
This happens in e.g. regalloc, where we trace decisions per function, but wouldn't want to spew N log files (i.e. one per function). So we output a key-value association, where the key is an ID for the sub-module object, and the value is the tensorflow::SequenceExample. The current relation with protobuf is tenuous, so we're avoiding a custom message type in favor of using the `Struct` message, but that requires the values be wire-able strings, hence base64 encoding. We plan on resolving the protobuf situation shortly, and improve the encoding of such logs, but this is sufficient for now for setting up regalloc training. Differential Revision: https://reviews.llvm.org/D116985
602 lines
22 KiB
C++
602 lines
22 KiB
C++
//===- TFUtils.cpp - tensorflow evaluation utilities ----------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements utilities for interfacing with tensorflow C APIs.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
#include "llvm/Config/config.h"
|
|
#if defined(LLVM_HAVE_TF_API)
|
|
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/Analysis/Utils/TFUtils.h"
|
|
#include "llvm/Support/Base64.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/JSON.h"
|
|
#include "llvm/Support/ManagedStatic.h"
|
|
#include "llvm/Support/MemoryBuffer.h"
|
|
#include "llvm/Support/Path.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
#include "google/protobuf/struct.pb.h"
|
|
#include "google/protobuf/text_format.h"
|
|
#include "tensorflow/c/c_api.h"
|
|
#include "tensorflow/c/c_api_experimental.h"
|
|
#include "tensorflow/core/example/example.pb.h"
|
|
#include <cassert>
|
|
#include <numeric>
|
|
|
|
using namespace llvm;
|
|
|
|
using google::protobuf::Message;
|
|
using google::protobuf::TextFormat;
|
|
|
|
static cl::opt<bool>
|
|
ProtobufTextMode("tfutils-text-log", cl::init(false), cl::Hidden,
|
|
cl::desc("Output textual (human-readable) protobuf."));
|
|
|
|
namespace {
|
|
|
|
using TFGraphPtr = std::unique_ptr<TF_Graph, decltype(&TF_DeleteGraph)>;
|
|
using TFSessionOptionsPtr =
|
|
std::unique_ptr<TF_SessionOptions, decltype(&TF_DeleteSessionOptions)>;
|
|
using TFStatusPtr = std::unique_ptr<TF_Status, decltype(&TF_DeleteStatus)>;
|
|
|
|
struct TFInitializer {
|
|
TFInitializer() {
|
|
assert(!IsInitialized && "TFInitialized should be called only once");
|
|
int Argc = 1;
|
|
const char *Name = "";
|
|
const char **NamePtr = &Name;
|
|
TF_InitMain(Name, &Argc, const_cast<char ***>(&NamePtr));
|
|
IsInitialized = true;
|
|
}
|
|
bool IsInitialized = false;
|
|
};
|
|
|
|
llvm::ManagedStatic<TFInitializer> TFLibInitializer;
|
|
|
|
bool ensureInitTF() { return TFLibInitializer->IsInitialized; }
|
|
|
|
TFGraphPtr createTFGraph() {
|
|
return TFGraphPtr(TF_NewGraph(), &TF_DeleteGraph);
|
|
}
|
|
|
|
TFStatusPtr createTFStatus() {
|
|
return TFStatusPtr(TF_NewStatus(), &TF_DeleteStatus);
|
|
}
|
|
|
|
TFSessionOptionsPtr createTFSessionOptions() {
|
|
return TFSessionOptionsPtr(TF_NewSessionOptions(), &TF_DeleteSessionOptions);
|
|
}
|
|
|
|
void serialize(const Message &SE, std::string *OutStr) {
|
|
if (ProtobufTextMode) {
|
|
TextFormat::PrintToString(SE, OutStr);
|
|
} else {
|
|
*OutStr = SE.SerializeAsString();
|
|
}
|
|
}
|
|
} // namespace
|
|
|
|
namespace llvm {
|
|
class EvaluationResultImpl {
|
|
public:
|
|
EvaluationResultImpl(size_t OutputSize)
|
|
: OutputSize(OutputSize), Output(OutputSize){};
|
|
|
|
~EvaluationResultImpl() {
|
|
for (auto *P : Output)
|
|
if (P)
|
|
TF_DeleteTensor(P);
|
|
}
|
|
|
|
EvaluationResultImpl(const EvaluationResultImpl &) = delete;
|
|
EvaluationResultImpl(EvaluationResultImpl &&Other) = delete;
|
|
std::vector<TF_Tensor *> &getOutput() { return Output; }
|
|
|
|
private:
|
|
const size_t OutputSize;
|
|
std::vector<TF_Tensor *> Output;
|
|
};
|
|
|
|
size_t TensorSpec::getElementByteSize() const {
|
|
return TF_DataTypeSize(static_cast<TF_DataType>(TypeIndex));
|
|
}
|
|
|
|
TensorSpec::TensorSpec(const std::string &Name, int Port, int TypeIndex,
|
|
const std::vector<int64_t> &Shape)
|
|
: Name(Name), Port(Port), TypeIndex(TypeIndex), Shape(Shape),
|
|
ElementCount(std::accumulate(Shape.begin(), Shape.end(), 1,
|
|
std::multiplies<int64_t>())) {}
|
|
|
|
Optional<TensorSpec> getTensorSpecFromJSON(LLVMContext &Ctx,
|
|
const json::Value &Value) {
|
|
auto EmitError = [&](const llvm::Twine &Message) -> Optional<TensorSpec> {
|
|
std::string S;
|
|
llvm::raw_string_ostream OS(S);
|
|
OS << Value;
|
|
Ctx.emitError("Unable to parse JSON Value as spec (" + Message + "): " + S);
|
|
return None;
|
|
};
|
|
// FIXME: accept a Path as a parameter, and use it for error reporting.
|
|
json::Path::Root Root("tensor_spec");
|
|
json::ObjectMapper Mapper(Value, Root);
|
|
if (!Mapper)
|
|
return EmitError("Value is not a dict");
|
|
|
|
std::string TensorName;
|
|
int TensorPort = -1;
|
|
std::string TensorType;
|
|
std::vector<int64_t> TensorShape;
|
|
|
|
if (!Mapper.map<std::string>("name", TensorName))
|
|
return EmitError("'name' property not present or not a string");
|
|
if (!Mapper.map<std::string>("type", TensorType))
|
|
return EmitError("'type' property not present or not a string");
|
|
if (!Mapper.map<int>("port", TensorPort))
|
|
return EmitError("'port' property not present or not an int");
|
|
if (!Mapper.map<std::vector<int64_t>>("shape", TensorShape))
|
|
return EmitError("'shape' property not present or not an int array");
|
|
|
|
#define PARSE_TYPE(T, E) \
|
|
if (TensorType == #T) \
|
|
return TensorSpec::createSpec<T>(TensorName, TensorShape, TensorPort);
|
|
TFUTILS_SUPPORTED_TYPES(PARSE_TYPE)
|
|
#undef PARSE_TYPE
|
|
return None;
|
|
}
|
|
|
|
Optional<std::vector<LoggedFeatureSpec>>
|
|
loadOutputSpecs(LLVMContext &Ctx, StringRef ExpectedDecisionName,
|
|
StringRef ModelPath, StringRef SpecFileOverride) {
|
|
SmallVector<char, 128> OutputSpecsPath;
|
|
StringRef FileName = SpecFileOverride;
|
|
if (FileName.empty()) {
|
|
llvm::sys::path::append(OutputSpecsPath, ModelPath, "output_spec.json");
|
|
FileName = {OutputSpecsPath.data(), OutputSpecsPath.size()};
|
|
}
|
|
|
|
auto BufferOrError = MemoryBuffer::getFileOrSTDIN(FileName);
|
|
if (!BufferOrError) {
|
|
Ctx.emitError("Error opening output specs file: " + FileName + " : " +
|
|
BufferOrError.getError().message());
|
|
return None;
|
|
}
|
|
auto ParsedJSONValues = json::parse(BufferOrError.get()->getBuffer());
|
|
if (!ParsedJSONValues) {
|
|
Ctx.emitError("Could not parse specs file: " + FileName);
|
|
return None;
|
|
}
|
|
auto ValuesArray = ParsedJSONValues->getAsArray();
|
|
if (!ValuesArray) {
|
|
Ctx.emitError("Expected an array of {tensor_spec:<TensorSpec>, "
|
|
"logging_name:<name>} dictionaries");
|
|
return None;
|
|
}
|
|
std::vector<LoggedFeatureSpec> Ret;
|
|
for (const auto &Value : *ValuesArray)
|
|
if (const auto *Obj = Value.getAsObject())
|
|
if (const auto *SpecPart = Obj->get("tensor_spec"))
|
|
if (auto TensorSpec = getTensorSpecFromJSON(Ctx, *SpecPart))
|
|
if (auto LoggingName = Obj->getString("logging_name")) {
|
|
if (!TensorSpec->isElementType<int64_t>() &&
|
|
!TensorSpec->isElementType<int32_t>() &&
|
|
!TensorSpec->isElementType<float>()) {
|
|
Ctx.emitError(
|
|
"Only int64, int32, and float tensors are supported. "
|
|
"Found unsupported type for tensor named " +
|
|
TensorSpec->name());
|
|
return None;
|
|
}
|
|
Ret.push_back({*TensorSpec, LoggingName->str()});
|
|
}
|
|
|
|
if (ValuesArray->size() != Ret.size()) {
|
|
Ctx.emitError(
|
|
"Unable to parse output spec. It should be a json file containing an "
|
|
"array of dictionaries. Each dictionary must have a 'tensor_spec' key, "
|
|
"with a json object describing a TensorSpec; and a 'logging_name' key, "
|
|
"which is a string to use as name when logging this tensor in the "
|
|
"training log.");
|
|
return None;
|
|
}
|
|
if (Ret.empty() || *Ret[0].LoggingName != ExpectedDecisionName) {
|
|
Ctx.emitError("The first output spec must describe the decision tensor, "
|
|
"and must have the logging_name " +
|
|
StringRef(ExpectedDecisionName));
|
|
return None;
|
|
}
|
|
return Ret;
|
|
}
|
|
|
|
class TFModelEvaluatorImpl {
|
|
public:
|
|
TFModelEvaluatorImpl(StringRef SavedModelPath,
|
|
const std::vector<TensorSpec> &InputSpecs,
|
|
function_ref<TensorSpec(size_t)> GetOutputSpecs,
|
|
size_t OutputSpecsSize, const char *Tags);
|
|
|
|
bool isValid() const { return IsValid; }
|
|
size_t OutputSize() const { return OutputFeed.size(); }
|
|
|
|
void evaluate(TF_Tensor **Output, TF_Status *Status) {
|
|
TF_SessionRun(Session, nullptr, InputFeed.data(), Input.data(),
|
|
Input.size(), OutputFeed.data(), Output, OutputFeed.size(),
|
|
nullptr, 0, nullptr, Status);
|
|
}
|
|
|
|
void initInput(size_t Index, TF_DataType Type,
|
|
const std::vector<int64_t> &Dimensions);
|
|
const std::vector<TF_Tensor *> &getInput() const { return Input; }
|
|
|
|
~TFModelEvaluatorImpl();
|
|
|
|
private:
|
|
/// The objects necessary for carrying out an evaluation of the SavedModel.
|
|
/// They are expensive to set up, and we maintain them accross all the
|
|
/// evaluations of the model.
|
|
TF_Session *Session = nullptr;
|
|
TFGraphPtr Graph;
|
|
TFSessionOptionsPtr Options;
|
|
|
|
/// The specification of the input nodes.
|
|
std::vector<TF_Output> InputFeed;
|
|
|
|
/// The input tensors. They must match by index of the corresponding InputFeed
|
|
/// value. We set up the tensors once and just mutate theirs scalars before
|
|
/// each evaluation. The input tensors keep their value after an evaluation.
|
|
std::vector<TF_Tensor *> Input;
|
|
|
|
/// The specification of the output nodes. When evaluating, the tensors in the
|
|
/// output tensor vector must match by index the corresponding element in the
|
|
/// OutputFeed.
|
|
std::vector<TF_Output> OutputFeed;
|
|
|
|
void invalidate() { IsValid = false; }
|
|
|
|
bool IsValid = true;
|
|
|
|
/// Reusable utility for ensuring we can bind the requested Name to a node in
|
|
/// the SavedModel Graph.
|
|
bool checkReportAndInvalidate(const TF_Output &Output,
|
|
const TensorSpec &OutputSpec);
|
|
};
|
|
|
|
class LoggerDataImpl {
|
|
const std::vector<LoggedFeatureSpec> LoggedFeatureSpecs;
|
|
const TensorSpec RewardSpec;
|
|
const bool IncludeReward;
|
|
|
|
std::vector<tensorflow::FeatureList> FeatureLists;
|
|
tensorflow::FeatureList Reward;
|
|
|
|
bool isSelfConsistent(const tensorflow::SequenceExample &SE,
|
|
size_t NrRecords) const {
|
|
bool Ret = true;
|
|
for (const auto &TSpecs : LoggedFeatureSpecs) {
|
|
const auto &Name = TSpecs.getLoggingName();
|
|
const auto &FL = SE.feature_lists().feature_list().at(Name).feature();
|
|
if (NrRecords != static_cast<size_t>(FL.size())) {
|
|
dbgs() << "[TF-UTILS]: " << Name << " has missing records. Expected "
|
|
<< NrRecords << " got " << FL.size() << "\n";
|
|
Ret = false;
|
|
}
|
|
}
|
|
if (IncludeReward && static_cast<size_t>(SE.feature_lists()
|
|
.feature_list()
|
|
.at(RewardSpec.name())
|
|
.feature()
|
|
.size()) != NrRecords) {
|
|
dbgs() << "[TF-UTILS]: reward is missing records.\n";
|
|
Ret = false;
|
|
}
|
|
return Ret;
|
|
}
|
|
|
|
void transferLog(tensorflow::SequenceExample &SE) {
|
|
auto *FL = SE.mutable_feature_lists()->mutable_feature_list();
|
|
if (IncludeReward)
|
|
(*FL)[RewardSpec.name()] = std::move(Reward);
|
|
assert(FeatureLists.size() == LoggedFeatureSpecs.size());
|
|
for (size_t I = 0; I < FeatureLists.size(); ++I) {
|
|
const auto &LFS = LoggedFeatureSpecs[I];
|
|
(*FL)[LFS.getLoggingName()] = std::move(FeatureLists[I]);
|
|
}
|
|
}
|
|
|
|
public:
|
|
LoggerDataImpl(const std::vector<LoggedFeatureSpec> &LoggedSpecs,
|
|
const TensorSpec &RewardSpec, bool IncludeReward)
|
|
: LoggedFeatureSpecs(LoggedSpecs), RewardSpec(RewardSpec),
|
|
IncludeReward(IncludeReward), FeatureLists(LoggedFeatureSpecs.size()) {}
|
|
|
|
// flush the logged info to a stream and clear the log contents.
|
|
void flush(std::string *Str) {
|
|
size_t NrRecords = getNrRecords();
|
|
(void)NrRecords;
|
|
tensorflow::SequenceExample SE;
|
|
transferLog(SE);
|
|
assert(isSelfConsistent(SE, NrRecords));
|
|
serialize(SE, Str);
|
|
}
|
|
|
|
char *addNewTensor(size_t FeatureID) {
|
|
const auto &Spec = LoggedFeatureSpecs[FeatureID].Spec;
|
|
if (Spec.isElementType<float>()) {
|
|
auto *RF = FeatureLists[FeatureID]
|
|
.add_feature()
|
|
->mutable_float_list()
|
|
->mutable_value();
|
|
RF->Resize(Spec.getElementCount(), 0.0);
|
|
return reinterpret_cast<char *>(RF->mutable_data());
|
|
} else if (Spec.isElementType<int32_t>() || Spec.isElementType<int64_t>()) {
|
|
auto *RF = FeatureLists[FeatureID]
|
|
.add_feature()
|
|
->mutable_int64_list()
|
|
->mutable_value();
|
|
RF->Resize(Spec.getElementCount(), 0);
|
|
return reinterpret_cast<char *>(RF->mutable_data());
|
|
}
|
|
llvm_unreachable("Unsupported tensor type.");
|
|
}
|
|
|
|
template <typename T> void logReward(T Value) {
|
|
assert(IncludeReward);
|
|
if (RewardSpec.isElementType<float>())
|
|
Reward.add_feature()->mutable_float_list()->add_value(Value);
|
|
else if (RewardSpec.isElementType<int32_t>() ||
|
|
RewardSpec.isElementType<int64_t>())
|
|
Reward.add_feature()->mutable_int64_list()->add_value(Value);
|
|
else
|
|
llvm_unreachable("Unsupported tensor type.");
|
|
}
|
|
|
|
size_t getNrRecords() const {
|
|
return FeatureLists.empty() ? 0 : FeatureLists[0].feature().size();
|
|
}
|
|
};
|
|
} // namespace llvm
|
|
|
|
TFModelEvaluatorImpl::TFModelEvaluatorImpl(
|
|
StringRef SavedModelPath, const std::vector<TensorSpec> &InputSpecs,
|
|
function_ref<TensorSpec(size_t)> GetOutputSpecs, size_t OutputSpecsSize,
|
|
const char *Tags = "serve")
|
|
: Graph(createTFGraph()), Options(createTFSessionOptions()),
|
|
InputFeed(InputSpecs.size()), Input(InputSpecs.size()),
|
|
OutputFeed(OutputSpecsSize) {
|
|
if (!ensureInitTF()) {
|
|
errs() << "Tensorflow should have been initialized";
|
|
return;
|
|
}
|
|
auto Status = createTFStatus();
|
|
|
|
Session = TF_LoadSessionFromSavedModel(Options.get(), nullptr,
|
|
SavedModelPath.str().c_str(), &Tags, 1,
|
|
Graph.get(), nullptr, Status.get());
|
|
if (TF_GetCode(Status.get()) != TF_Code::TF_OK) {
|
|
errs() << TF_Message(Status.get());
|
|
invalidate();
|
|
}
|
|
for (size_t I = 0; I < InputSpecs.size(); ++I) {
|
|
auto &InputSpec = InputSpecs[I];
|
|
InputFeed[I] = {
|
|
TF_GraphOperationByName(Graph.get(), (InputSpec.name()).c_str()),
|
|
InputSpec.port()};
|
|
if (!checkReportAndInvalidate(InputFeed[I], InputSpec))
|
|
return;
|
|
initInput(I, static_cast<TF_DataType>(InputSpec.typeIndex()),
|
|
InputSpec.shape());
|
|
}
|
|
for (size_t I = 0; I < OutputSpecsSize; ++I) {
|
|
auto OutputSpec = GetOutputSpecs(I);
|
|
OutputFeed[I] = {
|
|
TF_GraphOperationByName(Graph.get(), (OutputSpec.name()).c_str()),
|
|
OutputSpec.port()};
|
|
if (!checkReportAndInvalidate(OutputFeed[I], OutputSpec))
|
|
return;
|
|
}
|
|
}
|
|
|
|
TFModelEvaluator::TFModelEvaluator(
|
|
StringRef SavedModelPath, const std::vector<TensorSpec> &InputSpecs,
|
|
function_ref<TensorSpec(size_t)> GetOutputSpecs, size_t OutputSpecsSize,
|
|
const char *Tags)
|
|
: Impl(new TFModelEvaluatorImpl(SavedModelPath, InputSpecs, GetOutputSpecs,
|
|
OutputSpecsSize, Tags)) {
|
|
if (!Impl->isValid())
|
|
Impl.reset();
|
|
}
|
|
|
|
TFModelEvaluator::TFModelEvaluator(StringRef SavedModelPath,
|
|
const std::vector<TensorSpec> &InputSpecs,
|
|
const std::vector<TensorSpec> &OutputSpecs,
|
|
const char *Tags)
|
|
: TFModelEvaluator(
|
|
SavedModelPath, InputSpecs, [&](size_t I) { return OutputSpecs[I]; },
|
|
OutputSpecs.size(), Tags) {}
|
|
|
|
TFModelEvaluatorImpl::~TFModelEvaluatorImpl() {
|
|
for (auto *T : Input) {
|
|
TF_DeleteTensor(T);
|
|
}
|
|
if (Session == nullptr)
|
|
return;
|
|
auto Status = createTFStatus();
|
|
TF_DeleteSession(Session, Status.get());
|
|
Session = nullptr;
|
|
if (TF_GetCode(Status.get()) != TF_Code::TF_OK)
|
|
errs() << "Could not delete TF session";
|
|
}
|
|
|
|
bool TFModelEvaluatorImpl::checkReportAndInvalidate(
|
|
const TF_Output &Output, const TensorSpec &OutputSpec) {
|
|
if (Output.oper)
|
|
return true;
|
|
errs() << "Could not find TF_Output named: " + OutputSpec.name();
|
|
IsValid = false;
|
|
return IsValid;
|
|
}
|
|
|
|
Optional<TFModelEvaluator::EvaluationResult> TFModelEvaluator::evaluate() {
|
|
if (!isValid())
|
|
return None;
|
|
std::unique_ptr<EvaluationResultImpl> Ret =
|
|
std::make_unique<EvaluationResultImpl>(Impl->OutputSize());
|
|
auto Status = createTFStatus();
|
|
Impl->evaluate(Ret->getOutput().data(), Status.get());
|
|
if (TF_GetCode(Status.get()) != TF_Code::TF_OK) {
|
|
errs() << TF_Message(Status.get());
|
|
Impl.reset();
|
|
return None;
|
|
}
|
|
return EvaluationResult(std::move(Ret));
|
|
}
|
|
|
|
void TFModelEvaluatorImpl::initInput(size_t Index, TF_DataType Type,
|
|
const std::vector<int64_t> &Dimensions) {
|
|
int64_t TotalSize = TF_DataTypeSize(Type);
|
|
for (auto &D : Dimensions)
|
|
TotalSize *= D;
|
|
|
|
Input[Index] =
|
|
TF_AllocateTensor(Type, Dimensions.data(), Dimensions.size(), TotalSize);
|
|
std::memset(TF_TensorData(Input[Index]), 0, TotalSize);
|
|
}
|
|
|
|
void *TFModelEvaluator::getUntypedInput(size_t Index) {
|
|
return TF_TensorData(Impl->getInput()[Index]);
|
|
}
|
|
|
|
TFModelEvaluator::EvaluationResult::EvaluationResult(
|
|
std::unique_ptr<EvaluationResultImpl> Impl)
|
|
: Impl(std::move(Impl)) {}
|
|
|
|
TFModelEvaluator::EvaluationResult::EvaluationResult(EvaluationResult &&Other)
|
|
: Impl(std::move(Other.Impl)) {}
|
|
|
|
TFModelEvaluator::EvaluationResult &
|
|
TFModelEvaluator::EvaluationResult::operator=(EvaluationResult &&Other) {
|
|
Impl = std::move(Other.Impl);
|
|
return *this;
|
|
}
|
|
|
|
void *TFModelEvaluator::EvaluationResult::getUntypedTensorValue(size_t Index) {
|
|
return TF_TensorData(Impl->getOutput()[Index]);
|
|
}
|
|
|
|
const void *
|
|
TFModelEvaluator::EvaluationResult::getUntypedTensorValue(size_t Index) const {
|
|
return TF_TensorData(Impl->getOutput()[Index]);
|
|
}
|
|
|
|
#define TFUTILS_GETDATATYPE_IMPL(T, E) \
|
|
template <> int TensorSpec::getDataType<T>() { return E; }
|
|
|
|
TFUTILS_SUPPORTED_TYPES(TFUTILS_GETDATATYPE_IMPL)
|
|
|
|
#undef TFUTILS_GETDATATYPE_IMPL
|
|
|
|
TFModelEvaluator::EvaluationResult::~EvaluationResult() {}
|
|
TFModelEvaluator::~TFModelEvaluator() {}
|
|
|
|
Logger::Logger(const std::vector<LoggedFeatureSpec> &FeatureSpecs,
|
|
const TensorSpec &RewardSpec, bool IncludeReward)
|
|
: FeatureSpecs(FeatureSpecs), RewardSpec(RewardSpec),
|
|
IncludeReward(IncludeReward),
|
|
LoggerData(std::make_unique<LoggerDataImpl>(FeatureSpecs, RewardSpec,
|
|
IncludeReward)) {}
|
|
|
|
Logger::~Logger() {}
|
|
|
|
#define LOG_REWARD(NAME, TYPE) \
|
|
void Logger::log##NAME##Reward(TYPE Value) { \
|
|
assert(IncludeReward); \
|
|
LoggerData->logReward(Value); \
|
|
}
|
|
|
|
LOG_REWARD(Float, float)
|
|
LOG_REWARD(Int32, int32_t)
|
|
LOG_REWARD(Int64, int64_t)
|
|
#undef LOG_REWARD
|
|
|
|
#define LOG_FINAL_REWARD(NAME, TYPE) \
|
|
void Logger::log##NAME##FinalReward(TYPE Value) { \
|
|
assert(RewardSpec.isElementType<TYPE>()); \
|
|
for (size_t I = 1; I < LoggerData->getNrRecords(); ++I) \
|
|
log##NAME##Reward(0); \
|
|
log##NAME##Reward(Value); \
|
|
}
|
|
|
|
LOG_FINAL_REWARD(Float, float)
|
|
LOG_FINAL_REWARD(Int32, int32_t)
|
|
LOG_FINAL_REWARD(Int64, int64_t)
|
|
#undef LOG_FINAL_REWARD
|
|
|
|
void Logger::logFloatValue(size_t FeatureID, const float *Value) {
|
|
assert(FeatureSpecs[FeatureID].Spec.isElementType<float>());
|
|
logSpecifiedTensorValue(FeatureID, reinterpret_cast<const char *>(Value));
|
|
}
|
|
|
|
void Logger::logInt64Value(size_t FeatureID, const int64_t *Value) {
|
|
assert(FeatureSpecs[FeatureID].Spec.isElementType<int64_t>());
|
|
logSpecifiedTensorValue(FeatureID, reinterpret_cast<const char *>(Value));
|
|
}
|
|
|
|
void Logger::logInt32Value(size_t FeatureID, const int32_t *Value) {
|
|
assert(FeatureSpecs[FeatureID].Spec.isElementType<int32_t>());
|
|
logSpecifiedTensorValue(FeatureID, reinterpret_cast<const char *>(Value));
|
|
}
|
|
|
|
void Logger::logSpecifiedTensorValue(size_t FeatureID, const char *RawData) {
|
|
const auto &Spec = FeatureSpecs[FeatureID].Spec;
|
|
char *Buff = addEntryAndGetFloatOrInt64Buffer(FeatureID);
|
|
if (Spec.isElementType<int32_t>())
|
|
for (size_t I = 0; I < Spec.getElementCount(); ++I)
|
|
(reinterpret_cast<int64_t *>(Buff))[I] =
|
|
static_cast<int64_t>((reinterpret_cast<const int32_t *>(RawData))[I]);
|
|
else if (Spec.isElementType<int64_t>() || Spec.isElementType<float>())
|
|
std::memcpy(Buff, RawData,
|
|
Spec.getElementCount() * Spec.getElementByteSize());
|
|
else
|
|
llvm_unreachable("Unsupported tensor type");
|
|
}
|
|
|
|
char *Logger::addEntryAndGetFloatOrInt64Buffer(size_t FeatureID) {
|
|
return reinterpret_cast<char *>(LoggerData->addNewTensor(FeatureID));
|
|
}
|
|
|
|
void Logger::flush(std::string *Str) { LoggerData->flush(Str); }
|
|
|
|
void Logger::flush(raw_ostream &OS) {
|
|
std::string Buff;
|
|
LoggerData->flush(&Buff);
|
|
OS << Buff;
|
|
}
|
|
|
|
void Logger::flushLogs(raw_ostream &OS,
|
|
const StringMap<std::unique_ptr<Logger>> &Loggers) {
|
|
google::protobuf::Struct Msg;
|
|
for (const auto &NamedLogger : Loggers) {
|
|
tensorflow::SequenceExample SE;
|
|
const auto &Logger = NamedLogger.second;
|
|
std::string Unencoded;
|
|
if (Logger->LoggerData->getNrRecords() > 0)
|
|
Logger->flush(&Unencoded);
|
|
|
|
(*Msg.mutable_fields())[NamedLogger.first().str()]
|
|
.mutable_string_value()
|
|
->append(ProtobufTextMode ? Unencoded : encodeBase64(Unencoded));
|
|
}
|
|
|
|
std::string OutStr;
|
|
serialize(Msg, &OutStr);
|
|
OS << OutStr;
|
|
}
|
|
#endif // defined(LLVM_HAVE_TF_API)
|