llvm-project/llvm/lib/Transforms/IPO/FunctionSpecialization.cpp
Momchil Velikov a8b0f58017 [FuncSpec] Fix specialisation based on literals
The `FunctionSpecialization` pass has support for specialising
functions, which are called with literal arguments. This functionality
is disabled by default and is enabled with the option
`-function-specialization-for-literal-constant` .  There are a few
issues with the implementation, though:

* even with the default, the pass will still specialise based on
   floating-point literals

* even when it's enabled, the pass will specialise only for the `i1`
    type (or `i2` if all of the possible 4 values occur, or `i3` if all
    of the possible 8 values occur, etc)

The reason for this is incorrect check of the lattice value of the
function formal parameter. The lattice value is `overdefined` when the
constant range of the possible arguments is the full set, and this is
the reason for the specialisation to trigger. However, if the set of
the possible arguments is not the full set, that must not prevent the
specialisation.

This patch changes the pass to NOT consider a formal parameter when
specialising a function if the lattice value for that parameter is:

* unknown or undef
* a constant
* a constant range with a single element

on the basis that specialisation is pointless for those cases.

Is also changes the criteria for picking up an actual argument to
specialise if the argument is:

* a LLVM IR constant
* has `constant` lattice value
 has `constantrange` lattice value with a single element.

Reviewed By: ChuanqiXu

Differential Revision: https://reviews.llvm.org/D135893
2022-10-26 09:55:33 +01:00

975 lines
37 KiB
C++

//===- FunctionSpecialization.cpp - Function Specialization ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This specialises functions with constant parameters. Constant parameters
// like function pointers and constant globals are propagated to the callee by
// specializing the function. The main benefit of this pass at the moment is
// that indirect calls are transformed into direct calls, which provides inline
// opportunities that the inliner would not have been able to achieve. That's
// why function specialisation is run before the inliner in the optimisation
// pipeline; that is by design. Otherwise, we would only benefit from constant
// passing, which is a valid use-case too, but hasn't been explored much in
// terms of performance uplifts, cost-model and compile-time impact.
//
// Current limitations:
// - It does not yet handle integer ranges. We do support "literal constants",
// but that's off by default under an option.
// - The cost-model could be further looked into (it mainly focuses on inlining
// benefits),
//
// Ideas:
// - With a function specialization attribute for arguments, we could have
// a direct way to steer function specialization, avoiding the cost-model,
// and thus control compile-times / code-size.
//
// Todos:
// - Specializing recursive functions relies on running the transformation a
// number of times, which is controlled by option
// `func-specialization-max-iters`. Thus, increasing this value and the
// number of iterations, will linearly increase the number of times recursive
// functions get specialized, see also the discussion in
// https://reviews.llvm.org/D106426 for details. Perhaps there is a
// compile-time friendlier way to control/limit the number of specialisations
// for recursive functions.
// - Don't transform the function if function specialization does not trigger;
// the SCCPSolver may make IR changes.
//
// References:
// - 2021 LLVM Dev Mtg “Introducing function specialisation, and can we enable
// it by default?”, https://www.youtube.com/watch?v=zJiCjeXgV5Q
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/CodeMetrics.h"
#include "llvm/Analysis/InlineCost.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueLattice.h"
#include "llvm/Analysis/ValueLatticeUtils.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Transforms/Scalar/SCCP.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/SCCPSolver.h"
#include "llvm/Transforms/Utils/SizeOpts.h"
#include <cmath>
using namespace llvm;
#define DEBUG_TYPE "function-specialization"
STATISTIC(NumFuncSpecialized, "Number of functions specialized");
static cl::opt<bool> ForceFunctionSpecialization(
"force-function-specialization", cl::init(false), cl::Hidden,
cl::desc("Force function specialization for every call site with a "
"constant argument"));
static cl::opt<unsigned> FuncSpecializationMaxIters(
"func-specialization-max-iters", cl::Hidden,
cl::desc("The maximum number of iterations function specialization is run"),
cl::init(1));
static cl::opt<unsigned> MaxClonesThreshold(
"func-specialization-max-clones", cl::Hidden,
cl::desc("The maximum number of clones allowed for a single function "
"specialization"),
cl::init(3));
static cl::opt<unsigned> SmallFunctionThreshold(
"func-specialization-size-threshold", cl::Hidden,
cl::desc("Don't specialize functions that have less than this theshold "
"number of instructions"),
cl::init(100));
static cl::opt<unsigned>
AvgLoopIterationCount("func-specialization-avg-iters-cost", cl::Hidden,
cl::desc("Average loop iteration count cost"),
cl::init(10));
static cl::opt<bool> SpecializeOnAddresses(
"func-specialization-on-address", cl::init(false), cl::Hidden,
cl::desc("Enable function specialization on the address of global values"));
// Disabled by default as it can significantly increase compilation times.
// Running nikic's compile time tracker on x86 with instruction count as the
// metric shows 3-4% regression for SPASS while being neutral for all other
// benchmarks of the llvm test suite.
//
// https://llvm-compile-time-tracker.com
// https://github.com/nikic/llvm-compile-time-tracker
static cl::opt<bool> EnableSpecializationForLiteralConstant(
"function-specialization-for-literal-constant", cl::init(false), cl::Hidden,
cl::desc("Enable specialization of functions that take a literal constant "
"as an argument."));
namespace {
// Bookkeeping struct to pass data from the analysis and profitability phase
// to the actual transform helper functions.
struct SpecializationInfo {
SmallVector<ArgInfo, 8> Args; // Stores the {formal,actual} argument pairs.
InstructionCost Gain; // Profitability: Gain = Bonus - Cost.
};
} // Anonymous namespace
using FuncList = SmallVectorImpl<Function *>;
using CallArgBinding = std::pair<CallBase *, Constant *>;
using CallSpecBinding = std::pair<CallBase *, SpecializationInfo>;
// We are using MapVector because it guarantees deterministic iteration
// order across executions.
using SpecializationMap = SmallMapVector<CallBase *, SpecializationInfo, 8>;
// Helper to check if \p LV is either a constant or a constant
// range with a single element. This should cover exactly the same cases as the
// old ValueLatticeElement::isConstant() and is intended to be used in the
// transition to ValueLatticeElement.
static bool isConstant(const ValueLatticeElement &LV) {
return LV.isConstant() ||
(LV.isConstantRange() && LV.getConstantRange().isSingleElement());
}
// Helper to check if \p LV is either overdefined or a constant int.
static bool isOverdefined(const ValueLatticeElement &LV) {
return !LV.isUnknownOrUndef() && !isConstant(LV);
}
static Constant *getPromotableAlloca(AllocaInst *Alloca, CallInst *Call) {
Value *StoreValue = nullptr;
for (auto *User : Alloca->users()) {
// We can't use llvm::isAllocaPromotable() as that would fail because of
// the usage in the CallInst, which is what we check here.
if (User == Call)
continue;
if (auto *Bitcast = dyn_cast<BitCastInst>(User)) {
if (!Bitcast->hasOneUse() || *Bitcast->user_begin() != Call)
return nullptr;
continue;
}
if (auto *Store = dyn_cast<StoreInst>(User)) {
// This is a duplicate store, bail out.
if (StoreValue || Store->isVolatile())
return nullptr;
StoreValue = Store->getValueOperand();
continue;
}
// Bail if there is any other unknown usage.
return nullptr;
}
return dyn_cast_or_null<Constant>(StoreValue);
}
// A constant stack value is an AllocaInst that has a single constant
// value stored to it. Return this constant if such an alloca stack value
// is a function argument.
static Constant *getConstantStackValue(CallInst *Call, Value *Val,
SCCPSolver &Solver) {
if (!Val)
return nullptr;
Val = Val->stripPointerCasts();
if (auto *ConstVal = dyn_cast<ConstantInt>(Val))
return ConstVal;
auto *Alloca = dyn_cast<AllocaInst>(Val);
if (!Alloca || !Alloca->getAllocatedType()->isIntegerTy())
return nullptr;
return getPromotableAlloca(Alloca, Call);
}
// To support specializing recursive functions, it is important to propagate
// constant arguments because after a first iteration of specialisation, a
// reduced example may look like this:
//
// define internal void @RecursiveFn(i32* arg1) {
// %temp = alloca i32, align 4
// store i32 2 i32* %temp, align 4
// call void @RecursiveFn.1(i32* nonnull %temp)
// ret void
// }
//
// Before a next iteration, we need to propagate the constant like so
// which allows further specialization in next iterations.
//
// @funcspec.arg = internal constant i32 2
//
// define internal void @someFunc(i32* arg1) {
// call void @otherFunc(i32* nonnull @funcspec.arg)
// ret void
// }
//
static void constantArgPropagation(FuncList &WorkList, Module &M,
SCCPSolver &Solver) {
// Iterate over the argument tracked functions see if there
// are any new constant values for the call instruction via
// stack variables.
for (auto *F : WorkList) {
for (auto *User : F->users()) {
auto *Call = dyn_cast<CallInst>(User);
if (!Call)
continue;
bool Changed = false;
for (const Use &U : Call->args()) {
unsigned Idx = Call->getArgOperandNo(&U);
Value *ArgOp = Call->getArgOperand(Idx);
Type *ArgOpType = ArgOp->getType();
if (!Call->onlyReadsMemory(Idx) || !ArgOpType->isPointerTy())
continue;
auto *ConstVal = getConstantStackValue(Call, ArgOp, Solver);
if (!ConstVal)
continue;
Value *GV = new GlobalVariable(M, ConstVal->getType(), true,
GlobalValue::InternalLinkage, ConstVal,
"funcspec.arg");
if (ArgOpType != ConstVal->getType())
GV = ConstantExpr::getBitCast(cast<Constant>(GV), ArgOpType);
Call->setArgOperand(Idx, GV);
Changed = true;
}
// Add the changed CallInst to Solver Worklist
if (Changed)
Solver.visitCall(*Call);
}
}
}
// ssa_copy intrinsics are introduced by the SCCP solver. These intrinsics
// interfere with the constantArgPropagation optimization.
static void removeSSACopy(Function &F) {
for (BasicBlock &BB : F) {
for (Instruction &Inst : llvm::make_early_inc_range(BB)) {
auto *II = dyn_cast<IntrinsicInst>(&Inst);
if (!II)
continue;
if (II->getIntrinsicID() != Intrinsic::ssa_copy)
continue;
Inst.replaceAllUsesWith(II->getOperand(0));
Inst.eraseFromParent();
}
}
}
static void removeSSACopy(Module &M) {
for (Function &F : M)
removeSSACopy(F);
}
namespace {
class FunctionSpecializer {
/// The IPSCCP Solver.
SCCPSolver &Solver;
/// Analyses used to help determine if a function should be specialized.
std::function<AssumptionCache &(Function &)> GetAC;
std::function<TargetTransformInfo &(Function &)> GetTTI;
std::function<TargetLibraryInfo &(Function &)> GetTLI;
SmallPtrSet<Function *, 4> SpecializedFuncs;
SmallPtrSet<Function *, 4> FullySpecialized;
SmallVector<Instruction *> ReplacedWithConstant;
DenseMap<Function *, CodeMetrics> FunctionMetrics;
public:
FunctionSpecializer(SCCPSolver &Solver,
std::function<AssumptionCache &(Function &)> GetAC,
std::function<TargetTransformInfo &(Function &)> GetTTI,
std::function<TargetLibraryInfo &(Function &)> GetTLI)
: Solver(Solver), GetAC(GetAC), GetTTI(GetTTI), GetTLI(GetTLI) {}
~FunctionSpecializer() {
// Eliminate dead code.
removeDeadInstructions();
removeDeadFunctions();
}
/// Attempt to specialize functions in the module to enable constant
/// propagation across function boundaries.
///
/// \returns true if at least one function is specialized.
bool specializeFunctions(FuncList &Candidates, FuncList &WorkList) {
bool Changed = false;
for (auto *F : Candidates) {
if (!isCandidateFunction(F))
continue;
auto Cost = getSpecializationCost(F);
if (!Cost.isValid()) {
LLVM_DEBUG(
dbgs() << "FnSpecialization: Invalid specialization cost.\n");
continue;
}
LLVM_DEBUG(dbgs() << "FnSpecialization: Specialization cost for "
<< F->getName() << " is " << Cost << "\n");
SmallVector<CallSpecBinding, 8> Specializations;
if (!calculateGains(F, Cost, Specializations)) {
LLVM_DEBUG(dbgs() << "FnSpecialization: No possible constants found\n");
continue;
}
Changed = true;
for (auto &Entry : Specializations)
specializeFunction(F, Entry.second, WorkList);
}
updateSpecializedFuncs(Candidates, WorkList);
NumFuncSpecialized += NbFunctionsSpecialized;
return Changed;
}
void removeDeadInstructions() {
for (auto *I : ReplacedWithConstant) {
LLVM_DEBUG(dbgs() << "FnSpecialization: Removing dead instruction " << *I
<< "\n");
I->eraseFromParent();
}
ReplacedWithConstant.clear();
}
void removeDeadFunctions() {
for (auto *F : FullySpecialized) {
LLVM_DEBUG(dbgs() << "FnSpecialization: Removing dead function "
<< F->getName() << "\n");
F->eraseFromParent();
}
FullySpecialized.clear();
}
bool tryToReplaceWithConstant(Value *V) {
if (!V->getType()->isSingleValueType() || isa<CallBase>(V) ||
V->user_empty())
return false;
const ValueLatticeElement &IV = Solver.getLatticeValueFor(V);
if (isOverdefined(IV))
return false;
auto *Const =
isConstant(IV) ? Solver.getConstant(IV) : UndefValue::get(V->getType());
LLVM_DEBUG(dbgs() << "FnSpecialization: Replacing " << *V
<< "\nFnSpecialization: with " << *Const << "\n");
// Record uses of V to avoid visiting irrelevant uses of const later.
SmallVector<Instruction *> UseInsts;
for (auto *U : V->users())
if (auto *I = dyn_cast<Instruction>(U))
if (Solver.isBlockExecutable(I->getParent()))
UseInsts.push_back(I);
V->replaceAllUsesWith(Const);
for (auto *I : UseInsts)
Solver.visit(I);
// Remove the instruction from Block and Solver.
if (auto *I = dyn_cast<Instruction>(V)) {
if (I->isSafeToRemove()) {
ReplacedWithConstant.push_back(I);
Solver.removeLatticeValueFor(I);
}
}
return true;
}
private:
// The number of functions specialised, used for collecting statistics and
// also in the cost model.
unsigned NbFunctionsSpecialized = 0;
// Compute the code metrics for function \p F.
CodeMetrics &analyzeFunction(Function *F) {
auto I = FunctionMetrics.insert({F, CodeMetrics()});
CodeMetrics &Metrics = I.first->second;
if (I.second) {
// The code metrics were not cached.
SmallPtrSet<const Value *, 32> EphValues;
CodeMetrics::collectEphemeralValues(F, &(GetAC)(*F), EphValues);
for (BasicBlock &BB : *F)
Metrics.analyzeBasicBlock(&BB, (GetTTI)(*F), EphValues);
LLVM_DEBUG(dbgs() << "FnSpecialization: Code size of function "
<< F->getName() << " is " << Metrics.NumInsts
<< " instructions\n");
}
return Metrics;
}
/// Clone the function \p F and remove the ssa_copy intrinsics added by
/// the SCCPSolver in the cloned version.
Function *cloneCandidateFunction(Function *F, ValueToValueMapTy &Mappings) {
Function *Clone = CloneFunction(F, Mappings);
removeSSACopy(*Clone);
return Clone;
}
/// This function decides whether it's worthwhile to specialize function
/// \p F based on the known constant values its arguments can take on. It
/// only discovers potential specialization opportunities without actually
/// applying them.
///
/// \returns true if any specializations have been found.
bool calculateGains(Function *F, InstructionCost Cost,
SmallVectorImpl<CallSpecBinding> &WorkList) {
SpecializationMap Specializations;
// Determine if we should specialize the function based on the values the
// argument can take on. If specialization is not profitable, we continue
// on to the next argument.
for (Argument &FormalArg : F->args()) {
// Determine if this argument is interesting. If we know the argument can
// take on any constant values, they are collected in Constants.
SmallVector<CallArgBinding, 8> ActualArgs;
if (!isArgumentInteresting(&FormalArg, ActualArgs)) {
LLVM_DEBUG(dbgs() << "FnSpecialization: Argument "
<< FormalArg.getNameOrAsOperand()
<< " is not interesting\n");
continue;
}
for (const auto &Entry : ActualArgs) {
CallBase *Call = Entry.first;
Constant *ActualArg = Entry.second;
auto I = Specializations.insert({Call, SpecializationInfo()});
SpecializationInfo &S = I.first->second;
if (I.second)
S.Gain = ForceFunctionSpecialization ? 1 : 0 - Cost;
if (!ForceFunctionSpecialization)
S.Gain += getSpecializationBonus(&FormalArg, ActualArg);
S.Args.push_back({&FormalArg, ActualArg});
}
}
// Remove unprofitable specializations.
Specializations.remove_if(
[](const auto &Entry) { return Entry.second.Gain <= 0; });
// Clear the MapVector and return the underlying vector.
WorkList = Specializations.takeVector();
// Sort the candidates in descending order.
llvm::stable_sort(WorkList, [](const auto &L, const auto &R) {
return L.second.Gain > R.second.Gain;
});
// Truncate the worklist to 'MaxClonesThreshold' candidates if necessary.
if (WorkList.size() > MaxClonesThreshold) {
LLVM_DEBUG(dbgs() << "FnSpecialization: Number of candidates exceed "
<< "the maximum number of clones threshold.\n"
<< "FnSpecialization: Truncating worklist to "
<< MaxClonesThreshold << " candidates.\n");
WorkList.erase(WorkList.begin() + MaxClonesThreshold, WorkList.end());
}
LLVM_DEBUG(dbgs() << "FnSpecialization: Specializations for function "
<< F->getName() << "\n";
for (const auto &Entry
: WorkList) {
dbgs() << "FnSpecialization: Gain = " << Entry.second.Gain
<< "\n";
for (const ArgInfo &Arg : Entry.second.Args)
dbgs() << "FnSpecialization: FormalArg = "
<< Arg.Formal->getNameOrAsOperand()
<< ", ActualArg = "
<< Arg.Actual->getNameOrAsOperand() << "\n";
});
return !WorkList.empty();
}
bool isCandidateFunction(Function *F) {
// Do not specialize the cloned function again.
if (SpecializedFuncs.contains(F))
return false;
// If we're optimizing the function for size, we shouldn't specialize it.
if (F->hasOptSize() ||
shouldOptimizeForSize(F, nullptr, nullptr, PGSOQueryType::IRPass))
return false;
// Exit if the function is not executable. There's no point in specializing
// a dead function.
if (!Solver.isBlockExecutable(&F->getEntryBlock()))
return false;
// It wastes time to specialize a function which would get inlined finally.
if (F->hasFnAttribute(Attribute::AlwaysInline))
return false;
LLVM_DEBUG(dbgs() << "FnSpecialization: Try function: " << F->getName()
<< "\n");
return true;
}
void specializeFunction(Function *F, SpecializationInfo &S,
FuncList &WorkList) {
ValueToValueMapTy Mappings;
Function *Clone = cloneCandidateFunction(F, Mappings);
// Rewrite calls to the function so that they call the clone instead.
rewriteCallSites(Clone, S.Args, Mappings);
// Initialize the lattice state of the arguments of the function clone,
// marking the argument on which we specialized the function constant
// with the given value.
Solver.markArgInFuncSpecialization(Clone, S.Args);
// Mark all the specialized functions
WorkList.push_back(Clone);
NbFunctionsSpecialized++;
// If the function has been completely specialized, the original function
// is no longer needed. Mark it unreachable.
if (F->getNumUses() == 0 || all_of(F->users(), [F](User *U) {
if (auto *CS = dyn_cast<CallBase>(U))
return CS->getFunction() == F;
return false;
})) {
Solver.markFunctionUnreachable(F);
FullySpecialized.insert(F);
}
}
/// Compute and return the cost of specializing function \p F.
InstructionCost getSpecializationCost(Function *F) {
CodeMetrics &Metrics = analyzeFunction(F);
// If the code metrics reveal that we shouldn't duplicate the function, we
// shouldn't specialize it. Set the specialization cost to Invalid.
// Or if the lines of codes implies that this function is easy to get
// inlined so that we shouldn't specialize it.
if (Metrics.notDuplicatable || !Metrics.NumInsts.isValid() ||
(!ForceFunctionSpecialization &&
!F->hasFnAttribute(Attribute::NoInline) &&
Metrics.NumInsts < SmallFunctionThreshold))
return InstructionCost::getInvalid();
// Otherwise, set the specialization cost to be the cost of all the
// instructions in the function and penalty for specializing more functions.
unsigned Penalty = NbFunctionsSpecialized + 1;
return Metrics.NumInsts * InlineConstants::getInstrCost() * Penalty;
}
InstructionCost getUserBonus(User *U, llvm::TargetTransformInfo &TTI,
LoopInfo &LI) {
auto *I = dyn_cast_or_null<Instruction>(U);
// If not an instruction we do not know how to evaluate.
// Keep minimum possible cost for now so that it doesnt affect
// specialization.
if (!I)
return std::numeric_limits<unsigned>::min();
InstructionCost Cost =
TTI.getInstructionCost(U, TargetTransformInfo::TCK_SizeAndLatency);
// Traverse recursively if there are more uses.
// TODO: Any other instructions to be added here?
if (I->mayReadFromMemory() || I->isCast())
for (auto *User : I->users())
Cost += getUserBonus(User, TTI, LI);
// Increase the cost if it is inside the loop.
auto LoopDepth = LI.getLoopDepth(I->getParent());
Cost *= std::pow((double)AvgLoopIterationCount, LoopDepth);
return Cost;
}
/// Compute a bonus for replacing argument \p A with constant \p C.
InstructionCost getSpecializationBonus(Argument *A, Constant *C) {
Function *F = A->getParent();
DominatorTree DT(*F);
LoopInfo LI(DT);
auto &TTI = (GetTTI)(*F);
LLVM_DEBUG(dbgs() << "FnSpecialization: Analysing bonus for constant: "
<< C->getNameOrAsOperand() << "\n");
InstructionCost TotalCost = 0;
for (auto *U : A->users()) {
TotalCost += getUserBonus(U, TTI, LI);
LLVM_DEBUG(dbgs() << "FnSpecialization: User cost ";
TotalCost.print(dbgs()); dbgs() << " for: " << *U << "\n");
}
// The below heuristic is only concerned with exposing inlining
// opportunities via indirect call promotion. If the argument is not a
// (potentially casted) function pointer, give up.
Function *CalledFunction = dyn_cast<Function>(C->stripPointerCasts());
if (!CalledFunction)
return TotalCost;
// Get TTI for the called function (used for the inline cost).
auto &CalleeTTI = (GetTTI)(*CalledFunction);
// Look at all the call sites whose called value is the argument.
// Specializing the function on the argument would allow these indirect
// calls to be promoted to direct calls. If the indirect call promotion
// would likely enable the called function to be inlined, specializing is a
// good idea.
int Bonus = 0;
for (User *U : A->users()) {
if (!isa<CallInst>(U) && !isa<InvokeInst>(U))
continue;
auto *CS = cast<CallBase>(U);
if (CS->getCalledOperand() != A)
continue;
// Get the cost of inlining the called function at this call site. Note
// that this is only an estimate. The called function may eventually
// change in a way that leads to it not being inlined here, even though
// inlining looks profitable now. For example, one of its called
// functions may be inlined into it, making the called function too large
// to be inlined into this call site.
//
// We apply a boost for performing indirect call promotion by increasing
// the default threshold by the threshold for indirect calls.
auto Params = getInlineParams();
Params.DefaultThreshold += InlineConstants::IndirectCallThreshold;
InlineCost IC =
getInlineCost(*CS, CalledFunction, Params, CalleeTTI, GetAC, GetTLI);
// We clamp the bonus for this call to be between zero and the default
// threshold.
if (IC.isAlways())
Bonus += Params.DefaultThreshold;
else if (IC.isVariable() && IC.getCostDelta() > 0)
Bonus += IC.getCostDelta();
LLVM_DEBUG(dbgs() << "FnSpecialization: Inlining bonus " << Bonus
<< " for user " << *U << "\n");
}
return TotalCost + Bonus;
}
/// Determine if we should specialize a function based on the incoming values
/// of the given argument.
///
/// This function implements the goal-directed heuristic. It determines if
/// specializing the function based on the incoming values of argument \p A
/// would result in any significant optimization opportunities. If
/// optimization opportunities exist, the constant values of \p A on which to
/// specialize the function are collected in \p Constants.
///
/// \returns true if the function should be specialized on the given
/// argument.
bool isArgumentInteresting(Argument *A,
SmallVectorImpl<CallArgBinding> &Constants) {
// No point in specialization if the argument is unused.
if (A->user_empty())
return false;
// For now, don't attempt to specialize functions based on the values of
// composite types.
Type *ArgTy = A->getType() ;
if (!ArgTy->isSingleValueType())
return false;
// Specialization of integer and floating point types needs to be explicitly enabled.
if (!EnableSpecializationForLiteralConstant &&
(ArgTy->isIntegerTy() || ArgTy->isFloatingPointTy()))
return false;
// SCCP solver does not record an argument that will be constructed on
// stack.
if (A->hasByValAttr() && !A->getParent()->onlyReadsMemory())
return false;
// Check the lattice value and decide if we should attemt to specialize,
// based on this argument. No point in specialization, if the lattice value
// is already a constant.
const ValueLatticeElement &LV = Solver.getLatticeValueFor(A);
if (LV.isUnknownOrUndef() || LV.isConstant() ||
(LV.isConstantRange() && LV.getConstantRange().isSingleElement())) {
LLVM_DEBUG(dbgs() << "FnSpecialization: Nothing to do, argument "
<< A->getNameOrAsOperand() << " is already constant\n");
return false;
}
// Collect the constant values that the argument can take on. If the
// argument can't take on any constant values, we aren't going to
// specialize the function. While it's possible to specialize the function
// based on non-constant arguments, there's likely not much benefit to
// constant propagation in doing so.
//
// TODO 1: currently it won't specialize if there are over the threshold of
// calls using the same argument, e.g foo(a) x 4 and foo(b) x 1, but it
// might be beneficial to take the occurrences into account in the cost
// model, so we would need to find the unique constants.
//
// TODO 2: this currently does not support constants, i.e. integer ranges.
//
getPossibleConstants(A, Constants);
if (Constants.empty())
return false;
LLVM_DEBUG(dbgs() << "FnSpecialization: Found interesting argument "
<< A->getNameOrAsOperand() << "\n");
return true;
}
/// Collect in \p Constants all the constant values that argument \p A can
/// take on.
void getPossibleConstants(Argument *A,
SmallVectorImpl<CallArgBinding> &Constants) {
Function *F = A->getParent();
// Iterate over all the call sites of the argument's parent function.
for (User *U : F->users()) {
if (!isa<CallInst>(U) && !isa<InvokeInst>(U))
continue;
auto &CS = *cast<CallBase>(U);
// If the call site has attribute minsize set, that callsite won't be
// specialized.
if (CS.hasFnAttr(Attribute::MinSize))
continue;
// If the parent of the call site will never be executed, we don't need
// to worry about the passed value.
if (!Solver.isBlockExecutable(CS.getParent()))
continue;
auto *V = CS.getArgOperand(A->getArgNo());
if (isa<PoisonValue>(V))
continue;
// TrackValueOfGlobalVariable only tracks scalar global variables.
if (auto *GV = dyn_cast<GlobalVariable>(V)) {
// Check if we want to specialize on the address of non-constant
// global values.
if (!GV->isConstant() && !SpecializeOnAddresses)
continue;
if (!GV->getValueType()->isSingleValueType())
continue;
}
// Select for possible specialisation arguments which are constants or
// are deduced to be constants or constant ranges with a single element.
Constant *C = dyn_cast<Constant>(V);
if (!C) {
const ValueLatticeElement &LV = Solver.getLatticeValueFor(V);
if (LV.isConstant())
C = LV.getConstant();
else if (LV.isConstantRange() &&
LV.getConstantRange().isSingleElement()) {
assert(V->getType()->isIntegerTy() && "Non-integral constant range");
C = Constant::getIntegerValue(
V->getType(), *LV.getConstantRange().getSingleElement());
} else
continue;
}
Constants.push_back({&CS, C});
}
}
/// Rewrite calls to function \p F to call function \p Clone instead.
///
/// This function modifies calls to function \p F as long as the actual
/// arguments match those in \p Args. Note that for recursive calls we
/// need to compare against the cloned formal arguments.
///
/// Callsites that have been marked with the MinSize function attribute won't
/// be specialized and rewritten.
void rewriteCallSites(Function *Clone, const SmallVectorImpl<ArgInfo> &Args,
ValueToValueMapTy &Mappings) {
assert(!Args.empty() && "Specialization without arguments");
Function *F = Args[0].Formal->getParent();
SmallVector<CallBase *, 8> CallSitesToRewrite;
for (auto *U : F->users()) {
if (!isa<CallInst>(U) && !isa<InvokeInst>(U))
continue;
auto &CS = *cast<CallBase>(U);
if (!CS.getCalledFunction() || CS.getCalledFunction() != F)
continue;
CallSitesToRewrite.push_back(&CS);
}
LLVM_DEBUG(dbgs() << "FnSpecialization: Replacing call sites of "
<< F->getName() << " with " << Clone->getName() << "\n");
for (auto *CS : CallSitesToRewrite) {
LLVM_DEBUG(dbgs() << "FnSpecialization: "
<< CS->getFunction()->getName() << " ->" << *CS
<< "\n");
if (/* recursive call */
(CS->getFunction() == Clone &&
all_of(Args,
[CS, &Mappings](const ArgInfo &Arg) {
unsigned ArgNo = Arg.Formal->getArgNo();
return CS->getArgOperand(ArgNo) == Mappings[Arg.Formal];
})) ||
/* normal call */
all_of(Args, [CS](const ArgInfo &Arg) {
unsigned ArgNo = Arg.Formal->getArgNo();
return CS->getArgOperand(ArgNo) == Arg.Actual;
})) {
CS->setCalledFunction(Clone);
Solver.markOverdefined(CS);
}
}
}
void updateSpecializedFuncs(FuncList &Candidates, FuncList &WorkList) {
for (auto *F : WorkList) {
SpecializedFuncs.insert(F);
// Initialize the state of the newly created functions, marking them
// argument-tracked and executable.
if (F->hasExactDefinition() && !F->hasFnAttribute(Attribute::Naked))
Solver.addTrackedFunction(F);
Solver.addArgumentTrackedFunction(F);
Candidates.push_back(F);
Solver.markBlockExecutable(&F->front());
// Replace the function arguments for the specialized functions.
for (Argument &Arg : F->args())
if (!Arg.use_empty() && tryToReplaceWithConstant(&Arg))
LLVM_DEBUG(dbgs() << "FnSpecialization: Replaced constant argument: "
<< Arg.getNameOrAsOperand() << "\n");
}
}
};
} // namespace
bool llvm::runFunctionSpecialization(
Module &M, const DataLayout &DL,
std::function<TargetLibraryInfo &(Function &)> GetTLI,
std::function<TargetTransformInfo &(Function &)> GetTTI,
std::function<AssumptionCache &(Function &)> GetAC,
function_ref<AnalysisResultsForFn(Function &)> GetAnalysis) {
SCCPSolver Solver(DL, GetTLI, M.getContext());
FunctionSpecializer FS(Solver, GetAC, GetTTI, GetTLI);
bool Changed = false;
// Loop over all functions, marking arguments to those with their addresses
// taken or that are external as overdefined.
for (Function &F : M) {
if (F.isDeclaration())
continue;
if (F.hasFnAttribute(Attribute::NoDuplicate))
continue;
LLVM_DEBUG(dbgs() << "\nFnSpecialization: Analysing decl: " << F.getName()
<< "\n");
Solver.addAnalysis(F, GetAnalysis(F));
// Determine if we can track the function's arguments. If so, add the
// function to the solver's set of argument-tracked functions.
if (canTrackArgumentsInterprocedurally(&F)) {
LLVM_DEBUG(dbgs() << "FnSpecialization: Can track arguments\n");
Solver.addArgumentTrackedFunction(&F);
continue;
} else {
LLVM_DEBUG(dbgs() << "FnSpecialization: Can't track arguments!\n"
<< "FnSpecialization: Doesn't have local linkage, or "
<< "has its address taken\n");
}
// Assume the function is called.
Solver.markBlockExecutable(&F.front());
// Assume nothing about the incoming arguments.
for (Argument &AI : F.args())
Solver.markOverdefined(&AI);
}
// Determine if we can track any of the module's global variables. If so, add
// the global variables we can track to the solver's set of tracked global
// variables.
for (GlobalVariable &G : M.globals()) {
G.removeDeadConstantUsers();
if (canTrackGlobalVariableInterprocedurally(&G))
Solver.trackValueOfGlobalVariable(&G);
}
auto &TrackedFuncs = Solver.getArgumentTrackedFunctions();
SmallVector<Function *, 16> FuncDecls(TrackedFuncs.begin(),
TrackedFuncs.end());
// No tracked functions, so nothing to do: don't run the solver and remove
// the ssa_copy intrinsics that may have been introduced.
if (TrackedFuncs.empty()) {
removeSSACopy(M);
return false;
}
// Solve for constants.
auto RunSCCPSolver = [&](auto &WorkList) {
bool ResolvedUndefs = true;
while (ResolvedUndefs) {
// Not running the solver unnecessary is checked in regression test
// nothing-to-do.ll, so if this debug message is changed, this regression
// test needs updating too.
LLVM_DEBUG(dbgs() << "FnSpecialization: Running solver\n");
Solver.solve();
LLVM_DEBUG(dbgs() << "FnSpecialization: Resolving undefs\n");
ResolvedUndefs = false;
for (Function *F : WorkList)
if (Solver.resolvedUndefsIn(*F))
ResolvedUndefs = true;
}
for (auto *F : WorkList) {
for (BasicBlock &BB : *F) {
if (!Solver.isBlockExecutable(&BB))
continue;
// FIXME: The solver may make changes to the function here, so set
// Changed, even if later function specialization does not trigger.
for (auto &I : make_early_inc_range(BB))
Changed |= FS.tryToReplaceWithConstant(&I);
}
}
};
#ifndef NDEBUG
LLVM_DEBUG(dbgs() << "FnSpecialization: Worklist fn decls:\n");
for (auto *F : FuncDecls)
LLVM_DEBUG(dbgs() << "FnSpecialization: *) " << F->getName() << "\n");
#endif
// Initially resolve the constants in all the argument tracked functions.
RunSCCPSolver(FuncDecls);
SmallVector<Function *, 8> WorkList;
unsigned I = 0;
while (FuncSpecializationMaxIters != I++ &&
FS.specializeFunctions(FuncDecls, WorkList)) {
LLVM_DEBUG(dbgs() << "FnSpecialization: Finished iteration " << I << "\n");
// Run the solver for the specialized functions.
RunSCCPSolver(WorkList);
// Replace some unresolved constant arguments.
constantArgPropagation(FuncDecls, M, Solver);
WorkList.clear();
Changed = true;
}
LLVM_DEBUG(dbgs() << "FnSpecialization: Number of specializations = "
<< NumFuncSpecialized << "\n");
// Remove any ssa_copy intrinsics that may have been introduced.
removeSSACopy(M);
return Changed;
}