa<pdl::RangeType>()) {
getTreePredicates(predList, operands.front(), builder, inputs,
builder.getAllOperands(opPos));
} else {
bool foundVariableLength = false;
for (auto operandIt : llvm::enumerate(operands)) {
bool isVariadic = operandIt.value().getType().isa<pdl::RangeType>();
foundVariableLength |= isVariadic;
// Ignore the specified operand, usually because this position was
// visited in an upward traversal via an iterative choice.
if (ignoreOperand && *ignoreOperand == operandIt.index())
continue;
Position *pos =
foundVariableLength
? builder.getOperandGroup(opPos, operandIt.index(), isVariadic)
: builder.getOperand(opPos, operandIt.index());
getTreePredicates(predList, operandIt.value(), builder, inputs, pos);
}
}
/// Results.
if (types.size() == 1 && types[0].getType().isa<pdl::RangeType>()) {
getTreePredicates(predList, types.front(), builder, inputs,
builder.getType(builder.getAllResults(opPos)));
} else {
bool foundVariableLength = false;
for (auto &resultIt : llvm::enumerate(types)) {
bool isVariadic = resultIt.value().getType().isa<pdl::RangeType>();
foundVariableLength |= isVariadic;
auto *resultPos =
foundVariableLength
? builder.getResultGroup(pos, resultIt.index(), isVariadic)
: builder.getResult(pos, resultIt.index());
predList.emplace_back(resultPos, builder.getIsNotNull());
getTreePredicates(predList, resultIt.value(), builder, inputs,
builder.getType(resultPos));
}
}
}
static void getTreePredicates(std::vector<PositionalPredicate> &predList,
Value val, PredicateBuilder &builder,
DenseMap<Value, Position *> &inputs,
TypePosition *pos) {
// Check for a constraint on a constant type.
if (pdl::TypeOp typeOp = val.getDefiningOp<pdl::TypeOp>()) {
if (Attribute type = typeOp.typeAttr())
predList.emplace_back(pos, builder.getTypeConstraint(type));
} else if (pdl::TypesOp typeOp = val.getDefiningOp<pdl::TypesOp>()) {
if (Attribute typeAttr = typeOp.typesAttr())
predList.emplace_back(pos, builder.getTypeConstraint(typeAttr));
}
}
/// Collect the tree predicates anchored at the given value.
static void getTreePredicates(std::vector<PositionalPredicate> &predList,
Value val, PredicateBuilder &builder,
DenseMap<Value, Position *> &inputs,
Position *pos) {
// Make sure this input value is accessible to the rewrite.
auto it = inputs.try_emplace(val, pos);
if (!it.second) {
// If this is an input value that has been visited in the tree, add a
// constraint to ensure that both instances refer to the same value.
if (isa<pdl::AttributeOp, pdl::OperandOp, pdl::OperandsOp, pdl::OperationOp,
pdl::TypeOp>(val.getDefiningOp())) {
auto minMaxPositions =
std::minmax(pos, it.first->second, comparePosDepth);
predList.emplace_back(minMaxPositions.second,
builder.getEqualTo(minMaxPositions.first));
}
return;
}
TypeSwitch<Position *>(pos)
.Case<AttributePosition, OperationPosition, TypePosition>([&](auto *pos) {
getTreePredicates(predList, val, builder, inputs, pos);
})
.Case<OperandPosition, OperandGroupPosition>([&](auto *pos) {
getOperandTreePredicates(predList, val, builder, inputs, pos);
})
.Default([](auto *) { llvm_unreachable("unexpected position kind"); });
}
/// Collect all of the predicates related to constraints within the given
/// pattern operation.
static void getConstraintPredicates(pdl::ApplyNativeConstraintOp op,
std::vector<PositionalPredicate> &predList,
PredicateBuilder &builder,
DenseMap<Value, Position *> &inputs) {
OperandRange arguments = op.args();
ArrayAttr parameters = op.constParamsAttr();
std::vector<Position *> allPositions;
allPositions.reserve(arguments.size());
for (Value arg : arguments)
allPositions.push_back(inputs.lookup(arg));
// Push the constraint to the furthest position.
Position *pos = *std::max_element(allPositions.begin(), allPositions.end(),
comparePosDepth);
PredicateBuilder::Predicate pred =
builder.getConstraint(op.name(), std::move(allPositions), parameters);
predList.emplace_back(pos, pred);
}
static void getResultPredicates(pdl::ResultOp op,
std::vector<PositionalPredicate> &predList,
PredicateBuilder &builder,
DenseMap<Value, Position *> &inputs) {
Position *&resultPos = inputs[op];
if (resultPos)
return;
// Ensure that the result isn't null.
auto *parentPos = cast<OperationPosition>(inputs.lookup(op.parent()));
resultPos = builder.getResult(parentPos, op.index());
predList.emplace_back(resultPos, builder.getIsNotNull());
}
static void getResultPredicates(pdl::ResultsOp op,
std::vector<PositionalPredicate> &predList,
PredicateBuilder &builder,
DenseMap<Value, Position *> &inputs) {
Position *&resultPos = inputs[op];
if (resultPos)
return;
// Ensure that the result isn't null if the result has an index.
auto *parentPos = cast<OperationPosition>(inputs.lookup(op.parent()));
bool isVariadic = op.getType().isa<pdl::RangeType>();
Optional<unsigned> index = op.index();
resultPos = builder.getResultGroup(parentPos, index, isVariadic);
if (index)
predList.emplace_back(resultPos, builder.getIsNotNull());
}
/// Collect all of the predicates that cannot be determined via walking the
/// tree.
static void getNonTreePredicates(pdl::PatternOp pattern,
std::vector<PositionalPredicate> &predList,
PredicateBuilder &builder,
DenseMap<Value, Position *> &inputs) {
for (Operation &op : pattern.body().getOps()) {
TypeSwitch<Operation *>(&op)
.Case<pdl::ApplyNativeConstraintOp>([&](auto constraintOp) {
getConstraintPredicates(constraintOp, predList, builder, inputs);
})
.Case<pdl::ResultOp, pdl::ResultsOp>([&](auto resultOp) {
getResultPredicates(resultOp, predList, builder, inputs);
});
}
}
namespace {
/// An op accepting a value at an optional index.
struct OpIndex {
Value parent;
Optional<unsigned> index;
};
/// The parent and operand index of each operation for each root, stored
/// as a nested map [root][operation].
using ParentMaps = DenseMap<Value, DenseMap<Value, OpIndex>>;
} // namespace
/// Given a pattern, determines the set of roots present in this pattern.
/// These are the operations whose results are not consumed by other operations.
static SmallVector<Value> detectRoots(pdl::PatternOp pattern) {
// First, collect all the operations that are used as operands
// to other operations. These are not roots by default.
DenseSet<Value> used;
for (auto operationOp : pattern.body().getOps<pdl::OperationOp>()) {
for (Value operand : operationOp.operands())
TypeSwitch<Operation *>(operand.getDefiningOp())
.Case<pdl::ResultOp, pdl::ResultsOp>(
[&used](auto resultOp) { used.insert(resultOp.parent()); });
}
// Remove the specified root from the use set, so that we can
// always select it as a root, even if it is used by other operations.
if (Value root = pattern.getRewriter().root())
used.erase(root);
// Finally, collect all the unused operations.
SmallVector<Value> roots;
for (Value operationOp : pattern.body().getOps<pdl::OperationOp>())
if (!used.contains(operationOp))
roots.push_back(operationOp);
return roots;
}
/// Given a list of candidate roots, builds the cost graph for connecting them.
/// The graph is formed by traversing the DAG of operations starting from each
/// root and marking the depth of each connector value (operand). Then we join
/// the candidate roots based on the common connector values, taking the one
/// with the minimum depth. Along the way, we compute, for each candidate root,
/// a mapping from each operation (in the DAG underneath this root) to its
/// parent operation and the corresponding operand index.
static void buildCostGraph(ArrayRef<Value> roots, RootOrderingGraph &graph,
ParentMaps &parentMaps) {
// The entry of a queue. The entry consists of the following items:
// * the value in the DAG underneath the root;
// * the parent of the value;
// * the operand index of the value in its parent;
// * the depth of the visited value.
struct Entry {
Entry(Value value, Value parent, Optional<unsigned> index, unsigned depth)
: value(value), parent(parent), index(index), depth(depth) {}
Value value;
Value parent;
Optional<unsigned> index;
unsigned depth;
};
// A root of a value and its depth (distance from root to the value).
struct RootDepth {
Value root;
unsigned depth = 0;
};
// Map from candidate connector values to their roots and depths. Using a
// small vector with 1 entry because most values belong to a single root.
llvm::MapVector<Value, SmallVector<RootDepth, 1>> connectorsRootsDepths;
// Perform a breadth-first traversal of the op DAG rooted at each root.
for (Value root : roots) {
// The queue of visited values. A value may be present multiple times in
// the queue, for multiple parents. We only accept the first occurrence,
// which is guaranteed to have the lowest depth.
std::queue<Entry> toVisit;
toVisit.emplace(root, Value(), 0, 0);
// The map from value to its parent for the current root.
DenseMap<Value, OpIndex> &parentMap = parentMaps[root];
while (!toVisit.empty()) {
Entry entry = toVisit.front();
toVisit.pop();
// Skip if already visited.
if (!parentMap.insert({entry.value, {entry.parent, entry.index}}).second)
continue;
// Mark the root and depth of the value.
connectorsRootsDepths[entry.value].push_back({root, entry.depth});
// Traverse the operands of an operation and result ops.
// We intentionally do not traverse attributes and types, because those
// are expensive to join on.
TypeSwitch<Operation *>(entry.value.getDefiningOp())
.Case<pdl::OperationOp>([&](auto operationOp) {
OperandRange operands = operationOp.operands();
// Special case when we pass all the operands in one range.
// For those, the index is empty.
if (operands.size() == 1 &&
operands[0].getType().isa<pdl::RangeType>()) {
toVisit.emplace(operands[0], entry.value, llvm::None,
entry.depth + 1);
return;
}
// Default case: visit all the operands.
for (auto p : llvm::enumerate(operationOp.operands()))
toVisit.emplace(p.value(), entry.value, p.index(),
entry.depth + 1);
})
.Case<pdl::ResultOp, pdl::ResultsOp>([&](auto resultOp) {
toVisit.emplace(resultOp.parent(), entry.value, resultOp.index(),
entry.depth);
});
}
}
// Now build the cost graph.
// This is simply a minimum over all depths for the target root.
unsigned nextID = 0;
for (const auto &connectorRootsDepths : connectorsRootsDepths) {
Value value = connectorRootsDepths.first;
ArrayRef<RootDepth> rootsDepths = connectorRootsDepths.second;
// If there is only one root for this value, this will not trigger
// any edges in the cost graph (a perf optimization).
if (rootsDepths.size() == 1)
continue;
for (const RootDepth &p : rootsDepths) {
for (const RootDepth &q : rootsDepths) {
if (&p == &q)
continue;
// Insert or retrieve the property of edge from p to q.
RootOrderingCost &cost = graph[q.root][p.root];
if (!cost.connector /* new edge */ || cost.cost.first > q.depth) {
if (!cost.connector)
cost.cost.second = nextID++;
cost.cost.first = q.depth;
cost.connector = value;
}
}
}
}
assert((llvm::hasSingleElement(roots) || graph.size() == roots.size()) &&
"the pattern contains a candidate root disconnected from the others");
}
/// Visit a node during upward traversal.
void visitUpward(std::vector<PositionalPredicate> &predList, OpIndex opIndex,
PredicateBuilder &builder,
DenseMap<Value, Position *> &valueToPosition, Position *&pos,
bool &first) {
Value value = opIndex.parent;
TypeSwitch<Operation *>(value.getDefiningOp())
.Case<pdl::OperationOp>([&](auto operationOp) {
LLVM_DEBUG(llvm::dbgs() << " * Value: " << value << "\n");
OperationPosition *opPos = builder.getUsersOp(pos, opIndex.index);
// Guard against traversing back to where we came from.
if (first) {
Position *parent = pos->getParent();
predList.emplace_back(opPos, builder.getNotEqualTo(parent));
first = false;
}
// Guard against duplicate upward visits. These are not possible,
// because if this value was already visited, it would have been
// cheaper to start the traversal at this value rather than at the
// `connector`, violating the optimality of our spanning tree.
bool inserted = valueToPosition.try_emplace(value, opPos).second;
assert(inserted && "duplicate upward visit");
// Obtain the tree predicates at the current value.
getTreePredicates(predList, value, builder, valueToPosition, opPos,
opIndex.index);
// Update the position
pos = opPos;
})
.Case<pdl::ResultOp>([&](auto resultOp) {
// Traverse up an individual result.
auto *opPos = dyn_cast<OperationPosition>(pos);
assert(opPos && "operations and results must be interleaved");
pos = builder.getResult(opPos, *opIndex.index);
})
.Case<pdl::ResultsOp>([&](auto resultOp) {
// Traverse up a group of results.
auto *opPos = dyn_cast<OperationPosition>(pos);
assert(opPos && "operations and results must be interleaved");
bool isVariadic = value.getType().isa<pdl::RangeType>();
if (opIndex.index)
pos = builder.getResultGroup(opPos, opIndex.index, isVariadic);
else
pos = builder.getAllResults(opPos);
});
}
/// Given a pattern operation, build the set of matcher predicates necessary to
/// match this pattern.
static Value buildPredicateList(pdl::PatternOp pattern,
PredicateBuilder &builder,
std::vector<PositionalPredicate> &predList,
DenseMap<Value, Position *> &valueToPosition) {
SmallVector<Value> roots = detectRoots(pattern);
// Build the root ordering graph and compute the parent maps.
RootOrderingGraph graph;
ParentMaps parentMaps;
buildCostGraph(roots, graph, parentMaps);
LLVM_DEBUG({
llvm::dbgs() << "Graph:\n";
for (auto &target : graph) {
llvm::dbgs() << " * " << target.first << "\n";
for (auto &source : target.second) {
RootOrderingCost c = source.second;
llvm::dbgs() << " <- " << source.first << ": " << c.cost.first
<< ":" << c.cost.second << " via " << c.connector.getLoc()
<< "\n";
}
}
});
// Solve the optimal branching problem for each candidate root, or use the
// provided one.
Value bestRoot = pattern.getRewriter().root();
OptimalBranching::EdgeList bestEdges;
if (!bestRoot) {
unsigned bestCost = 0;
LLVM_DEBUG(llvm::dbgs() << "Candidate roots:\n");
for (Value root : roots) {
OptimalBranching solver(graph, root);
unsigned cost = solver.solve();
LLVM_DEBUG(llvm::dbgs() << " * " << root << ": " << cost << "\n");
if (!bestRoot || bestCost > cost) {
bestCost = cost;
bestRoot = root;
bestEdges = solver.preOrderTraversal(roots);
}
}
} else {
OptimalBranching solver(graph, bestRoot);
solver.solve();
bestEdges = solver.preOrderTraversal(roots);
}
LLVM_DEBUG(llvm::dbgs() << "Calling key getTreePredicates:\n");
LLVM_DEBUG(llvm::dbgs() << " * Value: " << bestRoot << "\n");
// The best root is the starting point for the traversal. Get the tree
// predicates for the DAG rooted at bestRoot.
getTreePredicates(predList, bestRoot, builder, valueToPosition,
builder.getRoot());
// Traverse the selected optimal branching. For all edges in order, traverse
// up starting from the connector, until the candidate root is reached, and
// call getTreePredicates at every node along the way.
for (const std::pair<Value, Value> &edge : bestEdges) {
Value target = edge.first;
Value source = edge.second;
// Check if we already visited the target root. This happens in two cases:
// 1) the initial root (bestRoot);
// 2) a root that is dominated by (contained in the subtree rooted at) an
// already visited root.
if (valueToPosition.count(target))
continue;
// Determine the connector.
Value connector = graph[target][source].connector;
assert(connector && "invalid edge");
LLVM_DEBUG(llvm::dbgs() << " * Connector: " << connector.getLoc() << "\n");
DenseMap<Value, OpIndex> parentMap = parentMaps.lookup(target);
Position *pos = valueToPosition.lookup(connector);
assert(pos && "The value has not been traversed yet");
bool first = true;
// Traverse from the connector upwards towards the target root.
for (Value value = connector; value != target;) {
OpIndex opIndex = parentMap.lookup(value);
assert(opIndex.parent && "missing parent");
visitUpward(predList, opIndex, builder, valueToPosition, pos, first);
value = opIndex.parent;
}
}
getNonTreePredicates(pattern, predList, builder, valueToPosition);
return bestRoot;
}
//===----------------------------------------------------------------------===//
// Pattern Predicate Tree Merging
//===----------------------------------------------------------------------===//
namespace {
/// This class represents a specific predicate applied to a position, and
/// provides hashing and ordering operators. This class allows for computing a
/// frequence sum and ordering predicates based on a cost model.
struct OrderedPredicate {
OrderedPredicate(const std::pair<Position *, Qualifier *> &ip)
: position(ip.first), question(ip.second) {}
OrderedPredicate(const PositionalPredicate &ip)
: position(ip.position), question(ip.question) {}
/// The position this predicate is applied to.
Position *position;
/// The question that is applied by this predicate onto the position.
Qualifier *question;
/// The first and second order benefit sums.
/// The primary sum is the number of occurrences of this predicate among all
/// of the patterns.
unsigned primary = 0;
/// The secondary sum is a squared summation of the primary sum of all of the
/// predicates within each pattern that contains this predicate. This allows
/// for favoring predicates that are more commonly shared within a pattern, as
/// opposed to those shared across patterns.
unsigned secondary = 0;
/// A map between a pattern operation and the answer to the predicate question
/// within that pattern.
DenseMap<Operation *, Qualifier *> patternToAnswer;
/// Returns true if this predicate is ordered before `rhs`, based on the cost
/// model.
bool operator<(const OrderedPredicate &rhs) const {
// Sort by:
// * higher first and secondary order sums
// * lower depth
// * lower position dependency
// * lower predicate dependency
auto *rhsPos = rhs.position;
return std::make_tuple(primary, secondary, rhsPos->getOperationDepth(),
rhsPos->getKind(), rhs.question->getKind()) >
std::make_tuple(rhs.primary, rhs.secondary,
position->getOperationDepth(), position->getKind(),
question->getKind());
}
};
/// A DenseMapInfo for OrderedPredicate based solely on the position and
/// question.
struct OrderedPredicateDenseInfo {
using Base = DenseMapInfo<std::pair<Position *, Qualifier *>>;
static OrderedPredicate getEmptyKey() { return Base::getEmptyKey(); }
static OrderedPredicate getTombstoneKey() { return Base::getTombstoneKey(); }
static bool isEqual(const OrderedPredicate &lhs,
const OrderedPredicate &rhs) {
return lhs.position == rhs.position && lhs.question == rhs.question;
}
static unsigned getHashValue(const OrderedPredicate &p) {
return llvm::hash_combine(p.position, p.question);
}
};
/// This class wraps a set of ordered predicates that are used within a specific
/// pattern operation.
struct OrderedPredicateList {
OrderedPredicateList(pdl::PatternOp pattern, Value root)
: pattern(pattern), root(root) {}
pdl::PatternOp pattern;
Value root;
DenseSet<OrderedPredicate *> predicates;
};
} // end anonymous namespace
/// Returns true if the given matcher refers to the same predicate as the given
/// ordered predicate. This means that the position and questions of the two
/// match.
static bool isSamePredicate(MatcherNode *node, OrderedPredicate *predicate) {
return node->getPosition() == predicate->position &&
node->getQuestion() == predicate->question;
}
/// Get or insert a child matcher for the given parent switch node, given a
/// predicate and parent pattern.
std::unique_ptr<MatcherNode> &getOrCreateChild(SwitchNode *node,
OrderedPredicate *predicate,
pdl::PatternOp pattern) {
assert(isSamePredicate(node, predicate) &&
"expected matcher to equal the given predicate");
auto it = predicate->patternToAnswer.find(pattern);
assert(it != predicate->patternToAnswer.end() &&
"expected pattern to exist in predicate");
return node->getChildren().insert({it->second, nullptr}).first->second;
}
/// Build the matcher CFG by "pushing" patterns through by sorted predicate
/// order. A pattern will traverse as far as possible using common predicates
/// and then either diverge from the CFG or reach the end of a branch and start
/// creating new nodes.
static void propagatePattern(std::unique_ptr<MatcherNode> &node,
OrderedPredicateList &list,
std::vector<OrderedPredicate *>::iterator current,
std::vector<OrderedPredicate *>::iterator end) {
if (current == end) {
// We've hit the end of a pattern, so create a successful result node.
node =
std::make_unique<SuccessNode>(list.pattern, list.root, std::move(node));
// If the pattern doesn't contain this predicate, ignore it.
} else if (list.predicates.find(*current) == list.predicates.end()) {
propagatePattern(node, list, std::next(current), end);
// If the current matcher node is invalid, create a new one for this
// position and continue propagation.
} else if (!node) {
// Create a new node at this position and continue
node = std::make_unique<SwitchNode>((*current)->position,
(*current)->question);
propagatePattern(
getOrCreateChild(cast<SwitchNode>(&*node), *current, list.pattern),
list, std::next(current), end);
// If the matcher has already been created, and it is for this predicate we
// continue propagation to the child.
} else if (isSamePredicate(node.get(), *current)) {
propagatePattern(
getOrCreateChild(cast<SwitchNode>(&*node), *current, list.pattern),
list, std::next(current), end);
// If the matcher doesn't match the current predicate, insert a branch as
// the common set of matchers has diverged.
} else {
propagatePattern(node->getFailureNode(), list, current, end);
}
}
/// Fold any switch nodes nested under `node` to boolean nodes when possible.
/// `node` is updated in-place if it is a switch.
static void foldSwitchToBool(std::unique_ptr<MatcherNode> &node) {
if (!node)
return;
if (SwitchNode *switchNode = dyn_cast<SwitchNode>(&*node)) {
SwitchNode::ChildMapT &children = switchNode->getChildren();
for (auto &it : children)
foldSwitchToBool(it.second);
// If the node only contains one child, collapse it into a boolean predicate
// node.
if (children.size() == 1) {
auto childIt = children.begin();
node = std::make_unique<BoolNode>(
node->getPosition(), node->getQuestion(), childIt->first,
std::move(childIt->second), std::move(node->getFailureNode()));
}
} else if (BoolNode *boolNode = dyn_cast<BoolNode>(&*node)) {
foldSwitchToBool(boolNode->getSuccessNode());
}
foldSwitchToBool(node->getFailureNode());
}
/// Insert an exit node at the end of the failure path of the `root`.
static void insertExitNode(std::unique_ptr<MatcherNode> *root) {
while (*root)
root = &(*root)->getFailureNode();
*root = std::make_unique<ExitNode>();
}
/// Given a module containing PDL pattern operations, generate a matcher tree
/// using the patterns within the given module and return the root matcher node.
std::unique_ptr<MatcherNode>
MatcherNode::generateMatcherTree(ModuleOp module, PredicateBuilder &builder,
DenseMap<Value, Position *> &valueToPosition) {
// The set of predicates contained within the pattern operations of the
// module.
struct PatternPredicates {
PatternPredicates(pdl::PatternOp pattern, Value root,
std::vector<PositionalPredicate> predicates)
: pattern(pattern), root(root), predicates(std::move(predicates)) {}
/// A pattern.
pdl::PatternOp pattern;
/// A root of the pattern chosen among the candidate roots in pdl.rewrite.
Value root;
/// The extracted predicates for this pattern and root.
std::vector<PositionalPredicate> predicates;
};
SmallVector<PatternPredicates, 16> patternsAndPredicates;
for (pdl::PatternOp pattern : module.getOps<pdl::PatternOp>()) {
std::vector<PositionalPredicate> predicateList;
Value root =
buildPredicateList(pattern, builder, predicateList, valueToPosition);
patternsAndPredicates.emplace_back(pattern, root, std::move(predicateList));
}
// Associate a pattern result with each unique predicate.
DenseSet<OrderedPredicate, OrderedPredicateDenseInfo> uniqued;
for (auto &patternAndPredList : patternsAndPredicates) {
for (auto &predicate : patternAndPredList.predicates) {
auto it = uniqued.insert(predicate);
it.first->patternToAnswer.try_emplace(patternAndPredList.pattern,
predicate.answer);
}
}
// Associate each pattern to a set of its ordered predicates for later lookup.
std::vector<OrderedPredicateList> lists;
lists.reserve(patternsAndPredicates.size());
for (auto &patternAndPredList : patternsAndPredicates) {
OrderedPredicateList list(patternAndPredList.pattern,
patternAndPredList.root);
for (auto &predicate : patternAndPredList.predicates) {
OrderedPredicate *orderedPredicate = &*uniqued.find(predicate);
list.predicates.insert(orderedPredicate);
// Increment the primary sum for each reference to a particular predicate.
++orderedPredicate->primary;
}
lists.push_back(std::move(list));
}
// For a particular pattern, get the total primary sum and add it to the
// secondary sum of each predicate. Square the primary sums to emphasize
// shared predicates within rather than across patterns.
for (auto &list : lists) {
unsigned total = 0;
for (auto *predicate : list.predicates)
total += predicate->primary * predicate->primary;
for (auto *predicate : list.predicates)
predicate->secondary += total;
}
// Sort the set of predicates now that the cost primary and secondary sums
// have been computed.
std::vector<OrderedPredicate *> ordered;
ordered.reserve(uniqued.size());
for (auto &ip : uniqued)
ordered.push_back(&ip);
std::stable_sort(
ordered.begin(), ordered.end(),
[](OrderedPredicate *lhs, OrderedPredicate *rhs) { return *lhs < *rhs; });
// Build the matchers for each of the pattern predicate lists.
std::unique_ptr<MatcherNode> root;
for (OrderedPredicateList &list : lists)
propagatePattern(root, list, ordered.begin(), ordered.end());
// Collapse the graph and insert the exit node.
foldSwitchToBool(root);
insertExitNode(&root);
return root;
}
//===----------------------------------------------------------------------===//
// MatcherNode
//===----------------------------------------------------------------------===//
MatcherNode::MatcherNode(TypeID matcherTypeID, Position *p, Qualifier *q,
std::unique_ptr<MatcherNode> failureNode)
: position(p), question(q), failureNode(std::move(failureNode)),
matcherTypeID(matcherTypeID) {}
//===----------------------------------------------------------------------===//
// BoolNode
//===----------------------------------------------------------------------===//
BoolNode::BoolNode(Position *position, Qualifier *question, Qualifier *answer,
std::unique_ptr<MatcherNode> successNode,
std::unique_ptr<MatcherNode> failureNode)
: MatcherNode(TypeID::get<BoolNode>(), position, question,
std::move(failureNode)),
answer(answer), successNode(std::move(successNode)) {}
//===----------------------------------------------------------------------===//
// SuccessNode
//===----------------------------------------------------------------------===//
SuccessNode::SuccessNode(pdl::PatternOp pattern, Value root,
std::unique_ptr<MatcherNode> failureNode)
: MatcherNode(TypeID::get<SuccessNode>(), /*position=*/nullptr,
/*question=*/nullptr, std::move(failureNode)),
pattern(pattern), root(root) {}
//===----------------------------------------------------------------------===//
// SwitchNode
//===----------------------------------------------------------------------===//
SwitchNode::SwitchNode(Position *position, Qualifier *question)
: MatcherNode(TypeID::get<SwitchNode>(), position, question) {}