Matheus Izvekov 91cdd35008
[clang] Improve nested name specifier AST representation (#147835)
This is a major change on how we represent nested name qualifications in
the AST.

* The nested name specifier itself and how it's stored is changed. The
prefixes for types are handled within the type hierarchy, which makes
canonicalization for them super cheap, no memory allocation required.
Also translating a type into nested name specifier form becomes a no-op.
An identifier is stored as a DependentNameType. The nested name
specifier gains a lightweight handle class, to be used instead of
passing around pointers, which is similar to what is implemented for
TemplateName. There is still one free bit available, and this handle can
be used within a PointerUnion and PointerIntPair, which should keep
bit-packing aficionados happy.
* The ElaboratedType node is removed, all type nodes in which it could
previously apply to can now store the elaborated keyword and name
qualifier, tail allocating when present.
* TagTypes can now point to the exact declaration found when producing
these, as opposed to the previous situation of there only existing one
TagType per entity. This increases the amount of type sugar retained,
and can have several applications, for example in tracking module
ownership, and other tools which care about source file origins, such as
IWYU. These TagTypes are lazily allocated, in order to limit the
increase in AST size.

This patch offers a great performance benefit.

It greatly improves compilation time for
[stdexec](https://github.com/NVIDIA/stdexec). For one datapoint, for
`test_on2.cpp` in that project, which is the slowest compiling test,
this patch improves `-c` compilation time by about 7.2%, with the
`-fsyntax-only` improvement being at ~12%.

This has great results on compile-time-tracker as well:

![image](https://github.com/user-attachments/assets/700dce98-2cab-4aa8-97d1-b038c0bee831)

This patch also further enables other optimziations in the future, and
will reduce the performance impact of template specialization resugaring
when that lands.

It has some other miscelaneous drive-by fixes.

About the review: Yes the patch is huge, sorry about that. Part of the
reason is that I started by the nested name specifier part, before the
ElaboratedType part, but that had a huge performance downside, as
ElaboratedType is a big performance hog. I didn't have the steam to go
back and change the patch after the fact.

There is also a lot of internal API changes, and it made sense to remove
ElaboratedType in one go, versus removing it from one type at a time, as
that would present much more churn to the users. Also, the nested name
specifier having a different API avoids missing changes related to how
prefixes work now, which could make existing code compile but not work.

How to review: The important changes are all in
`clang/include/clang/AST` and `clang/lib/AST`, with also important
changes in `clang/lib/Sema/TreeTransform.h`.

The rest and bulk of the changes are mostly consequences of the changes
in API.

PS: TagType::getDecl is renamed to `getOriginalDecl` in this patch, just
for easier to rebasing. I plan to rename it back after this lands.

Fixes #136624
Fixes https://github.com/llvm/llvm-project/issues/43179
Fixes https://github.com/llvm/llvm-project/issues/68670
Fixes https://github.com/llvm/llvm-project/issues/92757
2025-08-09 05:06:53 -03:00

1010 lines
44 KiB
C++

//===-- ChangeNamespace.cpp - Change namespace implementation -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "ChangeNamespace.h"
#include "clang/AST/ASTContext.h"
#include "clang/Format/Format.h"
#include "clang/Lex/Lexer.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
using namespace clang::ast_matchers;
namespace clang {
namespace change_namespace {
namespace {
inline std::string joinNamespaces(ArrayRef<StringRef> Namespaces) {
return llvm::join(Namespaces, "::");
}
// Given "a::b::c", returns {"a", "b", "c"}.
llvm::SmallVector<llvm::StringRef, 4> splitSymbolName(llvm::StringRef Name) {
llvm::SmallVector<llvm::StringRef, 4> Splitted;
Name.split(Splitted, "::", /*MaxSplit=*/-1,
/*KeepEmpty=*/false);
return Splitted;
}
SourceLocation endLocationForType(TypeLoc TLoc) {
if (auto QTL = TLoc.getAs<QualifiedTypeLoc>())
TLoc = QTL.getUnqualifiedLoc();
// The location for template specializations (e.g. Foo<int>) includes the
// templated types in its location range. We want to restrict this to just
// before the `<` character.
if (TLoc.getTypeLocClass() == TypeLoc::TemplateSpecialization)
return TLoc.castAs<TemplateSpecializationTypeLoc>()
.getLAngleLoc()
.getLocWithOffset(-1);
return TLoc.getEndLoc();
}
// Returns the containing namespace of `InnerNs` by skipping `PartialNsName`.
// If the `InnerNs` does not have `PartialNsName` as suffix, or `PartialNsName`
// is empty, nullptr is returned.
// For example, if `InnerNs` is "a::b::c" and `PartialNsName` is "b::c", then
// the NamespaceDecl of namespace "a" will be returned.
const NamespaceDecl *getOuterNamespace(const NamespaceDecl *InnerNs,
llvm::StringRef PartialNsName) {
if (!InnerNs || PartialNsName.empty())
return nullptr;
const auto *CurrentContext = llvm::cast<DeclContext>(InnerNs);
const auto *CurrentNs = InnerNs;
auto PartialNsNameSplitted = splitSymbolName(PartialNsName);
while (!PartialNsNameSplitted.empty()) {
// Get the inner-most namespace in CurrentContext.
while (CurrentContext && !llvm::isa<NamespaceDecl>(CurrentContext))
CurrentContext = CurrentContext->getParent();
if (!CurrentContext)
return nullptr;
CurrentNs = llvm::cast<NamespaceDecl>(CurrentContext);
if (PartialNsNameSplitted.back() != CurrentNs->getNameAsString())
return nullptr;
PartialNsNameSplitted.pop_back();
CurrentContext = CurrentContext->getParent();
}
return CurrentNs;
}
static std::unique_ptr<Lexer>
getLexerStartingFromLoc(SourceLocation Loc, const SourceManager &SM,
const LangOptions &LangOpts) {
if (Loc.isMacroID() &&
!Lexer::isAtEndOfMacroExpansion(Loc, SM, LangOpts, &Loc))
return nullptr;
// Break down the source location.
std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(Loc);
// Try to load the file buffer.
bool InvalidTemp = false;
llvm::StringRef File = SM.getBufferData(LocInfo.first, &InvalidTemp);
if (InvalidTemp)
return nullptr;
const char *TokBegin = File.data() + LocInfo.second;
// Lex from the start of the given location.
return std::make_unique<Lexer>(SM.getLocForStartOfFile(LocInfo.first),
LangOpts, File.begin(), TokBegin, File.end());
}
// FIXME: get rid of this helper function if this is supported in clang-refactor
// library.
static SourceLocation getStartOfNextLine(SourceLocation Loc,
const SourceManager &SM,
const LangOptions &LangOpts) {
std::unique_ptr<Lexer> Lex = getLexerStartingFromLoc(Loc, SM, LangOpts);
if (!Lex)
return SourceLocation();
llvm::SmallVector<char, 16> Line;
// FIXME: this is a bit hacky to get ReadToEndOfLine work.
Lex->setParsingPreprocessorDirective(true);
Lex->ReadToEndOfLine(&Line);
auto End = Loc.getLocWithOffset(Line.size());
return SM.getLocForEndOfFile(SM.getDecomposedLoc(Loc).first) == End
? End
: End.getLocWithOffset(1);
}
// Returns `R` with new range that refers to code after `Replaces` being
// applied.
tooling::Replacement
getReplacementInChangedCode(const tooling::Replacements &Replaces,
const tooling::Replacement &R) {
unsigned NewStart = Replaces.getShiftedCodePosition(R.getOffset());
unsigned NewEnd =
Replaces.getShiftedCodePosition(R.getOffset() + R.getLength());
return tooling::Replacement(R.getFilePath(), NewStart, NewEnd - NewStart,
R.getReplacementText());
}
// Adds a replacement `R` into `Replaces` or merges it into `Replaces` by
// applying all existing Replaces first if there is conflict.
void addOrMergeReplacement(const tooling::Replacement &R,
tooling::Replacements *Replaces) {
auto Err = Replaces->add(R);
if (Err) {
llvm::consumeError(std::move(Err));
auto Replace = getReplacementInChangedCode(*Replaces, R);
*Replaces = Replaces->merge(tooling::Replacements(Replace));
}
}
tooling::Replacement createReplacement(SourceLocation Start, SourceLocation End,
llvm::StringRef ReplacementText,
const SourceManager &SM) {
if (!Start.isValid() || !End.isValid()) {
llvm::errs() << "start or end location were invalid\n";
return tooling::Replacement();
}
if (SM.getDecomposedLoc(Start).first != SM.getDecomposedLoc(End).first) {
llvm::errs()
<< "start or end location were in different macro expansions\n";
return tooling::Replacement();
}
Start = SM.getSpellingLoc(Start);
End = SM.getSpellingLoc(End);
if (SM.getFileID(Start) != SM.getFileID(End)) {
llvm::errs() << "start or end location were in different files\n";
return tooling::Replacement();
}
return tooling::Replacement(
SM, CharSourceRange::getTokenRange(SM.getSpellingLoc(Start),
SM.getSpellingLoc(End)),
ReplacementText);
}
void addReplacementOrDie(
SourceLocation Start, SourceLocation End, llvm::StringRef ReplacementText,
const SourceManager &SM,
std::map<std::string, tooling::Replacements> *FileToReplacements) {
const auto R = createReplacement(Start, End, ReplacementText, SM);
auto Err = (*FileToReplacements)[std::string(R.getFilePath())].add(R);
if (Err)
llvm_unreachable(llvm::toString(std::move(Err)).c_str());
}
tooling::Replacement createInsertion(SourceLocation Loc,
llvm::StringRef InsertText,
const SourceManager &SM) {
if (Loc.isInvalid()) {
llvm::errs() << "insert Location is invalid.\n";
return tooling::Replacement();
}
Loc = SM.getSpellingLoc(Loc);
return tooling::Replacement(SM, Loc, 0, InsertText);
}
// Returns the shortest qualified name for declaration `DeclName` in the
// namespace `NsName`. For example, if `DeclName` is "a::b::X" and `NsName`
// is "a::c::d", then "b::X" will be returned.
// Note that if `DeclName` is `::b::X` and `NsName` is `::a::b`, this returns
// "::b::X" instead of "b::X" since there will be a name conflict otherwise.
// \param DeclName A fully qualified name, "::a::b::X" or "a::b::X".
// \param NsName A fully qualified name, "::a::b" or "a::b". Global namespace
// will have empty name.
std::string getShortestQualifiedNameInNamespace(llvm::StringRef DeclName,
llvm::StringRef NsName) {
DeclName = DeclName.ltrim(':');
NsName = NsName.ltrim(':');
if (!DeclName.contains(':'))
return std::string(DeclName);
auto NsNameSplitted = splitSymbolName(NsName);
auto DeclNsSplitted = splitSymbolName(DeclName);
llvm::StringRef UnqualifiedDeclName = DeclNsSplitted.pop_back_val();
// If the Decl is in global namespace, there is no need to shorten it.
if (DeclNsSplitted.empty())
return std::string(UnqualifiedDeclName);
// If NsName is the global namespace, we can simply use the DeclName sans
// leading "::".
if (NsNameSplitted.empty())
return std::string(DeclName);
if (NsNameSplitted.front() != DeclNsSplitted.front()) {
// The DeclName must be fully-qualified, but we still need to decide if a
// leading "::" is necessary. For example, if `NsName` is "a::b::c" and the
// `DeclName` is "b::X", then the reference must be qualified as "::b::X"
// to avoid conflict.
if (llvm::is_contained(NsNameSplitted, DeclNsSplitted.front()))
return ("::" + DeclName).str();
return std::string(DeclName);
}
// Since there is already an overlap namespace, we know that `DeclName` can be
// shortened, so we reduce the longest common prefix.
auto DeclI = DeclNsSplitted.begin();
auto DeclE = DeclNsSplitted.end();
auto NsI = NsNameSplitted.begin();
auto NsE = NsNameSplitted.end();
for (; DeclI != DeclE && NsI != NsE && *DeclI == *NsI; ++DeclI, ++NsI) {
}
return (DeclI == DeclE)
? UnqualifiedDeclName.str()
: (llvm::join(DeclI, DeclE, "::") + "::" + UnqualifiedDeclName)
.str();
}
std::string wrapCodeInNamespace(StringRef NestedNs, std::string Code) {
if (Code.back() != '\n')
Code += "\n";
auto NsSplitted = splitSymbolName(NestedNs);
while (!NsSplitted.empty()) {
// FIXME: consider code style for comments.
Code = ("namespace " + NsSplitted.back() + " {\n" + Code +
"} // namespace " + NsSplitted.back() + "\n")
.str();
NsSplitted.pop_back();
}
return Code;
}
// Returns true if \p D is a nested DeclContext in \p Context
bool isNestedDeclContext(const DeclContext *D, const DeclContext *Context) {
while (D) {
if (D == Context)
return true;
D = D->getParent();
}
return false;
}
// Returns true if \p D is visible at \p Loc with DeclContext \p DeclCtx.
bool isDeclVisibleAtLocation(const SourceManager &SM, const Decl *D,
const DeclContext *DeclCtx, SourceLocation Loc) {
SourceLocation DeclLoc = SM.getSpellingLoc(D->getBeginLoc());
Loc = SM.getSpellingLoc(Loc);
return SM.isBeforeInTranslationUnit(DeclLoc, Loc) &&
(SM.getFileID(DeclLoc) == SM.getFileID(Loc) &&
isNestedDeclContext(DeclCtx, D->getDeclContext()));
}
// Given a qualified symbol name, returns true if the symbol will be
// incorrectly qualified without leading "::". For example, a symbol
// "nx::ny::Foo" in namespace "na::nx::ny" without leading "::"; a symbol
// "util::X" in namespace "na" can potentially conflict with "na::util" (if this
// exists).
bool conflictInNamespace(const ASTContext &AST, llvm::StringRef QualifiedSymbol,
llvm::StringRef Namespace) {
auto SymbolSplitted = splitSymbolName(QualifiedSymbol.trim(":"));
assert(!SymbolSplitted.empty());
SymbolSplitted.pop_back(); // We are only interested in namespaces.
if (SymbolSplitted.size() >= 1 && !Namespace.empty()) {
auto SymbolTopNs = SymbolSplitted.front();
auto NsSplitted = splitSymbolName(Namespace.trim(":"));
assert(!NsSplitted.empty());
auto LookupDecl = [&AST](const Decl &Scope,
llvm::StringRef Name) -> const NamedDecl * {
const auto *DC = llvm::dyn_cast<DeclContext>(&Scope);
if (!DC)
return nullptr;
auto LookupRes = DC->lookup(DeclarationName(&AST.Idents.get(Name)));
if (LookupRes.empty())
return nullptr;
return LookupRes.front();
};
// We do not check the outermost namespace since it would not be a
// conflict if it equals to the symbol's outermost namespace and the
// symbol name would have been shortened.
const NamedDecl *Scope =
LookupDecl(*AST.getTranslationUnitDecl(), NsSplitted.front());
for (const auto &I : llvm::drop_begin(NsSplitted)) {
if (I == SymbolTopNs) // Handles "::ny" in "::nx::ny" case.
return true;
// Handles "::util" and "::nx::util" conflicts.
if (Scope) {
if (LookupDecl(*Scope, SymbolTopNs))
return true;
Scope = LookupDecl(*Scope, I);
}
}
if (Scope && LookupDecl(*Scope, SymbolTopNs))
return true;
}
return false;
}
bool isTemplateParameter(TypeLoc Type) {
while (!Type.isNull()) {
if (Type.getTypeLocClass() == TypeLoc::SubstTemplateTypeParm)
return true;
Type = Type.getNextTypeLoc();
}
return false;
}
} // anonymous namespace
ChangeNamespaceTool::ChangeNamespaceTool(
llvm::StringRef OldNs, llvm::StringRef NewNs, llvm::StringRef FilePattern,
llvm::ArrayRef<std::string> AllowedSymbolPatterns,
std::map<std::string, tooling::Replacements> *FileToReplacements,
llvm::StringRef FallbackStyle)
: FallbackStyle(FallbackStyle), FileToReplacements(*FileToReplacements),
OldNamespace(OldNs.ltrim(':')), NewNamespace(NewNs.ltrim(':')),
FilePattern(FilePattern), FilePatternRE(FilePattern) {
FileToReplacements->clear();
auto OldNsSplitted = splitSymbolName(OldNamespace);
auto NewNsSplitted = splitSymbolName(NewNamespace);
// Calculates `DiffOldNamespace` and `DiffNewNamespace`.
while (!OldNsSplitted.empty() && !NewNsSplitted.empty() &&
OldNsSplitted.front() == NewNsSplitted.front()) {
OldNsSplitted.erase(OldNsSplitted.begin());
NewNsSplitted.erase(NewNsSplitted.begin());
}
DiffOldNamespace = joinNamespaces(OldNsSplitted);
DiffNewNamespace = joinNamespaces(NewNsSplitted);
for (const auto &Pattern : AllowedSymbolPatterns)
AllowedSymbolRegexes.emplace_back(Pattern);
}
void ChangeNamespaceTool::registerMatchers(ast_matchers::MatchFinder *Finder) {
std::string FullOldNs = "::" + OldNamespace;
// Prefix is the outer-most namespace in DiffOldNamespace. For example, if the
// OldNamespace is "a::b::c" and DiffOldNamespace is "b::c", then Prefix will
// be "a::b". Declarations in this namespace will not be visible in the new
// namespace. If DiffOldNamespace is empty, Prefix will be a invalid name "-".
llvm::SmallVector<llvm::StringRef, 4> DiffOldNsSplitted;
llvm::StringRef(DiffOldNamespace)
.split(DiffOldNsSplitted, "::", /*MaxSplit=*/-1,
/*KeepEmpty=*/false);
std::string Prefix = "-";
if (!DiffOldNsSplitted.empty())
Prefix = (StringRef(FullOldNs).drop_back(DiffOldNamespace.size()) +
DiffOldNsSplitted.front())
.str();
auto IsInMovedNs =
allOf(hasAncestor(namespaceDecl(hasName(FullOldNs)).bind("ns_decl")),
isExpansionInFileMatching(FilePattern));
auto IsVisibleInNewNs = anyOf(
IsInMovedNs, unless(hasAncestor(namespaceDecl(hasName(Prefix)))));
// Match using declarations.
Finder->addMatcher(
usingDecl(isExpansionInFileMatching(FilePattern), IsVisibleInNewNs)
.bind("using"),
this);
// Match using namespace declarations.
Finder->addMatcher(usingDirectiveDecl(isExpansionInFileMatching(FilePattern),
IsVisibleInNewNs)
.bind("using_namespace"),
this);
// Match namespace alias declarations.
Finder->addMatcher(namespaceAliasDecl(isExpansionInFileMatching(FilePattern),
IsVisibleInNewNs)
.bind("namespace_alias"),
this);
// Match old namespace blocks.
Finder->addMatcher(
namespaceDecl(hasName(FullOldNs), isExpansionInFileMatching(FilePattern))
.bind("old_ns"),
this);
// Match class forward-declarations in the old namespace.
// Note that forward-declarations in classes are not matched.
Finder->addMatcher(cxxRecordDecl(unless(anyOf(isImplicit(), isDefinition())),
IsInMovedNs, hasParent(namespaceDecl()))
.bind("class_fwd_decl"),
this);
// Match template class forward-declarations in the old namespace.
Finder->addMatcher(
classTemplateDecl(unless(hasDescendant(cxxRecordDecl(isDefinition()))),
IsInMovedNs, hasParent(namespaceDecl()))
.bind("template_class_fwd_decl"),
this);
// Match references to types that are not defined in the old namespace.
// Forward-declarations in the old namespace are also matched since they will
// be moved back to the old namespace.
auto DeclMatcher = namedDecl(
hasAncestor(namespaceDecl()),
unless(anyOf(
isImplicit(), hasAncestor(namespaceDecl(isAnonymous())),
hasAncestor(cxxRecordDecl()),
allOf(IsInMovedNs, unless(cxxRecordDecl(unless(isDefinition())))))));
// Using shadow declarations in classes always refers to base class, which
// does not need to be qualified since it can be inferred from inheritance.
// Note that this does not match using alias declarations.
auto UsingShadowDeclInClass =
usingDecl(hasAnyUsingShadowDecl(decl()), hasParent(cxxRecordDecl()));
// Match TypeLocs on the declaration. Carefully match only the outermost
// TypeLoc and template specialization arguments (which are not outermost)
// that are directly linked to types matching `DeclMatcher`. Nested name
// specifier locs are handled separately below.
Finder->addMatcher(
typeLoc(IsInMovedNs,
loc(qualType(hasDeclaration(DeclMatcher.bind("from_decl")))),
unless(anyOf(hasParent(typeLoc(loc(qualType(
hasDeclaration(DeclMatcher),
unless(templateSpecializationType()))))),
hasParent(nestedNameSpecifierLoc()),
hasAncestor(decl(isImplicit())),
hasAncestor(UsingShadowDeclInClass),
hasAncestor(functionDecl(isDefaulted())))),
hasAncestor(decl().bind("dc")))
.bind("type"),
this);
// Types in `UsingShadowDecl` is not matched by `typeLoc` above, so we need to
// special case it.
// Since using declarations inside classes must have the base class in the
// nested name specifier, we leave it to the nested name specifier matcher.
Finder->addMatcher(usingDecl(IsInMovedNs, hasAnyUsingShadowDecl(decl()),
unless(UsingShadowDeclInClass))
.bind("using_with_shadow"),
this);
// Handle types in nested name specifier. Specifiers that are in a TypeLoc
// matched above are not matched, e.g. "A::" in "A::A" is not matched since
// "A::A" would have already been fixed.
Finder->addMatcher(
nestedNameSpecifierLoc(
hasAncestor(decl(IsInMovedNs).bind("dc")),
loc(nestedNameSpecifier(
specifiesType(hasDeclaration(DeclMatcher.bind("from_decl"))))),
unless(anyOf(hasAncestor(decl(isImplicit())),
hasAncestor(UsingShadowDeclInClass),
hasAncestor(functionDecl(isDefaulted())),
hasAncestor(typeLoc(loc(qualType(hasDeclaration(
decl(equalsBoundNode("from_decl"))))))))))
.bind("nested_specifier_loc"),
this);
// Matches base class initializers in constructors. TypeLocs of base class
// initializers do not need to be fixed. For example,
// class X : public a::b::Y {
// public:
// X() : Y::Y() {} // Y::Y do not need namespace specifier.
// };
Finder->addMatcher(
cxxCtorInitializer(isBaseInitializer()).bind("base_initializer"), this);
// Handle function.
// Only handle functions that are defined in a namespace excluding member
// function, static methods (qualified by nested specifier), and functions
// defined in the global namespace.
// Note that the matcher does not exclude calls to out-of-line static method
// definitions, so we need to exclude them in the callback handler.
auto FuncMatcher =
functionDecl(unless(anyOf(cxxMethodDecl(), IsInMovedNs,
hasAncestor(namespaceDecl(isAnonymous())),
hasAncestor(cxxRecordDecl()))),
hasParent(namespaceDecl()));
Finder->addMatcher(expr(hasAncestor(decl().bind("dc")), IsInMovedNs,
unless(hasAncestor(decl(isImplicit()))),
anyOf(callExpr(callee(FuncMatcher)).bind("call"),
declRefExpr(to(FuncMatcher.bind("func_decl")))
.bind("func_ref"))),
this);
auto GlobalVarMatcher = varDecl(
hasGlobalStorage(), hasParent(namespaceDecl()),
unless(anyOf(IsInMovedNs, hasAncestor(namespaceDecl(isAnonymous())))));
Finder->addMatcher(declRefExpr(IsInMovedNs, hasAncestor(decl().bind("dc")),
to(GlobalVarMatcher.bind("var_decl")))
.bind("var_ref"),
this);
// Handle unscoped enum constant.
auto UnscopedEnumMatcher = enumConstantDecl(hasParent(enumDecl(
hasParent(namespaceDecl()),
unless(anyOf(isScoped(), IsInMovedNs, hasAncestor(cxxRecordDecl()),
hasAncestor(namespaceDecl(isAnonymous())))))));
Finder->addMatcher(
declRefExpr(IsInMovedNs, hasAncestor(decl().bind("dc")),
to(UnscopedEnumMatcher.bind("enum_const_decl")))
.bind("enum_const_ref"),
this);
}
void ChangeNamespaceTool::run(
const ast_matchers::MatchFinder::MatchResult &Result) {
if (const auto *Using = Result.Nodes.getNodeAs<UsingDecl>("using")) {
UsingDecls.insert(Using);
} else if (const auto *UsingNamespace =
Result.Nodes.getNodeAs<UsingDirectiveDecl>(
"using_namespace")) {
UsingNamespaceDecls.insert(UsingNamespace);
} else if (const auto *NamespaceAlias =
Result.Nodes.getNodeAs<NamespaceAliasDecl>(
"namespace_alias")) {
NamespaceAliasDecls.insert(NamespaceAlias);
} else if (const auto *NsDecl =
Result.Nodes.getNodeAs<NamespaceDecl>("old_ns")) {
moveOldNamespace(Result, NsDecl);
} else if (const auto *FwdDecl =
Result.Nodes.getNodeAs<CXXRecordDecl>("class_fwd_decl")) {
moveClassForwardDeclaration(Result, cast<NamedDecl>(FwdDecl));
} else if (const auto *TemplateFwdDecl =
Result.Nodes.getNodeAs<ClassTemplateDecl>(
"template_class_fwd_decl")) {
moveClassForwardDeclaration(Result, cast<NamedDecl>(TemplateFwdDecl));
} else if (const auto *UsingWithShadow =
Result.Nodes.getNodeAs<UsingDecl>("using_with_shadow")) {
fixUsingShadowDecl(Result, UsingWithShadow);
} else if (const auto *Specifier =
Result.Nodes.getNodeAs<NestedNameSpecifierLoc>(
"nested_specifier_loc")) {
SourceLocation Start = Specifier->getBeginLoc();
SourceLocation End = endLocationForType(Specifier->castAsTypeLoc());
fixTypeLoc(Result, Start, End, Specifier->castAsTypeLoc());
} else if (const auto *BaseInitializer =
Result.Nodes.getNodeAs<CXXCtorInitializer>(
"base_initializer")) {
BaseCtorInitializerTypeLocs.push_back(
BaseInitializer->getTypeSourceInfo()->getTypeLoc());
} else if (const auto *TLoc = Result.Nodes.getNodeAs<TypeLoc>("type")) {
// This avoids fixing types with record types as qualifier, which is not
// filtered by matchers in some cases, e.g. the type is templated. We should
// handle the record type qualifier instead.
TypeLoc Loc = *TLoc;
if (auto QTL = Loc.getAs<QualifiedTypeLoc>())
Loc = QTL.getUnqualifiedLoc();
// FIXME: avoid changing injected class names.
if (NestedNameSpecifier NestedNameSpecifier =
Loc.getPrefix().getNestedNameSpecifier();
NestedNameSpecifier.getKind() == NestedNameSpecifier::Kind::Type &&
NestedNameSpecifier.getAsType()->isRecordType())
return;
fixTypeLoc(Result, Loc.getNonElaboratedBeginLoc(), endLocationForType(Loc),
Loc);
} else if (const auto *VarRef =
Result.Nodes.getNodeAs<DeclRefExpr>("var_ref")) {
const auto *Var = Result.Nodes.getNodeAs<VarDecl>("var_decl");
assert(Var);
if (Var->getCanonicalDecl()->isStaticDataMember())
return;
const auto *Context = Result.Nodes.getNodeAs<Decl>("dc");
assert(Context && "Empty decl context.");
fixDeclRefExpr(Result, Context->getDeclContext(),
llvm::cast<NamedDecl>(Var), VarRef);
} else if (const auto *EnumConstRef =
Result.Nodes.getNodeAs<DeclRefExpr>("enum_const_ref")) {
// Do not rename the reference if it is already scoped by the EnumDecl name.
if (NestedNameSpecifier Qualifier = EnumConstRef->getQualifier();
Qualifier.getKind() == NestedNameSpecifier::Kind::Type &&
Qualifier.getAsType()->isEnumeralType())
return;
const auto *EnumConstDecl =
Result.Nodes.getNodeAs<EnumConstantDecl>("enum_const_decl");
assert(EnumConstDecl);
const auto *Context = Result.Nodes.getNodeAs<Decl>("dc");
assert(Context && "Empty decl context.");
// FIXME: this would qualify "ns::VALUE" as "ns::EnumValue::VALUE". Fix it
// if it turns out to be an issue.
fixDeclRefExpr(Result, Context->getDeclContext(),
llvm::cast<NamedDecl>(EnumConstDecl), EnumConstRef);
} else if (const auto *FuncRef =
Result.Nodes.getNodeAs<DeclRefExpr>("func_ref")) {
// If this reference has been processed as a function call, we do not
// process it again.
if (!ProcessedFuncRefs.insert(FuncRef).second)
return;
const auto *Func = Result.Nodes.getNodeAs<FunctionDecl>("func_decl");
assert(Func);
const auto *Context = Result.Nodes.getNodeAs<Decl>("dc");
assert(Context && "Empty decl context.");
fixDeclRefExpr(Result, Context->getDeclContext(),
llvm::cast<NamedDecl>(Func), FuncRef);
} else {
const auto *Call = Result.Nodes.getNodeAs<CallExpr>("call");
assert(Call != nullptr && "Expecting callback for CallExpr.");
const auto *CalleeFuncRef =
llvm::cast<DeclRefExpr>(Call->getCallee()->IgnoreImplicit());
ProcessedFuncRefs.insert(CalleeFuncRef);
const FunctionDecl *Func = Call->getDirectCallee();
assert(Func != nullptr);
// FIXME: ignore overloaded operators. This would miss cases where operators
// are called by qualified names (i.e. "ns::operator <"). Ignore such
// cases for now.
if (Func->isOverloadedOperator())
return;
// Ignore out-of-line static methods since they will be handled by nested
// name specifiers.
if (Func->getCanonicalDecl()->getStorageClass() ==
StorageClass::SC_Static &&
Func->isOutOfLine())
return;
const auto *Context = Result.Nodes.getNodeAs<Decl>("dc");
assert(Context && "Empty decl context.");
SourceRange CalleeRange = Call->getCallee()->getSourceRange();
replaceQualifiedSymbolInDeclContext(
Result, Context->getDeclContext(), CalleeRange.getBegin(),
CalleeRange.getEnd(), llvm::cast<NamedDecl>(Func));
}
}
static SourceLocation getLocAfterNamespaceLBrace(const NamespaceDecl *NsDecl,
const SourceManager &SM,
const LangOptions &LangOpts) {
std::unique_ptr<Lexer> Lex =
getLexerStartingFromLoc(NsDecl->getBeginLoc(), SM, LangOpts);
assert(Lex && "Failed to create lexer from the beginning of namespace.");
if (!Lex)
return SourceLocation();
Token Tok;
while (!Lex->LexFromRawLexer(Tok) && Tok.isNot(tok::TokenKind::l_brace)) {
}
return Tok.isNot(tok::TokenKind::l_brace)
? SourceLocation()
: Tok.getEndLoc().getLocWithOffset(1);
}
// Stores information about a moved namespace in `MoveNamespaces` and leaves
// the actual movement to `onEndOfTranslationUnit()`.
void ChangeNamespaceTool::moveOldNamespace(
const ast_matchers::MatchFinder::MatchResult &Result,
const NamespaceDecl *NsDecl) {
// If the namespace is empty, do nothing.
if (Decl::castToDeclContext(NsDecl)->decls_empty())
return;
const SourceManager &SM = *Result.SourceManager;
// Get the range of the code in the old namespace.
SourceLocation Start =
getLocAfterNamespaceLBrace(NsDecl, SM, Result.Context->getLangOpts());
assert(Start.isValid() && "Can't find l_brace for namespace.");
MoveNamespace MoveNs;
MoveNs.Offset = SM.getFileOffset(Start);
// The range of the moved namespace is from the location just past the left
// brace to the location right before the right brace.
MoveNs.Length = SM.getFileOffset(NsDecl->getRBraceLoc()) - MoveNs.Offset;
// Insert the new namespace after `DiffOldNamespace`. For example, if
// `OldNamespace` is "a::b::c" and `NewNamespace` is `a::x::y`, then
// "x::y" will be inserted inside the existing namespace "a" and after "a::b".
// `OuterNs` is the first namespace in `DiffOldNamespace`, e.g. "namespace b"
// in the above example.
// If there is no outer namespace (i.e. DiffOldNamespace is empty), the new
// namespace will be a nested namespace in the old namespace.
const NamespaceDecl *OuterNs = getOuterNamespace(NsDecl, DiffOldNamespace);
SourceLocation InsertionLoc = Start;
if (OuterNs) {
SourceLocation LocAfterNs = getStartOfNextLine(
OuterNs->getRBraceLoc(), SM, Result.Context->getLangOpts());
assert(LocAfterNs.isValid() &&
"Failed to get location after DiffOldNamespace");
InsertionLoc = LocAfterNs;
}
MoveNs.InsertionOffset = SM.getFileOffset(SM.getSpellingLoc(InsertionLoc));
MoveNs.FID = SM.getFileID(Start);
MoveNs.SourceMgr = Result.SourceManager;
MoveNamespaces[std::string(SM.getFilename(Start))].push_back(MoveNs);
}
// Removes a class forward declaration from the code in the moved namespace and
// creates an `InsertForwardDeclaration` to insert the forward declaration back
// into the old namespace after moving code from the old namespace to the new
// namespace.
// For example, changing "a" to "x":
// Old code:
// namespace a {
// class FWD;
// class A { FWD *fwd; }
// } // a
// New code:
// namespace a {
// class FWD;
// } // a
// namespace x {
// class A { a::FWD *fwd; }
// } // x
void ChangeNamespaceTool::moveClassForwardDeclaration(
const ast_matchers::MatchFinder::MatchResult &Result,
const NamedDecl *FwdDecl) {
SourceLocation Start = FwdDecl->getBeginLoc();
SourceLocation End = FwdDecl->getEndLoc();
const SourceManager &SM = *Result.SourceManager;
SourceLocation AfterSemi = Lexer::findLocationAfterToken(
End, tok::semi, SM, Result.Context->getLangOpts(),
/*SkipTrailingWhitespaceAndNewLine=*/true);
if (AfterSemi.isValid())
End = AfterSemi.getLocWithOffset(-1);
// Delete the forward declaration from the code to be moved.
addReplacementOrDie(Start, End, "", SM, &FileToReplacements);
llvm::StringRef Code = Lexer::getSourceText(
CharSourceRange::getTokenRange(SM.getSpellingLoc(Start),
SM.getSpellingLoc(End)),
SM, Result.Context->getLangOpts());
// Insert the forward declaration back into the old namespace after moving the
// code from old namespace to new namespace.
// Insertion information is stored in `InsertFwdDecls` and actual
// insertion will be performed in `onEndOfTranslationUnit`.
// Get the (old) namespace that contains the forward declaration.
const auto *NsDecl = Result.Nodes.getNodeAs<NamespaceDecl>("ns_decl");
// The namespace contains the forward declaration, so it must not be empty.
assert(!NsDecl->decls_empty());
const auto Insertion = createInsertion(
getLocAfterNamespaceLBrace(NsDecl, SM, Result.Context->getLangOpts()),
Code, SM);
InsertForwardDeclaration InsertFwd;
InsertFwd.InsertionOffset = Insertion.getOffset();
InsertFwd.ForwardDeclText = Insertion.getReplacementText().str();
InsertFwdDecls[std::string(Insertion.getFilePath())].push_back(InsertFwd);
}
// Replaces a qualified symbol (in \p DeclCtx) that refers to a declaration \p
// FromDecl with the shortest qualified name possible when the reference is in
// `NewNamespace`.
void ChangeNamespaceTool::replaceQualifiedSymbolInDeclContext(
const ast_matchers::MatchFinder::MatchResult &Result,
const DeclContext *DeclCtx, SourceLocation Start, SourceLocation End,
const NamedDecl *FromDecl) {
const auto *NsDeclContext = DeclCtx->getEnclosingNamespaceContext();
if (llvm::isa<TranslationUnitDecl>(NsDeclContext)) {
// This should not happen in usual unless the TypeLoc is in function type
// parameters, e.g `std::function<void(T)>`. In this case, DeclContext of
// `T` will be the translation unit. We simply use fully-qualified name
// here.
// Note that `FromDecl` must not be defined in the old namespace (according
// to `DeclMatcher`), so its fully-qualified name will not change after
// changing the namespace.
addReplacementOrDie(Start, End, FromDecl->getQualifiedNameAsString(),
*Result.SourceManager, &FileToReplacements);
return;
}
const auto *NsDecl = llvm::cast<NamespaceDecl>(NsDeclContext);
// Calculate the name of the `NsDecl` after it is moved to new namespace.
std::string OldNs = NsDecl->getQualifiedNameAsString();
llvm::StringRef Postfix = OldNs;
bool Consumed = Postfix.consume_front(OldNamespace);
assert(Consumed && "Expect OldNS to start with OldNamespace.");
(void)Consumed;
const std::string NewNs = (NewNamespace + Postfix).str();
llvm::StringRef NestedName = Lexer::getSourceText(
CharSourceRange::getTokenRange(
Result.SourceManager->getSpellingLoc(Start),
Result.SourceManager->getSpellingLoc(End)),
*Result.SourceManager, Result.Context->getLangOpts());
std::string FromDeclName = FromDecl->getQualifiedNameAsString();
for (llvm::Regex &RE : AllowedSymbolRegexes)
if (RE.match(FromDeclName))
return;
std::string ReplaceName =
getShortestQualifiedNameInNamespace(FromDeclName, NewNs);
// Checks if there is any using namespace declarations that can shorten the
// qualified name.
for (const auto *UsingNamespace : UsingNamespaceDecls) {
if (!isDeclVisibleAtLocation(*Result.SourceManager, UsingNamespace, DeclCtx,
Start))
continue;
StringRef FromDeclNameRef = FromDeclName;
if (FromDeclNameRef.consume_front(UsingNamespace->getNominatedNamespace()
->getQualifiedNameAsString())) {
FromDeclNameRef = FromDeclNameRef.drop_front(2);
if (FromDeclNameRef.size() < ReplaceName.size())
ReplaceName = std::string(FromDeclNameRef);
}
}
// Checks if there is any namespace alias declarations that can shorten the
// qualified name.
for (const auto *NamespaceAlias : NamespaceAliasDecls) {
if (!isDeclVisibleAtLocation(*Result.SourceManager, NamespaceAlias, DeclCtx,
Start))
continue;
StringRef FromDeclNameRef = FromDeclName;
if (FromDeclNameRef.consume_front(
NamespaceAlias->getNamespace()->getQualifiedNameAsString() +
"::")) {
std::string AliasName = NamespaceAlias->getNameAsString();
std::string AliasQualifiedName =
NamespaceAlias->getQualifiedNameAsString();
// We only consider namespace aliases define in the global namespace or
// in namespaces that are directly visible from the reference, i.e.
// ancestor of the `OldNs`. Note that declarations in ancestor namespaces
// but not visible in the new namespace is filtered out by
// "IsVisibleInNewNs" matcher.
if (AliasQualifiedName != AliasName) {
// The alias is defined in some namespace.
assert(StringRef(AliasQualifiedName).ends_with("::" + AliasName));
llvm::StringRef AliasNs =
StringRef(AliasQualifiedName).drop_back(AliasName.size() + 2);
if (!llvm::StringRef(OldNs).starts_with(AliasNs))
continue;
}
std::string NameWithAliasNamespace =
(AliasName + "::" + FromDeclNameRef).str();
if (NameWithAliasNamespace.size() < ReplaceName.size())
ReplaceName = NameWithAliasNamespace;
}
}
// Checks if there is any using shadow declarations that can shorten the
// qualified name.
bool Matched = false;
for (const UsingDecl *Using : UsingDecls) {
if (Matched)
break;
if (isDeclVisibleAtLocation(*Result.SourceManager, Using, DeclCtx, Start)) {
for (const auto *UsingShadow : Using->shadows()) {
const auto *TargetDecl = UsingShadow->getTargetDecl();
if (TargetDecl->getQualifiedNameAsString() ==
FromDecl->getQualifiedNameAsString()) {
ReplaceName = FromDecl->getNameAsString();
Matched = true;
break;
}
}
}
}
bool Conflict = conflictInNamespace(DeclCtx->getParentASTContext(),
ReplaceName, NewNamespace);
// If the new nested name in the new namespace is the same as it was in the
// old namespace, we don't create replacement unless there can be ambiguity.
if ((NestedName == ReplaceName && !Conflict) ||
(NestedName.starts_with("::") && NestedName.drop_front(2) == ReplaceName))
return;
// If the reference need to be fully-qualified, add a leading "::" unless
// NewNamespace is the global namespace.
if (ReplaceName == FromDeclName && !NewNamespace.empty() && Conflict)
ReplaceName = "::" + ReplaceName;
addReplacementOrDie(Start, End, ReplaceName, *Result.SourceManager,
&FileToReplacements);
}
// Replace the [Start, End] of `Type` with the shortest qualified name when the
// `Type` is in `NewNamespace`.
void ChangeNamespaceTool::fixTypeLoc(
const ast_matchers::MatchFinder::MatchResult &Result, SourceLocation Start,
SourceLocation End, TypeLoc Type) {
// FIXME: do not rename template parameter.
if (Start.isInvalid() || End.isInvalid())
return;
// Types of CXXCtorInitializers do not need to be fixed.
if (llvm::is_contained(BaseCtorInitializerTypeLocs, Type))
return;
if (isTemplateParameter(Type))
return;
// The declaration which this TypeLoc refers to.
const auto *FromDecl = Result.Nodes.getNodeAs<NamedDecl>("from_decl");
// `hasDeclaration` gives underlying declaration, but if the type is
// a typedef type, we need to use the typedef type instead.
auto IsInMovedNs = [&](const NamedDecl *D) {
if (!llvm::StringRef(D->getQualifiedNameAsString())
.starts_with(OldNamespace + "::"))
return false;
auto ExpansionLoc = Result.SourceManager->getExpansionLoc(D->getBeginLoc());
if (ExpansionLoc.isInvalid())
return false;
llvm::StringRef Filename = Result.SourceManager->getFilename(ExpansionLoc);
return FilePatternRE.match(Filename);
};
// Make `FromDecl` the immediate declaration that `Type` refers to, i.e. if
// `Type` is an alias type, we make `FromDecl` the type alias declaration.
// Also, don't fix the \p Type if it refers to a type alias decl in the moved
// namespace since the alias decl will be moved along with the type reference.
if (auto *Typedef = Type.getType()->getAs<TypedefType>()) {
FromDecl = Typedef->getDecl();
if (IsInMovedNs(FromDecl))
return;
} else if (auto *TemplateType =
Type.getType()->getAs<TemplateSpecializationType>()) {
if (TemplateType->isTypeAlias()) {
FromDecl = TemplateType->getTemplateName().getAsTemplateDecl();
if (IsInMovedNs(FromDecl))
return;
}
}
const auto *DeclCtx = Result.Nodes.getNodeAs<Decl>("dc");
assert(DeclCtx && "Empty decl context.");
replaceQualifiedSymbolInDeclContext(Result, DeclCtx->getDeclContext(), Start,
End, FromDecl);
}
void ChangeNamespaceTool::fixUsingShadowDecl(
const ast_matchers::MatchFinder::MatchResult &Result,
const UsingDecl *UsingDeclaration) {
SourceLocation Start = UsingDeclaration->getBeginLoc();
SourceLocation End = UsingDeclaration->getEndLoc();
if (Start.isInvalid() || End.isInvalid())
return;
assert(UsingDeclaration->shadow_size() > 0);
// FIXME: it might not be always accurate to use the first using-decl.
const NamedDecl *TargetDecl =
UsingDeclaration->shadow_begin()->getTargetDecl();
std::string TargetDeclName = TargetDecl->getQualifiedNameAsString();
// FIXME: check if target_decl_name is in moved ns, which doesn't make much
// sense. If this happens, we need to use name with the new namespace.
// Use fully qualified name in UsingDecl for now.
addReplacementOrDie(Start, End, "using ::" + TargetDeclName,
*Result.SourceManager, &FileToReplacements);
}
void ChangeNamespaceTool::fixDeclRefExpr(
const ast_matchers::MatchFinder::MatchResult &Result,
const DeclContext *UseContext, const NamedDecl *From,
const DeclRefExpr *Ref) {
SourceRange RefRange = Ref->getSourceRange();
replaceQualifiedSymbolInDeclContext(Result, UseContext, RefRange.getBegin(),
RefRange.getEnd(), From);
}
void ChangeNamespaceTool::onEndOfTranslationUnit() {
// Move namespace blocks and insert forward declaration to old namespace.
for (const auto &FileAndNsMoves : MoveNamespaces) {
auto &NsMoves = FileAndNsMoves.second;
if (NsMoves.empty())
continue;
const std::string &FilePath = FileAndNsMoves.first;
auto &Replaces = FileToReplacements[FilePath];
auto &SM = *NsMoves.begin()->SourceMgr;
llvm::StringRef Code = SM.getBufferData(NsMoves.begin()->FID);
auto ChangedCode = tooling::applyAllReplacements(Code, Replaces);
if (!ChangedCode) {
llvm::errs() << llvm::toString(ChangedCode.takeError()) << "\n";
continue;
}
// Replacements on the changed code for moving namespaces and inserting
// forward declarations to old namespaces.
tooling::Replacements NewReplacements;
// Cut the changed code from the old namespace and paste the code in the new
// namespace.
for (const auto &NsMove : NsMoves) {
// Calculate the range of the old namespace block in the changed
// code.
const unsigned NewOffset = Replaces.getShiftedCodePosition(NsMove.Offset);
const unsigned NewLength =
Replaces.getShiftedCodePosition(NsMove.Offset + NsMove.Length) -
NewOffset;
tooling::Replacement Deletion(FilePath, NewOffset, NewLength, "");
std::string MovedCode = ChangedCode->substr(NewOffset, NewLength);
std::string MovedCodeWrappedInNewNs =
wrapCodeInNamespace(DiffNewNamespace, MovedCode);
// Calculate the new offset at which the code will be inserted in the
// changed code.
unsigned NewInsertionOffset =
Replaces.getShiftedCodePosition(NsMove.InsertionOffset);
tooling::Replacement Insertion(FilePath, NewInsertionOffset, 0,
MovedCodeWrappedInNewNs);
addOrMergeReplacement(Deletion, &NewReplacements);
addOrMergeReplacement(Insertion, &NewReplacements);
}
// After moving namespaces, insert forward declarations back to old
// namespaces.
const auto &FwdDeclInsertions = InsertFwdDecls[FilePath];
for (const auto &FwdDeclInsertion : FwdDeclInsertions) {
unsigned NewInsertionOffset =
Replaces.getShiftedCodePosition(FwdDeclInsertion.InsertionOffset);
tooling::Replacement Insertion(FilePath, NewInsertionOffset, 0,
FwdDeclInsertion.ForwardDeclText);
addOrMergeReplacement(Insertion, &NewReplacements);
}
// Add replacements referring to the changed code to existing replacements,
// which refers to the original code.
Replaces = Replaces.merge(NewReplacements);
auto Style =
format::getStyle(format::DefaultFormatStyle, FilePath, FallbackStyle);
if (!Style) {
llvm::errs() << llvm::toString(Style.takeError()) << "\n";
continue;
}
// Clean up old namespaces if there is nothing in it after moving.
auto CleanReplacements =
format::cleanupAroundReplacements(Code, Replaces, *Style);
if (!CleanReplacements) {
llvm::errs() << llvm::toString(CleanReplacements.takeError()) << "\n";
continue;
}
FileToReplacements[FilePath] = *CleanReplacements;
}
// Make sure we don't generate replacements for files that do not match
// FilePattern.
for (auto &Entry : FileToReplacements)
if (!FilePatternRE.match(Entry.first))
Entry.second.clear();
}
} // namespace change_namespace
} // namespace clang