
The majority of this change is sinking logic from instcombine into MemoryLocation such that it can be generically reused. If we have a call with a single analyzable write to an argument, we can treat that as-if it were a store of unknown size. Merging the code in this was unblocks DSE in the store to dead memory code paths. In theory, it should also enable classic DSE of such calls, but the code appears to not know how to use object sizes to refine unknown access bounds (yet). In addition, this does make the isAllocRemovable path slightly stronger by reusing the libfunc and additional intrinsics bits which are already in getForDest. Differential Revision: https://reviews.llvm.org/D115904
360 lines
13 KiB
C++
360 lines
13 KiB
C++
//===- MemoryLocation.cpp - Memory location descriptions -------------------==//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Analysis/MemoryLocation.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/IntrinsicsARM.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/Type.h"
|
|
using namespace llvm;
|
|
|
|
void LocationSize::print(raw_ostream &OS) const {
|
|
OS << "LocationSize::";
|
|
if (*this == beforeOrAfterPointer())
|
|
OS << "beforeOrAfterPointer";
|
|
else if (*this == afterPointer())
|
|
OS << "afterPointer";
|
|
else if (*this == mapEmpty())
|
|
OS << "mapEmpty";
|
|
else if (*this == mapTombstone())
|
|
OS << "mapTombstone";
|
|
else if (isPrecise())
|
|
OS << "precise(" << getValue() << ')';
|
|
else
|
|
OS << "upperBound(" << getValue() << ')';
|
|
}
|
|
|
|
MemoryLocation MemoryLocation::get(const LoadInst *LI) {
|
|
const auto &DL = LI->getModule()->getDataLayout();
|
|
|
|
return MemoryLocation(
|
|
LI->getPointerOperand(),
|
|
LocationSize::precise(DL.getTypeStoreSize(LI->getType())),
|
|
LI->getAAMetadata());
|
|
}
|
|
|
|
MemoryLocation MemoryLocation::get(const StoreInst *SI) {
|
|
const auto &DL = SI->getModule()->getDataLayout();
|
|
|
|
return MemoryLocation(SI->getPointerOperand(),
|
|
LocationSize::precise(DL.getTypeStoreSize(
|
|
SI->getValueOperand()->getType())),
|
|
SI->getAAMetadata());
|
|
}
|
|
|
|
MemoryLocation MemoryLocation::get(const VAArgInst *VI) {
|
|
return MemoryLocation(VI->getPointerOperand(),
|
|
LocationSize::afterPointer(), VI->getAAMetadata());
|
|
}
|
|
|
|
MemoryLocation MemoryLocation::get(const AtomicCmpXchgInst *CXI) {
|
|
const auto &DL = CXI->getModule()->getDataLayout();
|
|
|
|
return MemoryLocation(CXI->getPointerOperand(),
|
|
LocationSize::precise(DL.getTypeStoreSize(
|
|
CXI->getCompareOperand()->getType())),
|
|
CXI->getAAMetadata());
|
|
}
|
|
|
|
MemoryLocation MemoryLocation::get(const AtomicRMWInst *RMWI) {
|
|
const auto &DL = RMWI->getModule()->getDataLayout();
|
|
|
|
return MemoryLocation(RMWI->getPointerOperand(),
|
|
LocationSize::precise(DL.getTypeStoreSize(
|
|
RMWI->getValOperand()->getType())),
|
|
RMWI->getAAMetadata());
|
|
}
|
|
|
|
Optional<MemoryLocation> MemoryLocation::getOrNone(const Instruction *Inst) {
|
|
switch (Inst->getOpcode()) {
|
|
case Instruction::Load:
|
|
return get(cast<LoadInst>(Inst));
|
|
case Instruction::Store:
|
|
return get(cast<StoreInst>(Inst));
|
|
case Instruction::VAArg:
|
|
return get(cast<VAArgInst>(Inst));
|
|
case Instruction::AtomicCmpXchg:
|
|
return get(cast<AtomicCmpXchgInst>(Inst));
|
|
case Instruction::AtomicRMW:
|
|
return get(cast<AtomicRMWInst>(Inst));
|
|
default:
|
|
return None;
|
|
}
|
|
}
|
|
|
|
MemoryLocation MemoryLocation::getForSource(const MemTransferInst *MTI) {
|
|
return getForSource(cast<AnyMemTransferInst>(MTI));
|
|
}
|
|
|
|
MemoryLocation MemoryLocation::getForSource(const AtomicMemTransferInst *MTI) {
|
|
return getForSource(cast<AnyMemTransferInst>(MTI));
|
|
}
|
|
|
|
MemoryLocation MemoryLocation::getForSource(const AnyMemTransferInst *MTI) {
|
|
assert(MTI->getRawSource() == MTI->getArgOperand(1));
|
|
return getForArgument(MTI, 1, nullptr);
|
|
}
|
|
|
|
MemoryLocation MemoryLocation::getForDest(const MemIntrinsic *MI) {
|
|
return getForDest(cast<AnyMemIntrinsic>(MI));
|
|
}
|
|
|
|
MemoryLocation MemoryLocation::getForDest(const AtomicMemIntrinsic *MI) {
|
|
return getForDest(cast<AnyMemIntrinsic>(MI));
|
|
}
|
|
|
|
MemoryLocation MemoryLocation::getForDest(const AnyMemIntrinsic *MI) {
|
|
assert(MI->getRawDest() == MI->getArgOperand(0));
|
|
return getForArgument(MI, 0, nullptr);
|
|
}
|
|
|
|
Optional<MemoryLocation>
|
|
MemoryLocation::getForDest(const CallBase *CB, const TargetLibraryInfo &TLI) {
|
|
if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CB)) {
|
|
if (auto *MemInst = dyn_cast<AnyMemIntrinsic>(CB))
|
|
return getForDest(MemInst);
|
|
|
|
switch (II->getIntrinsicID()) {
|
|
default:
|
|
return None;
|
|
case Intrinsic::init_trampoline:
|
|
return MemoryLocation::getForArgument(CB, 0, TLI);
|
|
case Intrinsic::masked_store:
|
|
return MemoryLocation::getForArgument(CB, 1, TLI);
|
|
}
|
|
}
|
|
|
|
LibFunc LF;
|
|
if (TLI.getLibFunc(*CB, LF) && TLI.has(LF)) {
|
|
switch (LF) {
|
|
case LibFunc_strncpy:
|
|
case LibFunc_strcpy:
|
|
case LibFunc_strcat:
|
|
case LibFunc_strncat:
|
|
return getForArgument(CB, 0, &TLI);
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!CB->onlyAccessesArgMemory())
|
|
return None;
|
|
|
|
if (CB->hasOperandBundles())
|
|
// TODO: remove implementation restriction
|
|
return None;
|
|
|
|
Value *UsedV = nullptr;
|
|
Optional<unsigned> UsedIdx;
|
|
for (unsigned i = 0; i < CB->arg_size(); i++) {
|
|
if (!CB->getArgOperand(i)->getType()->isPointerTy())
|
|
continue;
|
|
if (!CB->doesNotCapture(i))
|
|
// capture would allow the address to be read back in an untracked manner
|
|
return None;
|
|
if (CB->onlyReadsMemory(i))
|
|
continue;
|
|
if (!UsedV) {
|
|
// First potentially writing parameter
|
|
UsedV = CB->getArgOperand(i);
|
|
UsedIdx = i;
|
|
continue;
|
|
}
|
|
UsedIdx = None;
|
|
if (UsedV != CB->getArgOperand(i))
|
|
// Can't describe writing to two distinct locations.
|
|
// TODO: This results in an inprecision when two values derived from the
|
|
// same object are passed as arguments to the same function.
|
|
return None;
|
|
}
|
|
if (!UsedV)
|
|
// We don't currently have a way to represent a "does not write" result
|
|
// and thus have to be conservative and return unknown.
|
|
return None;
|
|
|
|
if (UsedIdx)
|
|
return getForArgument(CB, *UsedIdx, &TLI);
|
|
return MemoryLocation::getBeforeOrAfter(UsedV, CB->getAAMetadata());
|
|
}
|
|
|
|
MemoryLocation MemoryLocation::getForArgument(const CallBase *Call,
|
|
unsigned ArgIdx,
|
|
const TargetLibraryInfo *TLI) {
|
|
AAMDNodes AATags = Call->getAAMetadata();
|
|
const Value *Arg = Call->getArgOperand(ArgIdx);
|
|
|
|
// We may be able to produce an exact size for known intrinsics.
|
|
if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Call)) {
|
|
const DataLayout &DL = II->getModule()->getDataLayout();
|
|
|
|
switch (II->getIntrinsicID()) {
|
|
default:
|
|
break;
|
|
case Intrinsic::memset:
|
|
case Intrinsic::memcpy:
|
|
case Intrinsic::memcpy_inline:
|
|
case Intrinsic::memmove:
|
|
case Intrinsic::memcpy_element_unordered_atomic:
|
|
case Intrinsic::memmove_element_unordered_atomic:
|
|
case Intrinsic::memset_element_unordered_atomic:
|
|
assert((ArgIdx == 0 || ArgIdx == 1) &&
|
|
"Invalid argument index for memory intrinsic");
|
|
if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2)))
|
|
return MemoryLocation(Arg, LocationSize::precise(LenCI->getZExtValue()),
|
|
AATags);
|
|
return MemoryLocation::getAfter(Arg, AATags);
|
|
|
|
case Intrinsic::lifetime_start:
|
|
case Intrinsic::lifetime_end:
|
|
case Intrinsic::invariant_start:
|
|
assert(ArgIdx == 1 && "Invalid argument index");
|
|
return MemoryLocation(
|
|
Arg,
|
|
LocationSize::precise(
|
|
cast<ConstantInt>(II->getArgOperand(0))->getZExtValue()),
|
|
AATags);
|
|
|
|
case Intrinsic::masked_load:
|
|
assert(ArgIdx == 0 && "Invalid argument index");
|
|
return MemoryLocation(
|
|
Arg,
|
|
LocationSize::upperBound(DL.getTypeStoreSize(II->getType())),
|
|
AATags);
|
|
|
|
case Intrinsic::masked_store:
|
|
assert(ArgIdx == 1 && "Invalid argument index");
|
|
return MemoryLocation(
|
|
Arg,
|
|
LocationSize::upperBound(
|
|
DL.getTypeStoreSize(II->getArgOperand(0)->getType())),
|
|
AATags);
|
|
|
|
case Intrinsic::invariant_end:
|
|
// The first argument to an invariant.end is a "descriptor" type (e.g. a
|
|
// pointer to a empty struct) which is never actually dereferenced.
|
|
if (ArgIdx == 0)
|
|
return MemoryLocation(Arg, LocationSize::precise(0), AATags);
|
|
assert(ArgIdx == 2 && "Invalid argument index");
|
|
return MemoryLocation(
|
|
Arg,
|
|
LocationSize::precise(
|
|
cast<ConstantInt>(II->getArgOperand(1))->getZExtValue()),
|
|
AATags);
|
|
|
|
case Intrinsic::arm_neon_vld1:
|
|
assert(ArgIdx == 0 && "Invalid argument index");
|
|
// LLVM's vld1 and vst1 intrinsics currently only support a single
|
|
// vector register.
|
|
return MemoryLocation(
|
|
Arg, LocationSize::precise(DL.getTypeStoreSize(II->getType())),
|
|
AATags);
|
|
|
|
case Intrinsic::arm_neon_vst1:
|
|
assert(ArgIdx == 0 && "Invalid argument index");
|
|
return MemoryLocation(Arg,
|
|
LocationSize::precise(DL.getTypeStoreSize(
|
|
II->getArgOperand(1)->getType())),
|
|
AATags);
|
|
}
|
|
|
|
assert(
|
|
!isa<AnyMemTransferInst>(II) &&
|
|
"all memory transfer intrinsics should be handled by the switch above");
|
|
}
|
|
|
|
// We can bound the aliasing properties of memset_pattern16 just as we can
|
|
// for memcpy/memset. This is particularly important because the
|
|
// LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16
|
|
// whenever possible.
|
|
LibFunc F;
|
|
if (TLI && TLI->getLibFunc(*Call, F) && TLI->has(F)) {
|
|
switch (F) {
|
|
case LibFunc_strcpy:
|
|
case LibFunc_strcat:
|
|
case LibFunc_strncat:
|
|
assert((ArgIdx == 0 || ArgIdx == 1) && "Invalid argument index for str function");
|
|
return MemoryLocation::getAfter(Arg, AATags);
|
|
|
|
case LibFunc_memset_chk: {
|
|
assert(ArgIdx == 0 && "Invalid argument index for memset_chk");
|
|
LocationSize Size = LocationSize::afterPointer();
|
|
if (const auto *Len = dyn_cast<ConstantInt>(Call->getArgOperand(2))) {
|
|
// memset_chk writes at most Len bytes. It may write less, if Len
|
|
// exceeds the specified max size and aborts.
|
|
Size = LocationSize::upperBound(Len->getZExtValue());
|
|
}
|
|
return MemoryLocation(Arg, Size, AATags);
|
|
}
|
|
case LibFunc_strncpy: {
|
|
assert((ArgIdx == 0 || ArgIdx == 1) &&
|
|
"Invalid argument index for strncpy");
|
|
LocationSize Size = LocationSize::afterPointer();
|
|
if (const auto *Len = dyn_cast<ConstantInt>(Call->getArgOperand(2))) {
|
|
// strncpy is guaranteed to write Len bytes, but only reads up to Len
|
|
// bytes.
|
|
Size = ArgIdx == 0 ? LocationSize::precise(Len->getZExtValue())
|
|
: LocationSize::upperBound(Len->getZExtValue());
|
|
}
|
|
return MemoryLocation(Arg, Size, AATags);
|
|
}
|
|
case LibFunc_memset_pattern16:
|
|
case LibFunc_memset_pattern4:
|
|
case LibFunc_memset_pattern8:
|
|
assert((ArgIdx == 0 || ArgIdx == 1) &&
|
|
"Invalid argument index for memset_pattern16");
|
|
if (ArgIdx == 1) {
|
|
unsigned Size = 16;
|
|
if (F == LibFunc_memset_pattern4)
|
|
Size = 4;
|
|
else if (F == LibFunc_memset_pattern8)
|
|
Size = 8;
|
|
return MemoryLocation(Arg, LocationSize::precise(Size), AATags);
|
|
}
|
|
if (const ConstantInt *LenCI =
|
|
dyn_cast<ConstantInt>(Call->getArgOperand(2)))
|
|
return MemoryLocation(Arg, LocationSize::precise(LenCI->getZExtValue()),
|
|
AATags);
|
|
return MemoryLocation::getAfter(Arg, AATags);
|
|
case LibFunc_bcmp:
|
|
case LibFunc_memcmp:
|
|
assert((ArgIdx == 0 || ArgIdx == 1) &&
|
|
"Invalid argument index for memcmp/bcmp");
|
|
if (const ConstantInt *LenCI =
|
|
dyn_cast<ConstantInt>(Call->getArgOperand(2)))
|
|
return MemoryLocation(Arg, LocationSize::precise(LenCI->getZExtValue()),
|
|
AATags);
|
|
return MemoryLocation::getAfter(Arg, AATags);
|
|
case LibFunc_memchr:
|
|
assert((ArgIdx == 0) && "Invalid argument index for memchr");
|
|
if (const ConstantInt *LenCI =
|
|
dyn_cast<ConstantInt>(Call->getArgOperand(2)))
|
|
return MemoryLocation(Arg, LocationSize::precise(LenCI->getZExtValue()),
|
|
AATags);
|
|
return MemoryLocation::getAfter(Arg, AATags);
|
|
case LibFunc_memccpy:
|
|
assert((ArgIdx == 0 || ArgIdx == 1) &&
|
|
"Invalid argument index for memccpy");
|
|
// We only know an upper bound on the number of bytes read/written.
|
|
if (const ConstantInt *LenCI =
|
|
dyn_cast<ConstantInt>(Call->getArgOperand(3)))
|
|
return MemoryLocation(
|
|
Arg, LocationSize::upperBound(LenCI->getZExtValue()), AATags);
|
|
return MemoryLocation::getAfter(Arg, AATags);
|
|
default:
|
|
break;
|
|
};
|
|
}
|
|
|
|
return MemoryLocation::getBeforeOrAfter(Call->getArgOperand(ArgIdx), AATags);
|
|
}
|