
Instead of having a special DynamicReloc::Kind, we can just use a new RelExpr for the calculation needed. The only odd thing we do that allows this is to keep a representative symbol for the OutputSection in question (the first we see for it) around to use in this relocation for the addend calculation. This reduces DynamicReloc to just AddendOnly vs AgainstSymbol, plus the internal Computed. Reviewers: MaskRay, arichardson Reviewed By: MaskRay, arichardson Pull Request: https://github.com/llvm/llvm-project/pull/150810
1564 lines
61 KiB
C++
1564 lines
61 KiB
C++
//===- InputSection.cpp ---------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "InputSection.h"
|
|
#include "Config.h"
|
|
#include "InputFiles.h"
|
|
#include "OutputSections.h"
|
|
#include "Relocations.h"
|
|
#include "SymbolTable.h"
|
|
#include "Symbols.h"
|
|
#include "SyntheticSections.h"
|
|
#include "Target.h"
|
|
#include "lld/Common/DWARF.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/Compression.h"
|
|
#include "llvm/Support/Endian.h"
|
|
#include "llvm/Support/xxhash.h"
|
|
#include <algorithm>
|
|
#include <optional>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::ELF;
|
|
using namespace llvm::object;
|
|
using namespace llvm::support;
|
|
using namespace llvm::support::endian;
|
|
using namespace llvm::sys;
|
|
using namespace lld;
|
|
using namespace lld::elf;
|
|
|
|
// Returns a string to construct an error message.
|
|
std::string elf::toStr(Ctx &ctx, const InputSectionBase *sec) {
|
|
return (toStr(ctx, sec->file) + ":(" + sec->name + ")").str();
|
|
}
|
|
|
|
const ELFSyncStream &elf::operator<<(const ELFSyncStream &s,
|
|
const InputSectionBase *sec) {
|
|
return s << toStr(s.ctx, sec);
|
|
}
|
|
|
|
template <class ELFT>
|
|
static ArrayRef<uint8_t> getSectionContents(ObjFile<ELFT> &file,
|
|
const typename ELFT::Shdr &hdr) {
|
|
if (hdr.sh_type == SHT_NOBITS)
|
|
return ArrayRef<uint8_t>(nullptr, hdr.sh_size);
|
|
return check(file.getObj().getSectionContents(hdr));
|
|
}
|
|
|
|
InputSectionBase::InputSectionBase(InputFile *file, StringRef name,
|
|
uint32_t type, uint64_t flags, uint32_t link,
|
|
uint32_t info, uint32_t addralign,
|
|
uint32_t entsize, ArrayRef<uint8_t> data,
|
|
Kind sectionKind)
|
|
: SectionBase(sectionKind, file, name, type, flags, link, info, addralign,
|
|
entsize),
|
|
bss(0), decodedCrel(0), keepUnique(0), nopFiller(0),
|
|
content_(data.data()), size(data.size()) {
|
|
// In order to reduce memory allocation, we assume that mergeable
|
|
// sections are smaller than 4 GiB, which is not an unreasonable
|
|
// assumption as of 2017.
|
|
if (sectionKind == SectionBase::Merge && content().size() > UINT32_MAX)
|
|
ErrAlways(getCtx()) << this << ": section too large";
|
|
|
|
// The ELF spec states that a value of 0 means the section has
|
|
// no alignment constraints.
|
|
uint32_t v = std::max<uint32_t>(addralign, 1);
|
|
if (!isPowerOf2_64(v)) {
|
|
Err(getCtx()) << this << ": sh_addralign is not a power of 2";
|
|
v = 1;
|
|
}
|
|
this->addralign = v;
|
|
|
|
// If SHF_COMPRESSED is set, parse the header. The legacy .zdebug format is no
|
|
// longer supported.
|
|
if (flags & SHF_COMPRESSED) {
|
|
Ctx &ctx = file->ctx;
|
|
invokeELFT(parseCompressedHeader, ctx);
|
|
}
|
|
}
|
|
|
|
// SHF_INFO_LINK and SHF_GROUP are normally resolved and not copied to the
|
|
// output section. However, for relocatable linking without
|
|
// --force-group-allocation, the SHF_GROUP flag and section groups are retained.
|
|
static uint64_t getFlags(Ctx &ctx, uint64_t flags) {
|
|
flags &= ~(uint64_t)SHF_INFO_LINK;
|
|
if (ctx.arg.resolveGroups)
|
|
flags &= ~(uint64_t)SHF_GROUP;
|
|
return flags;
|
|
}
|
|
|
|
template <class ELFT>
|
|
InputSectionBase::InputSectionBase(ObjFile<ELFT> &file,
|
|
const typename ELFT::Shdr &hdr,
|
|
StringRef name, Kind sectionKind)
|
|
: InputSectionBase(&file, name, hdr.sh_type,
|
|
getFlags(file.ctx, hdr.sh_flags), hdr.sh_link,
|
|
hdr.sh_info, hdr.sh_addralign, hdr.sh_entsize,
|
|
getSectionContents(file, hdr), sectionKind) {
|
|
// We reject object files having insanely large alignments even though
|
|
// they are allowed by the spec. I think 4GB is a reasonable limitation.
|
|
// We might want to relax this in the future.
|
|
if (hdr.sh_addralign > UINT32_MAX) {
|
|
Err(getCtx()) << &file << ": section sh_addralign is too large";
|
|
addralign = 1;
|
|
}
|
|
}
|
|
|
|
size_t InputSectionBase::getSize() const {
|
|
if (auto *s = dyn_cast<SyntheticSection>(this))
|
|
return s->getSize();
|
|
return size - bytesDropped;
|
|
}
|
|
|
|
template <class ELFT>
|
|
static void decompressAux(Ctx &ctx, const InputSectionBase &sec, uint8_t *out,
|
|
size_t size) {
|
|
auto *hdr = reinterpret_cast<const typename ELFT::Chdr *>(sec.content_);
|
|
auto compressed = ArrayRef<uint8_t>(sec.content_, sec.compressedSize)
|
|
.slice(sizeof(typename ELFT::Chdr));
|
|
if (Error e = hdr->ch_type == ELFCOMPRESS_ZLIB
|
|
? compression::zlib::decompress(compressed, out, size)
|
|
: compression::zstd::decompress(compressed, out, size))
|
|
Err(ctx) << &sec << ": decompress failed: " << std::move(e);
|
|
}
|
|
|
|
void InputSectionBase::decompress() const {
|
|
Ctx &ctx = getCtx();
|
|
uint8_t *buf = makeThreadLocalN<uint8_t>(size);
|
|
invokeELFT(decompressAux, ctx, *this, buf, size);
|
|
content_ = buf;
|
|
compressed = false;
|
|
}
|
|
|
|
template <class ELFT>
|
|
RelsOrRelas<ELFT> InputSectionBase::relsOrRelas(bool supportsCrel) const {
|
|
if (relSecIdx == 0)
|
|
return {};
|
|
RelsOrRelas<ELFT> ret;
|
|
auto *f = cast<ObjFile<ELFT>>(file);
|
|
typename ELFT::Shdr shdr = f->template getELFShdrs<ELFT>()[relSecIdx];
|
|
if (shdr.sh_type == SHT_CREL) {
|
|
// Return an iterator if supported by caller.
|
|
if (supportsCrel) {
|
|
ret.crels = Relocs<typename ELFT::Crel>(
|
|
(const uint8_t *)f->mb.getBufferStart() + shdr.sh_offset);
|
|
return ret;
|
|
}
|
|
InputSectionBase *const &relSec = f->getSections()[relSecIdx];
|
|
// Otherwise, allocate a buffer to hold the decoded RELA relocations. When
|
|
// called for the first time, relSec is null (without --emit-relocs) or an
|
|
// InputSection with false decodedCrel.
|
|
if (!relSec || !cast<InputSection>(relSec)->decodedCrel) {
|
|
auto *sec = makeThreadLocal<InputSection>(*f, shdr, name);
|
|
f->cacheDecodedCrel(relSecIdx, sec);
|
|
sec->type = SHT_RELA;
|
|
sec->decodedCrel = true;
|
|
|
|
RelocsCrel<ELFT::Is64Bits> entries(sec->content_);
|
|
sec->size = entries.size() * sizeof(typename ELFT::Rela);
|
|
auto *relas = makeThreadLocalN<typename ELFT::Rela>(entries.size());
|
|
sec->content_ = reinterpret_cast<uint8_t *>(relas);
|
|
for (auto [i, r] : llvm::enumerate(entries)) {
|
|
relas[i].r_offset = r.r_offset;
|
|
relas[i].setSymbolAndType(r.r_symidx, r.r_type, false);
|
|
relas[i].r_addend = r.r_addend;
|
|
}
|
|
}
|
|
ret.relas = {ArrayRef(
|
|
reinterpret_cast<const typename ELFT::Rela *>(relSec->content_),
|
|
relSec->size / sizeof(typename ELFT::Rela))};
|
|
return ret;
|
|
}
|
|
|
|
const void *content = f->mb.getBufferStart() + shdr.sh_offset;
|
|
size_t size = shdr.sh_size;
|
|
if (shdr.sh_type == SHT_REL) {
|
|
ret.rels = {ArrayRef(reinterpret_cast<const typename ELFT::Rel *>(content),
|
|
size / sizeof(typename ELFT::Rel))};
|
|
} else {
|
|
assert(shdr.sh_type == SHT_RELA);
|
|
ret.relas = {
|
|
ArrayRef(reinterpret_cast<const typename ELFT::Rela *>(content),
|
|
size / sizeof(typename ELFT::Rela))};
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
Ctx &SectionBase::getCtx() const { return file->ctx; }
|
|
|
|
uint64_t SectionBase::getOffset(uint64_t offset) const {
|
|
switch (kind()) {
|
|
case Output: {
|
|
auto *os = cast<OutputSection>(this);
|
|
// For output sections we treat offset -1 as the end of the section.
|
|
return offset == uint64_t(-1) ? os->size : offset;
|
|
}
|
|
case Class:
|
|
llvm_unreachable("section classes do not have offsets");
|
|
case Regular:
|
|
case Synthetic:
|
|
case Spill:
|
|
return cast<InputSection>(this)->outSecOff + offset;
|
|
case EHFrame: {
|
|
// Two code paths may reach here. First, clang_rt.crtbegin.o and GCC
|
|
// crtbeginT.o may reference the start of an empty .eh_frame to identify the
|
|
// start of the output .eh_frame. Just return offset.
|
|
//
|
|
// Second, InputSection::copyRelocations on .eh_frame. Some pieces may be
|
|
// discarded due to GC/ICF. We should compute the output section offset.
|
|
const EhInputSection *es = cast<EhInputSection>(this);
|
|
if (!es->content().empty())
|
|
if (InputSection *isec = es->getParent())
|
|
return isec->outSecOff + es->getParentOffset(offset);
|
|
return offset;
|
|
}
|
|
case Merge:
|
|
const MergeInputSection *ms = cast<MergeInputSection>(this);
|
|
if (InputSection *isec = ms->getParent())
|
|
return isec->outSecOff + ms->getParentOffset(offset);
|
|
return ms->getParentOffset(offset);
|
|
}
|
|
llvm_unreachable("invalid section kind");
|
|
}
|
|
|
|
uint64_t SectionBase::getVA(uint64_t offset) const {
|
|
const OutputSection *out = getOutputSection();
|
|
return (out ? out->addr : 0) + getOffset(offset);
|
|
}
|
|
|
|
OutputSection *SectionBase::getOutputSection() {
|
|
InputSection *sec;
|
|
if (auto *isec = dyn_cast<InputSection>(this))
|
|
sec = isec;
|
|
else if (auto *ms = dyn_cast<MergeInputSection>(this))
|
|
sec = ms->getParent();
|
|
else if (auto *eh = dyn_cast<EhInputSection>(this))
|
|
sec = eh->getParent();
|
|
else
|
|
return cast<OutputSection>(this);
|
|
return sec ? sec->getParent() : nullptr;
|
|
}
|
|
|
|
// When a section is compressed, `rawData` consists with a header followed
|
|
// by zlib-compressed data. This function parses a header to initialize
|
|
// `uncompressedSize` member and remove the header from `rawData`.
|
|
template <typename ELFT>
|
|
void InputSectionBase::parseCompressedHeader(Ctx &ctx) {
|
|
flags &= ~(uint64_t)SHF_COMPRESSED;
|
|
|
|
// New-style header
|
|
if (content().size() < sizeof(typename ELFT::Chdr)) {
|
|
ErrAlways(ctx) << this << ": corrupted compressed section";
|
|
return;
|
|
}
|
|
|
|
auto *hdr = reinterpret_cast<const typename ELFT::Chdr *>(content().data());
|
|
if (hdr->ch_type == ELFCOMPRESS_ZLIB) {
|
|
if (!compression::zlib::isAvailable())
|
|
ErrAlways(ctx) << this
|
|
<< " is compressed with ELFCOMPRESS_ZLIB, but lld is "
|
|
"not built with zlib support";
|
|
} else if (hdr->ch_type == ELFCOMPRESS_ZSTD) {
|
|
if (!compression::zstd::isAvailable())
|
|
ErrAlways(ctx) << this
|
|
<< " is compressed with ELFCOMPRESS_ZSTD, but lld is "
|
|
"not built with zstd support";
|
|
} else {
|
|
ErrAlways(ctx) << this << ": unsupported compression type ("
|
|
<< uint32_t(hdr->ch_type) << ")";
|
|
return;
|
|
}
|
|
|
|
compressed = true;
|
|
compressedSize = size;
|
|
size = hdr->ch_size;
|
|
addralign = std::max<uint32_t>(hdr->ch_addralign, 1);
|
|
}
|
|
|
|
InputSection *InputSectionBase::getLinkOrderDep() const {
|
|
assert(flags & SHF_LINK_ORDER);
|
|
if (!link)
|
|
return nullptr;
|
|
return cast<InputSection>(file->getSections()[link]);
|
|
}
|
|
|
|
// Find a symbol that encloses a given location.
|
|
Defined *InputSectionBase::getEnclosingSymbol(uint64_t offset,
|
|
uint8_t type) const {
|
|
if (file->isInternal())
|
|
return nullptr;
|
|
for (Symbol *b : file->getSymbols())
|
|
if (Defined *d = dyn_cast<Defined>(b))
|
|
if (d->section == this && d->value <= offset &&
|
|
offset < d->value + d->size && (type == 0 || type == d->type))
|
|
return d;
|
|
return nullptr;
|
|
}
|
|
|
|
// Returns an object file location string. Used to construct an error message.
|
|
std::string InputSectionBase::getLocation(uint64_t offset) const {
|
|
std::string secAndOffset =
|
|
(name + "+0x" + Twine::utohexstr(offset) + ")").str();
|
|
|
|
std::string filename = toStr(getCtx(), file);
|
|
if (Defined *d = getEnclosingFunction(offset))
|
|
return filename + ":(function " + toStr(getCtx(), *d) + ": " + secAndOffset;
|
|
|
|
return filename + ":(" + secAndOffset;
|
|
}
|
|
|
|
static void printFileLine(const ELFSyncStream &s, StringRef path,
|
|
unsigned line) {
|
|
StringRef filename = path::filename(path);
|
|
s << filename << ':' << line;
|
|
if (filename != path)
|
|
s << " (" << path << ':' << line << ')';
|
|
}
|
|
|
|
// Print an error message that looks like this:
|
|
//
|
|
// foo.c:42 (/home/alice/possibly/very/long/path/foo.c:42)
|
|
const ELFSyncStream &elf::operator<<(const ELFSyncStream &s,
|
|
InputSectionBase::SrcMsg &&msg) {
|
|
auto &sec = msg.sec;
|
|
if (sec.file->kind() != InputFile::ObjKind)
|
|
return s;
|
|
auto &file = cast<ELFFileBase>(*sec.file);
|
|
|
|
// First, look up the DWARF line table.
|
|
ArrayRef<InputSectionBase *> sections = file.getSections();
|
|
auto it = llvm::find(sections, &sec);
|
|
uint64_t sectionIndex = it != sections.end()
|
|
? it - sections.begin()
|
|
: object::SectionedAddress::UndefSection;
|
|
DWARFCache *dwarf = file.getDwarf();
|
|
if (auto info = dwarf->getDILineInfo(msg.offset, sectionIndex))
|
|
printFileLine(s, info->FileName, info->Line);
|
|
else if (auto fileLine = dwarf->getVariableLoc(msg.sym.getName()))
|
|
// If it failed, look up again as a variable.
|
|
printFileLine(s, fileLine->first, fileLine->second);
|
|
else
|
|
// File.sourceFile contains STT_FILE symbol, and that is a last resort.
|
|
s << file.sourceFile;
|
|
return s;
|
|
}
|
|
|
|
// Returns a filename string along with an optional section name. This
|
|
// function is intended to be used for constructing an error
|
|
// message. The returned message looks like this:
|
|
//
|
|
// path/to/foo.o:(function bar)
|
|
//
|
|
// or
|
|
//
|
|
// path/to/foo.o:(function bar) in archive path/to/bar.a
|
|
const ELFSyncStream &elf::operator<<(const ELFSyncStream &s,
|
|
InputSectionBase::ObjMsg &&msg) {
|
|
auto *sec = msg.sec;
|
|
s << sec->file->getName() << ":(";
|
|
|
|
// Find a symbol that encloses a given location. getObjMsg may be called
|
|
// before ObjFile::initSectionsAndLocalSyms where local symbols are
|
|
// initialized.
|
|
if (Defined *d = sec->getEnclosingSymbol(msg.offset))
|
|
s << d;
|
|
else
|
|
s << sec->name << "+0x" << Twine::utohexstr(msg.offset);
|
|
s << ')';
|
|
if (!sec->file->archiveName.empty())
|
|
s << (" in archive " + sec->file->archiveName).str();
|
|
return s;
|
|
}
|
|
|
|
PotentialSpillSection::PotentialSpillSection(const InputSectionBase &source,
|
|
InputSectionDescription &isd)
|
|
: InputSection(source.file, source.name, source.type, source.flags,
|
|
source.addralign, source.addralign, {}, SectionBase::Spill),
|
|
isd(&isd) {}
|
|
|
|
InputSection InputSection::discarded(nullptr, "", 0, 0, 0, 0,
|
|
ArrayRef<uint8_t>());
|
|
|
|
InputSection::InputSection(InputFile *f, StringRef name, uint32_t type,
|
|
uint64_t flags, uint32_t addralign, uint32_t entsize,
|
|
ArrayRef<uint8_t> data, Kind k)
|
|
: InputSectionBase(f, name, type, flags,
|
|
/*link=*/0, /*info=*/0, addralign, /*entsize=*/entsize,
|
|
data, k) {
|
|
assert(f || this == &InputSection::discarded);
|
|
}
|
|
|
|
template <class ELFT>
|
|
InputSection::InputSection(ObjFile<ELFT> &f, const typename ELFT::Shdr &header,
|
|
StringRef name)
|
|
: InputSectionBase(f, header, name, InputSectionBase::Regular) {}
|
|
|
|
// Copy SHT_GROUP section contents. Used only for the -r option.
|
|
template <class ELFT> void InputSection::copyShtGroup(uint8_t *buf) {
|
|
// ELFT::Word is the 32-bit integral type in the target endianness.
|
|
using u32 = typename ELFT::Word;
|
|
ArrayRef<u32> from = getDataAs<u32>();
|
|
auto *to = reinterpret_cast<u32 *>(buf);
|
|
|
|
// The first entry is not a section number but a flag.
|
|
*to++ = from[0];
|
|
|
|
// Adjust section numbers because section numbers in an input object files are
|
|
// different in the output. We also need to handle combined or discarded
|
|
// members.
|
|
ArrayRef<InputSectionBase *> sections = file->getSections();
|
|
DenseSet<uint32_t> seen;
|
|
for (uint32_t idx : from.slice(1)) {
|
|
OutputSection *osec = sections[idx]->getOutputSection();
|
|
if (osec && seen.insert(osec->sectionIndex).second)
|
|
*to++ = osec->sectionIndex;
|
|
}
|
|
}
|
|
|
|
InputSectionBase *InputSection::getRelocatedSection() const {
|
|
if (file->isInternal() || !isStaticRelSecType(type))
|
|
return nullptr;
|
|
ArrayRef<InputSectionBase *> sections = file->getSections();
|
|
return sections[info];
|
|
}
|
|
|
|
template <class ELFT, class RelTy>
|
|
void InputSection::copyRelocations(Ctx &ctx, uint8_t *buf) {
|
|
bool linkerRelax =
|
|
ctx.arg.relax && is_contained({EM_RISCV, EM_LOONGARCH}, ctx.arg.emachine);
|
|
if (!ctx.arg.relocatable && (linkerRelax || ctx.arg.branchToBranch)) {
|
|
// On LoongArch and RISC-V, relaxation might change relocations: copy
|
|
// from internal ones that are updated by relaxation.
|
|
InputSectionBase *sec = getRelocatedSection();
|
|
copyRelocations<ELFT, RelTy>(
|
|
ctx, buf,
|
|
llvm::make_range(sec->relocations.begin(), sec->relocations.end()));
|
|
} else {
|
|
// Convert the raw relocations in the input section into Relocation objects
|
|
// suitable to be used by copyRelocations below.
|
|
struct MapRel {
|
|
Ctx &ctx;
|
|
const ObjFile<ELFT> &file;
|
|
Relocation operator()(const RelTy &rel) const {
|
|
// RelExpr is not used so set to a dummy value.
|
|
return Relocation{R_NONE, rel.getType(ctx.arg.isMips64EL), rel.r_offset,
|
|
getAddend<ELFT>(rel), &file.getRelocTargetSym(rel)};
|
|
}
|
|
};
|
|
|
|
using RawRels = ArrayRef<RelTy>;
|
|
using MapRelIter =
|
|
llvm::mapped_iterator<typename RawRels::iterator, MapRel>;
|
|
auto mapRel = MapRel{ctx, *getFile<ELFT>()};
|
|
RawRels rawRels = getDataAs<RelTy>();
|
|
auto rels = llvm::make_range(MapRelIter(rawRels.begin(), mapRel),
|
|
MapRelIter(rawRels.end(), mapRel));
|
|
copyRelocations<ELFT, RelTy>(ctx, buf, rels);
|
|
}
|
|
}
|
|
|
|
// This is used for -r and --emit-relocs. We can't use memcpy to copy
|
|
// relocations because we need to update symbol table offset and section index
|
|
// for each relocation. So we copy relocations one by one.
|
|
template <class ELFT, class RelTy, class RelIt>
|
|
void InputSection::copyRelocations(Ctx &ctx, uint8_t *buf,
|
|
llvm::iterator_range<RelIt> rels) {
|
|
const TargetInfo &target = *ctx.target;
|
|
InputSectionBase *sec = getRelocatedSection();
|
|
(void)sec->contentMaybeDecompress(); // uncompress if needed
|
|
|
|
for (const Relocation &rel : rels) {
|
|
RelType type = rel.type;
|
|
const ObjFile<ELFT> *file = getFile<ELFT>();
|
|
Symbol &sym = *rel.sym;
|
|
|
|
auto *p = reinterpret_cast<typename ELFT::Rela *>(buf);
|
|
buf += sizeof(RelTy);
|
|
|
|
if (RelTy::HasAddend)
|
|
p->r_addend = rel.addend;
|
|
|
|
// Output section VA is zero for -r, so r_offset is an offset within the
|
|
// section, but for --emit-relocs it is a virtual address.
|
|
p->r_offset = sec->getVA(rel.offset);
|
|
p->setSymbolAndType(ctx.in.symTab->getSymbolIndex(sym), type,
|
|
ctx.arg.isMips64EL);
|
|
|
|
if (sym.type == STT_SECTION) {
|
|
// We combine multiple section symbols into only one per
|
|
// section. This means we have to update the addend. That is
|
|
// trivial for Elf_Rela, but for Elf_Rel we have to write to the
|
|
// section data. We do that by adding to the Relocation vector.
|
|
|
|
// .eh_frame is horribly special and can reference discarded sections. To
|
|
// avoid having to parse and recreate .eh_frame, we just replace any
|
|
// relocation in it pointing to discarded sections with R_*_NONE, which
|
|
// hopefully creates a frame that is ignored at runtime. Also, don't warn
|
|
// on .gcc_except_table and debug sections.
|
|
//
|
|
// See the comment in maybeReportUndefined for PPC32 .got2 and PPC64 .toc
|
|
auto *d = dyn_cast<Defined>(&sym);
|
|
if (!d) {
|
|
if (!isDebugSection(*sec) && sec->name != ".eh_frame" &&
|
|
sec->name != ".gcc_except_table" && sec->name != ".got2" &&
|
|
sec->name != ".toc") {
|
|
uint32_t secIdx = cast<Undefined>(sym).discardedSecIdx;
|
|
Elf_Shdr_Impl<ELFT> sec = file->template getELFShdrs<ELFT>()[secIdx];
|
|
Warn(ctx) << "relocation refers to a discarded section: "
|
|
<< CHECK2(file->getObj().getSectionName(sec), file)
|
|
<< "\n>>> referenced by " << getObjMsg(p->r_offset);
|
|
}
|
|
p->setSymbolAndType(0, 0, false);
|
|
continue;
|
|
}
|
|
SectionBase *section = d->section;
|
|
assert(section->isLive());
|
|
|
|
int64_t addend = rel.addend;
|
|
const uint8_t *bufLoc = sec->content().begin() + rel.offset;
|
|
if (!RelTy::HasAddend)
|
|
addend = target.getImplicitAddend(bufLoc, type);
|
|
|
|
if (ctx.arg.emachine == EM_MIPS &&
|
|
target.getRelExpr(type, sym, bufLoc) == RE_MIPS_GOTREL) {
|
|
// Some MIPS relocations depend on "gp" value. By default,
|
|
// this value has 0x7ff0 offset from a .got section. But
|
|
// relocatable files produced by a compiler or a linker
|
|
// might redefine this default value and we must use it
|
|
// for a calculation of the relocation result. When we
|
|
// generate EXE or DSO it's trivial. Generating a relocatable
|
|
// output is more difficult case because the linker does
|
|
// not calculate relocations in this mode and loses
|
|
// individual "gp" values used by each input object file.
|
|
// As a workaround we add the "gp" value to the relocation
|
|
// addend and save it back to the file.
|
|
addend += sec->getFile<ELFT>()->mipsGp0;
|
|
}
|
|
|
|
if (RelTy::HasAddend)
|
|
p->r_addend =
|
|
sym.getVA(ctx, addend) - section->getOutputSection()->addr;
|
|
// For SHF_ALLOC sections relocated by REL, append a relocation to
|
|
// sec->relocations so that relocateAlloc transitively called by
|
|
// writeSections will update the implicit addend. Non-SHF_ALLOC sections
|
|
// utilize relocateNonAlloc to process raw relocations and do not need
|
|
// this sec->relocations change.
|
|
else if (ctx.arg.relocatable && (sec->flags & SHF_ALLOC) &&
|
|
type != target.noneRel)
|
|
sec->addReloc({R_ABS, type, rel.offset, addend, &sym});
|
|
} else if (ctx.arg.emachine == EM_PPC && type == R_PPC_PLTREL24 &&
|
|
p->r_addend >= 0x8000 && sec->file->ppc32Got2) {
|
|
// Similar to R_MIPS_GPREL{16,32}. If the addend of R_PPC_PLTREL24
|
|
// indicates that r30 is relative to the input section .got2
|
|
// (r_addend>=0x8000), after linking, r30 should be relative to the output
|
|
// section .got2 . To compensate for the shift, adjust r_addend by
|
|
// ppc32Got->outSecOff.
|
|
p->r_addend += sec->file->ppc32Got2->outSecOff;
|
|
}
|
|
}
|
|
}
|
|
|
|
// The ARM and AArch64 ABI handle pc-relative relocations to undefined weak
|
|
// references specially. The general rule is that the value of the symbol in
|
|
// this context is the address of the place P. A further special case is that
|
|
// branch relocations to an undefined weak reference resolve to the next
|
|
// instruction.
|
|
static uint32_t getARMUndefinedRelativeWeakVA(RelType type, uint32_t a,
|
|
uint32_t p) {
|
|
switch (type) {
|
|
// Unresolved branch relocations to weak references resolve to next
|
|
// instruction, this will be either 2 or 4 bytes on from P.
|
|
case R_ARM_THM_JUMP8:
|
|
case R_ARM_THM_JUMP11:
|
|
return p + 2 + a;
|
|
case R_ARM_CALL:
|
|
case R_ARM_JUMP24:
|
|
case R_ARM_PC24:
|
|
case R_ARM_PLT32:
|
|
case R_ARM_PREL31:
|
|
case R_ARM_THM_JUMP19:
|
|
case R_ARM_THM_JUMP24:
|
|
return p + 4 + a;
|
|
case R_ARM_THM_CALL:
|
|
// We don't want an interworking BLX to ARM
|
|
return p + 5 + a;
|
|
// Unresolved non branch pc-relative relocations
|
|
// R_ARM_TARGET2 which can be resolved relatively is not present as it never
|
|
// targets a weak-reference.
|
|
case R_ARM_MOVW_PREL_NC:
|
|
case R_ARM_MOVT_PREL:
|
|
case R_ARM_REL32:
|
|
case R_ARM_THM_ALU_PREL_11_0:
|
|
case R_ARM_THM_MOVW_PREL_NC:
|
|
case R_ARM_THM_MOVT_PREL:
|
|
case R_ARM_THM_PC12:
|
|
return p + a;
|
|
// p + a is unrepresentable as negative immediates can't be encoded.
|
|
case R_ARM_THM_PC8:
|
|
return p;
|
|
}
|
|
llvm_unreachable("ARM pc-relative relocation expected\n");
|
|
}
|
|
|
|
// The comment above getARMUndefinedRelativeWeakVA applies to this function.
|
|
static uint64_t getAArch64UndefinedRelativeWeakVA(uint64_t type, uint64_t p) {
|
|
switch (type) {
|
|
// Unresolved branch relocations to weak references resolve to next
|
|
// instruction, this is 4 bytes on from P.
|
|
case R_AARCH64_CALL26:
|
|
case R_AARCH64_CONDBR19:
|
|
case R_AARCH64_JUMP26:
|
|
case R_AARCH64_TSTBR14:
|
|
return p + 4;
|
|
// Unresolved non branch pc-relative relocations
|
|
case R_AARCH64_PREL16:
|
|
case R_AARCH64_PREL32:
|
|
case R_AARCH64_PREL64:
|
|
case R_AARCH64_ADR_PREL_LO21:
|
|
case R_AARCH64_LD_PREL_LO19:
|
|
case R_AARCH64_PLT32:
|
|
return p;
|
|
}
|
|
llvm_unreachable("AArch64 pc-relative relocation expected\n");
|
|
}
|
|
|
|
static uint64_t getRISCVUndefinedRelativeWeakVA(uint64_t type, uint64_t p) {
|
|
switch (type) {
|
|
case R_RISCV_BRANCH:
|
|
case R_RISCV_JAL:
|
|
case R_RISCV_CALL:
|
|
case R_RISCV_CALL_PLT:
|
|
case R_RISCV_RVC_BRANCH:
|
|
case R_RISCV_RVC_JUMP:
|
|
case R_RISCV_PLT32:
|
|
return p;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
// ARM SBREL relocations are of the form S + A - B where B is the static base
|
|
// The ARM ABI defines base to be "addressing origin of the output segment
|
|
// defining the symbol S". We defined the "addressing origin"/static base to be
|
|
// the base of the PT_LOAD segment containing the Sym.
|
|
// The procedure call standard only defines a Read Write Position Independent
|
|
// RWPI variant so in practice we should expect the static base to be the base
|
|
// of the RW segment.
|
|
static uint64_t getARMStaticBase(const Symbol &sym) {
|
|
OutputSection *os = sym.getOutputSection();
|
|
if (!os || !os->ptLoad || !os->ptLoad->firstSec) {
|
|
Err(os->ctx) << "SBREL relocation to " << sym.getName()
|
|
<< " without static base";
|
|
return 0;
|
|
}
|
|
return os->ptLoad->firstSec->addr;
|
|
}
|
|
|
|
// For RE_RISCV_PC_INDIRECT (R_RISCV_PCREL_LO12_{I,S}), the symbol actually
|
|
// points the corresponding R_RISCV_PCREL_HI20 relocation, and the target VA
|
|
// is calculated using PCREL_HI20's symbol.
|
|
//
|
|
// This function returns the R_RISCV_PCREL_HI20 relocation from the
|
|
// R_RISCV_PCREL_LO12 relocation.
|
|
static Relocation *getRISCVPCRelHi20(Ctx &ctx, const InputSectionBase *loSec,
|
|
const Relocation &loReloc) {
|
|
uint64_t addend = loReloc.addend;
|
|
Symbol *sym = loReloc.sym;
|
|
|
|
const Defined *d = cast<Defined>(sym);
|
|
if (!d->section) {
|
|
Err(ctx) << loSec->getLocation(loReloc.offset)
|
|
<< ": R_RISCV_PCREL_LO12 relocation points to an absolute symbol: "
|
|
<< sym->getName();
|
|
return nullptr;
|
|
}
|
|
InputSection *hiSec = cast<InputSection>(d->section);
|
|
|
|
if (hiSec != loSec)
|
|
Err(ctx) << loSec->getLocation(loReloc.offset)
|
|
<< ": R_RISCV_PCREL_LO12 relocation points to a symbol '"
|
|
<< sym->getName() << "' in a different section '" << hiSec->name
|
|
<< "'";
|
|
|
|
if (addend != 0)
|
|
Warn(ctx) << loSec->getLocation(loReloc.offset)
|
|
<< ": non-zero addend in R_RISCV_PCREL_LO12 relocation to "
|
|
<< hiSec->getObjMsg(d->value) << " is ignored";
|
|
|
|
// Relocations are sorted by offset, so we can use std::equal_range to do
|
|
// binary search.
|
|
Relocation hiReloc;
|
|
hiReloc.offset = d->value;
|
|
auto range =
|
|
std::equal_range(hiSec->relocs().begin(), hiSec->relocs().end(), hiReloc,
|
|
[](const Relocation &lhs, const Relocation &rhs) {
|
|
return lhs.offset < rhs.offset;
|
|
});
|
|
|
|
for (auto it = range.first; it != range.second; ++it)
|
|
if (it->type == R_RISCV_PCREL_HI20 || it->type == R_RISCV_GOT_HI20 ||
|
|
it->type == R_RISCV_TLS_GD_HI20 || it->type == R_RISCV_TLS_GOT_HI20)
|
|
return &*it;
|
|
|
|
Err(ctx) << loSec->getLocation(loReloc.offset)
|
|
<< ": R_RISCV_PCREL_LO12 relocation points to "
|
|
<< hiSec->getObjMsg(d->value)
|
|
<< " without an associated R_RISCV_PCREL_HI20 relocation";
|
|
return nullptr;
|
|
}
|
|
|
|
// A TLS symbol's virtual address is relative to the TLS segment. Add a
|
|
// target-specific adjustment to produce a thread-pointer-relative offset.
|
|
static int64_t getTlsTpOffset(Ctx &ctx, const Symbol &s) {
|
|
// On targets that support TLSDESC, _TLS_MODULE_BASE_@tpoff = 0.
|
|
if (&s == ctx.sym.tlsModuleBase)
|
|
return 0;
|
|
|
|
// There are 2 TLS layouts. Among targets we support, x86 uses TLS Variant 2
|
|
// while most others use Variant 1. At run time TP will be aligned to p_align.
|
|
|
|
// Variant 1. TP will be followed by an optional gap (which is the size of 2
|
|
// pointers on ARM/AArch64, 0 on other targets), followed by alignment
|
|
// padding, then the static TLS blocks. The alignment padding is added so that
|
|
// (TP + gap + padding) is congruent to p_vaddr modulo p_align.
|
|
//
|
|
// Variant 2. Static TLS blocks, followed by alignment padding are placed
|
|
// before TP. The alignment padding is added so that (TP - padding -
|
|
// p_memsz) is congruent to p_vaddr modulo p_align.
|
|
PhdrEntry *tls = ctx.tlsPhdr;
|
|
if (!tls) // Reported an error in getSymVA
|
|
return 0;
|
|
switch (ctx.arg.emachine) {
|
|
// Variant 1.
|
|
case EM_ARM:
|
|
case EM_AARCH64:
|
|
return s.getVA(ctx, 0) + ctx.arg.wordsize * 2 +
|
|
((tls->p_vaddr - ctx.arg.wordsize * 2) & (tls->p_align - 1));
|
|
case EM_MIPS:
|
|
case EM_PPC:
|
|
case EM_PPC64:
|
|
// Adjusted Variant 1. TP is placed with a displacement of 0x7000, which is
|
|
// to allow a signed 16-bit offset to reach 0x1000 of TCB/thread-library
|
|
// data and 0xf000 of the program's TLS segment.
|
|
return s.getVA(ctx, 0) + (tls->p_vaddr & (tls->p_align - 1)) - 0x7000;
|
|
case EM_LOONGARCH:
|
|
case EM_RISCV:
|
|
// See the comment in handleTlsRelocation. For TLSDESC=>IE,
|
|
// R_RISCV_TLSDESC_{LOAD_LO12,ADD_LO12_I,CALL} also reach here. While
|
|
// `tls` may be null, the return value is ignored.
|
|
if (s.type != STT_TLS)
|
|
return 0;
|
|
return s.getVA(ctx, 0) + (tls->p_vaddr & (tls->p_align - 1));
|
|
|
|
// Variant 2.
|
|
case EM_HEXAGON:
|
|
case EM_S390:
|
|
case EM_SPARCV9:
|
|
case EM_386:
|
|
case EM_X86_64:
|
|
return s.getVA(ctx, 0) - tls->p_memsz -
|
|
((-tls->p_vaddr - tls->p_memsz) & (tls->p_align - 1));
|
|
default:
|
|
llvm_unreachable("unhandled ctx.arg.emachine");
|
|
}
|
|
}
|
|
|
|
uint64_t InputSectionBase::getRelocTargetVA(Ctx &ctx, const Relocation &r,
|
|
uint64_t p) const {
|
|
int64_t a = r.addend;
|
|
switch (r.expr) {
|
|
case R_ABS:
|
|
case R_DTPREL:
|
|
case R_RELAX_TLS_LD_TO_LE_ABS:
|
|
case R_RELAX_GOT_PC_NOPIC:
|
|
case RE_AARCH64_AUTH:
|
|
case RE_RISCV_ADD:
|
|
case RE_RISCV_LEB128:
|
|
return r.sym->getVA(ctx, a);
|
|
case R_ADDEND:
|
|
return a;
|
|
case R_RELAX_HINT:
|
|
return 0;
|
|
case RE_ARM_SBREL:
|
|
return r.sym->getVA(ctx, a) - getARMStaticBase(*r.sym);
|
|
case R_GOT:
|
|
case RE_AARCH64_AUTH_GOT:
|
|
case R_RELAX_TLS_GD_TO_IE_ABS:
|
|
return r.sym->getGotVA(ctx) + a;
|
|
case RE_LOONGARCH_GOT:
|
|
// The LoongArch TLS GD relocs reuse the R_LARCH_GOT_PC_LO12 reloc r.type
|
|
// for their page offsets. The arithmetics are different in the TLS case
|
|
// so we have to duplicate some logic here.
|
|
if (r.sym->hasFlag(NEEDS_TLSGD) && r.type != R_LARCH_TLS_IE_PC_LO12)
|
|
// Like RE_LOONGARCH_TLSGD_PAGE_PC but taking the absolute value.
|
|
return ctx.in.got->getGlobalDynAddr(*r.sym) + a;
|
|
return r.sym->getGotVA(ctx) + a;
|
|
case R_GOTONLY_PC:
|
|
return ctx.in.got->getVA() + a - p;
|
|
case R_GOTPLTONLY_PC:
|
|
return ctx.in.gotPlt->getVA() + a - p;
|
|
case R_GOTREL:
|
|
case RE_PPC64_RELAX_TOC:
|
|
return r.sym->getVA(ctx, a) - ctx.in.got->getVA();
|
|
case R_GOTPLTREL:
|
|
return r.sym->getVA(ctx, a) - ctx.in.gotPlt->getVA();
|
|
case R_GOTPLT:
|
|
case R_RELAX_TLS_GD_TO_IE_GOTPLT:
|
|
return r.sym->getGotVA(ctx) + a - ctx.in.gotPlt->getVA();
|
|
case R_TLSLD_GOT_OFF:
|
|
case R_GOT_OFF:
|
|
case R_RELAX_TLS_GD_TO_IE_GOT_OFF:
|
|
return r.sym->getGotOffset(ctx) + a;
|
|
case RE_AARCH64_GOT_PAGE_PC:
|
|
case RE_AARCH64_AUTH_GOT_PAGE_PC:
|
|
case RE_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC:
|
|
return getAArch64Page(r.sym->getGotVA(ctx) + a) - getAArch64Page(p);
|
|
case RE_AARCH64_GOT_PAGE:
|
|
return r.sym->getGotVA(ctx) + a - getAArch64Page(ctx.in.got->getVA());
|
|
case R_GOT_PC:
|
|
case RE_AARCH64_AUTH_GOT_PC:
|
|
case R_RELAX_TLS_GD_TO_IE:
|
|
return r.sym->getGotVA(ctx) + a - p;
|
|
case R_GOTPLT_GOTREL:
|
|
return r.sym->getGotPltVA(ctx) + a - ctx.in.got->getVA();
|
|
case R_GOTPLT_PC:
|
|
return r.sym->getGotPltVA(ctx) + a - p;
|
|
case RE_LOONGARCH_GOT_PAGE_PC:
|
|
case RE_LOONGARCH_RELAX_TLS_GD_TO_IE_PAGE_PC:
|
|
if (r.sym->hasFlag(NEEDS_TLSGD))
|
|
return getLoongArchPageDelta(ctx.in.got->getGlobalDynAddr(*r.sym) + a, p,
|
|
r.type);
|
|
return getLoongArchPageDelta(r.sym->getGotVA(ctx) + a, p, r.type);
|
|
case RE_MIPS_GOTREL:
|
|
return r.sym->getVA(ctx, a) - ctx.in.mipsGot->getGp(file);
|
|
case RE_MIPS_GOT_GP:
|
|
return ctx.in.mipsGot->getGp(file) + a;
|
|
case RE_MIPS_GOT_GP_PC: {
|
|
// R_MIPS_LO16 expression has RE_MIPS_GOT_GP_PC r.type iif the target
|
|
// is _gp_disp symbol. In that case we should use the following
|
|
// formula for calculation "AHL + GP - P + 4". For details see p. 4-19 at
|
|
// ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
|
|
// microMIPS variants of these relocations use slightly different
|
|
// expressions: AHL + GP - P + 3 for %lo() and AHL + GP - P - 1 for %hi()
|
|
// to correctly handle less-significant bit of the microMIPS symbol.
|
|
uint64_t v = ctx.in.mipsGot->getGp(file) + a - p;
|
|
if (r.type == R_MIPS_LO16 || r.type == R_MICROMIPS_LO16)
|
|
v += 4;
|
|
if (r.type == R_MICROMIPS_LO16 || r.type == R_MICROMIPS_HI16)
|
|
v -= 1;
|
|
return v;
|
|
}
|
|
case RE_MIPS_GOT_LOCAL_PAGE:
|
|
// If relocation against MIPS local symbol requires GOT entry, this entry
|
|
// should be initialized by 'page address'. This address is high 16-bits
|
|
// of sum the symbol's value and the addend.
|
|
return ctx.in.mipsGot->getVA() +
|
|
ctx.in.mipsGot->getPageEntryOffset(file, *r.sym, a) -
|
|
ctx.in.mipsGot->getGp(file);
|
|
case RE_MIPS_OSEC_LOCAL_PAGE:
|
|
// This is used by the MIPS multi-GOT implementation. It relocates
|
|
// addresses of 64kb pages that lie inside the output section that sym is
|
|
// a representative for.
|
|
return getMipsPageAddr(r.sym->getOutputSection()->addr) + a;
|
|
case RE_MIPS_GOT_OFF:
|
|
case RE_MIPS_GOT_OFF32:
|
|
// In case of MIPS if a GOT relocation has non-zero addend this addend
|
|
// should be applied to the GOT entry content not to the GOT entry offset.
|
|
// That is why we use separate expression r.type.
|
|
return ctx.in.mipsGot->getVA() +
|
|
ctx.in.mipsGot->getSymEntryOffset(file, *r.sym, a) -
|
|
ctx.in.mipsGot->getGp(file);
|
|
case RE_MIPS_TLSGD:
|
|
return ctx.in.mipsGot->getVA() +
|
|
ctx.in.mipsGot->getGlobalDynOffset(file, *r.sym) -
|
|
ctx.in.mipsGot->getGp(file);
|
|
case RE_MIPS_TLSLD:
|
|
return ctx.in.mipsGot->getVA() + ctx.in.mipsGot->getTlsIndexOffset(file) -
|
|
ctx.in.mipsGot->getGp(file);
|
|
case RE_AARCH64_PAGE_PC: {
|
|
uint64_t val = r.sym->isUndefWeak() ? p + a : r.sym->getVA(ctx, a);
|
|
return getAArch64Page(val) - getAArch64Page(p);
|
|
}
|
|
case RE_RISCV_PC_INDIRECT: {
|
|
if (const Relocation *hiRel = getRISCVPCRelHi20(ctx, this, r))
|
|
return getRelocTargetVA(ctx, *hiRel, r.sym->getVA(ctx));
|
|
return 0;
|
|
}
|
|
case RE_LOONGARCH_PAGE_PC:
|
|
return getLoongArchPageDelta(r.sym->getVA(ctx, a), p, r.type);
|
|
case R_PC:
|
|
case RE_ARM_PCA: {
|
|
uint64_t dest;
|
|
if (r.expr == RE_ARM_PCA)
|
|
// Some PC relative ARM (Thumb) relocations align down the place.
|
|
p = p & 0xfffffffc;
|
|
if (r.sym->isUndefined()) {
|
|
// On ARM and AArch64 a branch to an undefined weak resolves to the next
|
|
// instruction, otherwise the place. On RISC-V, resolve an undefined weak
|
|
// to the same instruction to cause an infinite loop (making the user
|
|
// aware of the issue) while ensuring no overflow.
|
|
// Note: if the symbol is hidden, its binding has been converted to local,
|
|
// so we just check isUndefined() here.
|
|
if (ctx.arg.emachine == EM_ARM)
|
|
dest = getARMUndefinedRelativeWeakVA(r.type, a, p);
|
|
else if (ctx.arg.emachine == EM_AARCH64)
|
|
dest = getAArch64UndefinedRelativeWeakVA(r.type, p) + a;
|
|
else if (ctx.arg.emachine == EM_PPC)
|
|
dest = p;
|
|
else if (ctx.arg.emachine == EM_RISCV)
|
|
dest = getRISCVUndefinedRelativeWeakVA(r.type, p) + a;
|
|
else
|
|
dest = r.sym->getVA(ctx, a);
|
|
} else {
|
|
dest = r.sym->getVA(ctx, a);
|
|
}
|
|
return dest - p;
|
|
}
|
|
case R_PLT:
|
|
return r.sym->getPltVA(ctx) + a;
|
|
case R_PLT_PC:
|
|
case RE_PPC64_CALL_PLT:
|
|
return r.sym->getPltVA(ctx) + a - p;
|
|
case RE_LOONGARCH_PLT_PAGE_PC:
|
|
return getLoongArchPageDelta(r.sym->getPltVA(ctx) + a, p, r.type);
|
|
case R_PLT_GOTPLT:
|
|
return r.sym->getPltVA(ctx) + a - ctx.in.gotPlt->getVA();
|
|
case R_PLT_GOTREL:
|
|
return r.sym->getPltVA(ctx) + a - ctx.in.got->getVA();
|
|
case RE_PPC32_PLTREL:
|
|
// R_PPC_PLTREL24 uses the addend (usually 0 or 0x8000) to indicate r30
|
|
// stores _GLOBAL_OFFSET_TABLE_ or .got2+0x8000. The addend is ignored for
|
|
// target VA computation.
|
|
return r.sym->getPltVA(ctx) - p;
|
|
case RE_PPC64_CALL: {
|
|
uint64_t symVA = r.sym->getVA(ctx, a);
|
|
// If we have an undefined weak symbol, we might get here with a symbol
|
|
// address of zero. That could overflow, but the code must be unreachable,
|
|
// so don't bother doing anything at all.
|
|
if (!symVA)
|
|
return 0;
|
|
|
|
// PPC64 V2 ABI describes two entry points to a function. The global entry
|
|
// point is used for calls where the caller and callee (may) have different
|
|
// TOC base pointers and r2 needs to be modified to hold the TOC base for
|
|
// the callee. For local calls the caller and callee share the same
|
|
// TOC base and so the TOC pointer initialization code should be skipped by
|
|
// branching to the local entry point.
|
|
return symVA - p +
|
|
getPPC64GlobalEntryToLocalEntryOffset(ctx, r.sym->stOther);
|
|
}
|
|
case RE_PPC64_TOCBASE:
|
|
return getPPC64TocBase(ctx) + a;
|
|
case R_RELAX_GOT_PC:
|
|
case RE_PPC64_RELAX_GOT_PC:
|
|
return r.sym->getVA(ctx, a) - p;
|
|
case R_RELAX_TLS_GD_TO_LE:
|
|
case R_RELAX_TLS_IE_TO_LE:
|
|
case R_RELAX_TLS_LD_TO_LE:
|
|
case R_TPREL:
|
|
// It is not very clear what to return if the symbol is undefined. With
|
|
// --noinhibit-exec, even a non-weak undefined reference may reach here.
|
|
// Just return A, which matches R_ABS, and the behavior of some dynamic
|
|
// loaders.
|
|
if (r.sym->isUndefined())
|
|
return a;
|
|
return getTlsTpOffset(ctx, *r.sym) + a;
|
|
case R_RELAX_TLS_GD_TO_LE_NEG:
|
|
case R_TPREL_NEG:
|
|
if (r.sym->isUndefined())
|
|
return a;
|
|
return -getTlsTpOffset(ctx, *r.sym) + a;
|
|
case R_SIZE:
|
|
return r.sym->getSize() + a;
|
|
case R_TLSDESC:
|
|
case RE_AARCH64_AUTH_TLSDESC:
|
|
return ctx.in.got->getTlsDescAddr(*r.sym) + a;
|
|
case R_TLSDESC_PC:
|
|
return ctx.in.got->getTlsDescAddr(*r.sym) + a - p;
|
|
case R_TLSDESC_GOTPLT:
|
|
return ctx.in.got->getTlsDescAddr(*r.sym) + a - ctx.in.gotPlt->getVA();
|
|
case RE_AARCH64_TLSDESC_PAGE:
|
|
case RE_AARCH64_AUTH_TLSDESC_PAGE:
|
|
return getAArch64Page(ctx.in.got->getTlsDescAddr(*r.sym) + a) -
|
|
getAArch64Page(p);
|
|
case RE_LOONGARCH_TLSDESC_PAGE_PC:
|
|
return getLoongArchPageDelta(ctx.in.got->getTlsDescAddr(*r.sym) + a, p,
|
|
r.type);
|
|
case R_TLSGD_GOT:
|
|
return ctx.in.got->getGlobalDynOffset(*r.sym) + a;
|
|
case R_TLSGD_GOTPLT:
|
|
return ctx.in.got->getGlobalDynAddr(*r.sym) + a - ctx.in.gotPlt->getVA();
|
|
case R_TLSGD_PC:
|
|
return ctx.in.got->getGlobalDynAddr(*r.sym) + a - p;
|
|
case RE_LOONGARCH_TLSGD_PAGE_PC:
|
|
return getLoongArchPageDelta(ctx.in.got->getGlobalDynAddr(*r.sym) + a, p,
|
|
r.type);
|
|
case R_TLSLD_GOTPLT:
|
|
return ctx.in.got->getVA() + ctx.in.got->getTlsIndexOff() + a -
|
|
ctx.in.gotPlt->getVA();
|
|
case R_TLSLD_GOT:
|
|
return ctx.in.got->getTlsIndexOff() + a;
|
|
case R_TLSLD_PC:
|
|
return ctx.in.got->getTlsIndexVA() + a - p;
|
|
default:
|
|
llvm_unreachable("invalid expression");
|
|
}
|
|
}
|
|
|
|
// This function applies relocations to sections without SHF_ALLOC bit.
|
|
// Such sections are never mapped to memory at runtime. Debug sections are
|
|
// an example. Relocations in non-alloc sections are much easier to
|
|
// handle than in allocated sections because it will never need complex
|
|
// treatment such as GOT or PLT (because at runtime no one refers them).
|
|
// So, we handle relocations for non-alloc sections directly in this
|
|
// function as a performance optimization.
|
|
template <class ELFT, class RelTy>
|
|
void InputSection::relocateNonAlloc(Ctx &ctx, uint8_t *buf,
|
|
Relocs<RelTy> rels) {
|
|
const unsigned bits = sizeof(typename ELFT::uint) * 8;
|
|
const TargetInfo &target = *ctx.target;
|
|
const auto emachine = ctx.arg.emachine;
|
|
const bool isDebug = isDebugSection(*this);
|
|
const bool isDebugLine = isDebug && name == ".debug_line";
|
|
std::optional<uint64_t> tombstone;
|
|
if (isDebug) {
|
|
if (name == ".debug_loc" || name == ".debug_ranges")
|
|
tombstone = 1;
|
|
else if (name == ".debug_names")
|
|
tombstone = UINT64_MAX; // tombstone value
|
|
else
|
|
tombstone = 0;
|
|
}
|
|
for (const auto &patAndValue : llvm::reverse(ctx.arg.deadRelocInNonAlloc))
|
|
if (patAndValue.first.match(this->name)) {
|
|
tombstone = patAndValue.second;
|
|
break;
|
|
}
|
|
|
|
const InputFile *f = this->file;
|
|
for (auto it = rels.begin(), end = rels.end(); it != end; ++it) {
|
|
const RelTy &rel = *it;
|
|
const RelType type = rel.getType(ctx.arg.isMips64EL);
|
|
const uint64_t offset = rel.r_offset;
|
|
uint8_t *bufLoc = buf + offset;
|
|
int64_t addend = getAddend<ELFT>(rel);
|
|
if (!RelTy::HasAddend)
|
|
addend += target.getImplicitAddend(bufLoc, type);
|
|
|
|
Symbol &sym = f->getRelocTargetSym(rel);
|
|
RelExpr expr = target.getRelExpr(type, sym, bufLoc);
|
|
if (expr == R_NONE)
|
|
continue;
|
|
auto *ds = dyn_cast<Defined>(&sym);
|
|
|
|
if (emachine == EM_RISCV && type == R_RISCV_SET_ULEB128) {
|
|
if (++it != end &&
|
|
it->getType(/*isMips64EL=*/false) == R_RISCV_SUB_ULEB128 &&
|
|
it->r_offset == offset) {
|
|
uint64_t val;
|
|
if (!ds && tombstone) {
|
|
val = *tombstone;
|
|
} else {
|
|
val = sym.getVA(ctx, addend) -
|
|
(f->getRelocTargetSym(*it).getVA(ctx) + getAddend<ELFT>(*it));
|
|
}
|
|
if (overwriteULEB128(bufLoc, val) >= 0x80)
|
|
Err(ctx) << getLocation(offset) << ": ULEB128 value " << val
|
|
<< " exceeds available space; references '" << &sym << "'";
|
|
continue;
|
|
}
|
|
Err(ctx) << getLocation(offset)
|
|
<< ": R_RISCV_SET_ULEB128 not paired with R_RISCV_SUB_SET128";
|
|
return;
|
|
}
|
|
|
|
if (tombstone && (expr == R_ABS || expr == R_DTPREL)) {
|
|
// Resolve relocations in .debug_* referencing (discarded symbols or ICF
|
|
// folded section symbols) to a tombstone value. Resolving to addend is
|
|
// unsatisfactory because the result address range may collide with a
|
|
// valid range of low address, or leave multiple CUs claiming ownership of
|
|
// the same range of code, which may confuse consumers.
|
|
//
|
|
// To address the problems, we use -1 as a tombstone value for most
|
|
// .debug_* sections. We have to ignore the addend because we don't want
|
|
// to resolve an address attribute (which may have a non-zero addend) to
|
|
// -1+addend (wrap around to a low address).
|
|
//
|
|
// R_DTPREL type relocations represent an offset into the dynamic thread
|
|
// vector. The computed value is st_value plus a non-negative offset.
|
|
// Negative values are invalid, so -1 can be used as the tombstone value.
|
|
//
|
|
// If the referenced symbol is relative to a discarded section (due to
|
|
// --gc-sections, COMDAT, etc), it has been converted to a Undefined.
|
|
// `ds->folded` catches the ICF folded case. However, resolving a
|
|
// relocation in .debug_line to -1 would stop debugger users from setting
|
|
// breakpoints on the folded-in function, so exclude .debug_line.
|
|
//
|
|
// For pre-DWARF-v5 .debug_loc and .debug_ranges, -1 is a reserved value
|
|
// (base address selection entry), use 1 (which is used by GNU ld for
|
|
// .debug_ranges).
|
|
//
|
|
// TODO To reduce disruption, we use 0 instead of -1 as the tombstone
|
|
// value. Enable -1 in a future release.
|
|
if (!ds || (ds->folded && !isDebugLine)) {
|
|
// If -z dead-reloc-in-nonalloc= is specified, respect it.
|
|
uint64_t value = SignExtend64<bits>(*tombstone);
|
|
// For a 32-bit local TU reference in .debug_names, X86_64::relocate
|
|
// requires that the unsigned value for R_X86_64_32 is truncated to
|
|
// 32-bit. Other 64-bit targets's don't discern signed/unsigned 32-bit
|
|
// absolute relocations and do not need this change.
|
|
if (emachine == EM_X86_64 && type == R_X86_64_32)
|
|
value = static_cast<uint32_t>(value);
|
|
target.relocateNoSym(bufLoc, type, value);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// For a relocatable link, content relocated by relocation types with an
|
|
// explicit addend, such as RELA, remain unchanged and we can stop here.
|
|
// While content relocated by relocation types with an implicit addend, such
|
|
// as REL, needs the implicit addend updated.
|
|
if (ctx.arg.relocatable && (RelTy::HasAddend || sym.type != STT_SECTION))
|
|
continue;
|
|
|
|
// R_ABS/R_DTPREL and some other relocations can be used from non-SHF_ALLOC
|
|
// sections.
|
|
if (LLVM_LIKELY(expr == R_ABS) || expr == R_DTPREL || expr == R_GOTPLTREL ||
|
|
expr == RE_RISCV_ADD || expr == RE_ARM_SBREL) {
|
|
target.relocateNoSym(bufLoc, type,
|
|
SignExtend64<bits>(sym.getVA(ctx, addend)));
|
|
continue;
|
|
}
|
|
|
|
if (expr == R_SIZE) {
|
|
target.relocateNoSym(bufLoc, type,
|
|
SignExtend64<bits>(sym.getSize() + addend));
|
|
continue;
|
|
}
|
|
|
|
// If the control reaches here, we found a PC-relative relocation in a
|
|
// non-ALLOC section. Since non-ALLOC section is not loaded into memory
|
|
// at runtime, the notion of PC-relative doesn't make sense here. So,
|
|
// this is a usage error. However, GNU linkers historically accept such
|
|
// relocations without any errors and relocate them as if they were at
|
|
// address 0. For bug-compatibility, we accept them with warnings. We
|
|
// know Steel Bank Common Lisp as of 2018 have this bug.
|
|
//
|
|
// GCC 8.0 or earlier have a bug that they emit R_386_GOTPC relocations
|
|
// against _GLOBAL_OFFSET_TABLE_ for .debug_info. The bug has been fixed in
|
|
// 2017 (https://gcc.gnu.org/bugzilla/show_bug.cgi?id=82630), but we need to
|
|
// keep this bug-compatible code for a while.
|
|
bool isErr = expr != R_PC && !(emachine == EM_386 && type == R_386_GOTPC);
|
|
{
|
|
ELFSyncStream diag(ctx, isErr && !ctx.arg.noinhibitExec
|
|
? DiagLevel::Err
|
|
: DiagLevel::Warn);
|
|
diag << getLocation(offset) << ": has non-ABS relocation " << type
|
|
<< " against symbol '" << &sym << "'";
|
|
}
|
|
if (!isErr)
|
|
target.relocateNoSym(
|
|
bufLoc, type,
|
|
SignExtend64<bits>(sym.getVA(ctx, addend - offset - outSecOff)));
|
|
}
|
|
}
|
|
|
|
template <class ELFT>
|
|
void InputSectionBase::relocate(Ctx &ctx, uint8_t *buf, uint8_t *bufEnd) {
|
|
if ((flags & SHF_EXECINSTR) && LLVM_UNLIKELY(getFile<ELFT>()->splitStack))
|
|
adjustSplitStackFunctionPrologues<ELFT>(ctx, buf, bufEnd);
|
|
|
|
if (flags & SHF_ALLOC) {
|
|
ctx.target->relocateAlloc(*this, buf);
|
|
return;
|
|
}
|
|
|
|
auto *sec = cast<InputSection>(this);
|
|
// For a relocatable link, also call relocateNonAlloc() to rewrite applicable
|
|
// locations with tombstone values.
|
|
invokeOnRelocs(*sec, sec->relocateNonAlloc<ELFT>, ctx, buf);
|
|
}
|
|
|
|
// For each function-defining prologue, find any calls to __morestack,
|
|
// and replace them with calls to __morestack_non_split.
|
|
static void switchMorestackCallsToMorestackNonSplit(
|
|
Ctx &ctx, DenseSet<Defined *> &prologues,
|
|
SmallVector<Relocation *, 0> &morestackCalls) {
|
|
|
|
// If the target adjusted a function's prologue, all calls to
|
|
// __morestack inside that function should be switched to
|
|
// __morestack_non_split.
|
|
Symbol *moreStackNonSplit = ctx.symtab->find("__morestack_non_split");
|
|
if (!moreStackNonSplit) {
|
|
ErrAlways(ctx) << "mixing split-stack objects requires a definition of "
|
|
"__morestack_non_split";
|
|
return;
|
|
}
|
|
|
|
// Sort both collections to compare addresses efficiently.
|
|
llvm::sort(morestackCalls, [](const Relocation *l, const Relocation *r) {
|
|
return l->offset < r->offset;
|
|
});
|
|
std::vector<Defined *> functions(prologues.begin(), prologues.end());
|
|
llvm::sort(functions, [](const Defined *l, const Defined *r) {
|
|
return l->value < r->value;
|
|
});
|
|
|
|
auto it = morestackCalls.begin();
|
|
for (Defined *f : functions) {
|
|
// Find the first call to __morestack within the function.
|
|
while (it != morestackCalls.end() && (*it)->offset < f->value)
|
|
++it;
|
|
// Adjust all calls inside the function.
|
|
while (it != morestackCalls.end() && (*it)->offset < f->value + f->size) {
|
|
(*it)->sym = moreStackNonSplit;
|
|
++it;
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool enclosingPrologueAttempted(uint64_t offset,
|
|
const DenseSet<Defined *> &prologues) {
|
|
for (Defined *f : prologues)
|
|
if (f->value <= offset && offset < f->value + f->size)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
// If a function compiled for split stack calls a function not
|
|
// compiled for split stack, then the caller needs its prologue
|
|
// adjusted to ensure that the called function will have enough stack
|
|
// available. Find those functions, and adjust their prologues.
|
|
template <class ELFT>
|
|
void InputSectionBase::adjustSplitStackFunctionPrologues(Ctx &ctx, uint8_t *buf,
|
|
uint8_t *end) {
|
|
DenseSet<Defined *> prologues;
|
|
SmallVector<Relocation *, 0> morestackCalls;
|
|
|
|
for (Relocation &rel : relocs()) {
|
|
// Ignore calls into the split-stack api.
|
|
if (rel.sym->getName().starts_with("__morestack")) {
|
|
if (rel.sym->getName() == "__morestack")
|
|
morestackCalls.push_back(&rel);
|
|
continue;
|
|
}
|
|
|
|
// A relocation to non-function isn't relevant. Sometimes
|
|
// __morestack is not marked as a function, so this check comes
|
|
// after the name check.
|
|
if (rel.sym->type != STT_FUNC)
|
|
continue;
|
|
|
|
// If the callee's-file was compiled with split stack, nothing to do. In
|
|
// this context, a "Defined" symbol is one "defined by the binary currently
|
|
// being produced". So an "undefined" symbol might be provided by a shared
|
|
// library. It is not possible to tell how such symbols were compiled, so be
|
|
// conservative.
|
|
if (Defined *d = dyn_cast<Defined>(rel.sym))
|
|
if (InputSection *isec = cast_or_null<InputSection>(d->section))
|
|
if (!isec || !isec->getFile<ELFT>() || isec->getFile<ELFT>()->splitStack)
|
|
continue;
|
|
|
|
if (enclosingPrologueAttempted(rel.offset, prologues))
|
|
continue;
|
|
|
|
if (Defined *f = getEnclosingFunction(rel.offset)) {
|
|
prologues.insert(f);
|
|
if (ctx.target->adjustPrologueForCrossSplitStack(buf + f->value, end,
|
|
f->stOther))
|
|
continue;
|
|
if (!getFile<ELFT>()->someNoSplitStack)
|
|
Err(ctx)
|
|
<< this << ": " << f->getName() << " (with -fsplit-stack) calls "
|
|
<< rel.sym->getName()
|
|
<< " (without -fsplit-stack), but couldn't adjust its prologue";
|
|
}
|
|
}
|
|
|
|
if (ctx.target->needsMoreStackNonSplit)
|
|
switchMorestackCallsToMorestackNonSplit(ctx, prologues, morestackCalls);
|
|
}
|
|
|
|
template <class ELFT> void InputSection::writeTo(Ctx &ctx, uint8_t *buf) {
|
|
if (LLVM_UNLIKELY(type == SHT_NOBITS))
|
|
return;
|
|
// If -r or --emit-relocs is given, then an InputSection
|
|
// may be a relocation section.
|
|
if (LLVM_UNLIKELY(type == SHT_RELA)) {
|
|
copyRelocations<ELFT, typename ELFT::Rela>(ctx, buf);
|
|
return;
|
|
}
|
|
if (LLVM_UNLIKELY(type == SHT_REL)) {
|
|
copyRelocations<ELFT, typename ELFT::Rel>(ctx, buf);
|
|
return;
|
|
}
|
|
|
|
// If -r is given, we may have a SHT_GROUP section.
|
|
if (LLVM_UNLIKELY(type == SHT_GROUP)) {
|
|
copyShtGroup<ELFT>(buf);
|
|
return;
|
|
}
|
|
|
|
// If this is a compressed section, uncompress section contents directly
|
|
// to the buffer.
|
|
if (compressed) {
|
|
auto *hdr = reinterpret_cast<const typename ELFT::Chdr *>(content_);
|
|
auto compressed = ArrayRef<uint8_t>(content_, compressedSize)
|
|
.slice(sizeof(typename ELFT::Chdr));
|
|
size_t size = this->size;
|
|
if (Error e = hdr->ch_type == ELFCOMPRESS_ZLIB
|
|
? compression::zlib::decompress(compressed, buf, size)
|
|
: compression::zstd::decompress(compressed, buf, size))
|
|
Err(ctx) << this << ": decompress failed: " << std::move(e);
|
|
uint8_t *bufEnd = buf + size;
|
|
relocate<ELFT>(ctx, buf, bufEnd);
|
|
return;
|
|
}
|
|
|
|
// Copy section contents from source object file to output file
|
|
// and then apply relocations.
|
|
memcpy(buf, content().data(), content().size());
|
|
relocate<ELFT>(ctx, buf, buf + content().size());
|
|
}
|
|
|
|
void InputSection::replace(InputSection *other) {
|
|
addralign = std::max(addralign, other->addralign);
|
|
|
|
// When a section is replaced with another section that was allocated to
|
|
// another partition, the replacement section (and its associated sections)
|
|
// need to be placed in the main partition so that both partitions will be
|
|
// able to access it.
|
|
if (partition != other->partition) {
|
|
partition = 1;
|
|
for (InputSection *isec : dependentSections)
|
|
isec->partition = 1;
|
|
}
|
|
|
|
other->repl = repl;
|
|
other->markDead();
|
|
}
|
|
|
|
template <class ELFT>
|
|
EhInputSection::EhInputSection(ObjFile<ELFT> &f,
|
|
const typename ELFT::Shdr &header,
|
|
StringRef name)
|
|
: InputSectionBase(f, header, name, InputSectionBase::EHFrame) {}
|
|
|
|
SyntheticSection *EhInputSection::getParent() const {
|
|
return cast_or_null<SyntheticSection>(parent);
|
|
}
|
|
|
|
// .eh_frame is a sequence of CIE or FDE records.
|
|
// This function splits an input section into records and returns them.
|
|
template <class ELFT> void EhInputSection::split() {
|
|
const RelsOrRelas<ELFT> rels = relsOrRelas<ELFT>(/*supportsCrel=*/false);
|
|
// getReloc expects the relocations to be sorted by r_offset. See the comment
|
|
// in scanRelocs.
|
|
if (rels.areRelocsRel()) {
|
|
SmallVector<typename ELFT::Rel, 0> storage;
|
|
split<ELFT>(sortRels(rels.rels, storage));
|
|
} else {
|
|
SmallVector<typename ELFT::Rela, 0> storage;
|
|
split<ELFT>(sortRels(rels.relas, storage));
|
|
}
|
|
}
|
|
|
|
template <class ELFT, class RelTy>
|
|
void EhInputSection::split(ArrayRef<RelTy> rels) {
|
|
ArrayRef<uint8_t> d = content();
|
|
const char *msg = nullptr;
|
|
unsigned relI = 0;
|
|
while (!d.empty()) {
|
|
if (d.size() < 4) {
|
|
msg = "CIE/FDE too small";
|
|
break;
|
|
}
|
|
uint64_t size = endian::read32<ELFT::Endianness>(d.data());
|
|
if (size == 0) // ZERO terminator
|
|
break;
|
|
uint32_t id = endian::read32<ELFT::Endianness>(d.data() + 4);
|
|
size += 4;
|
|
if (LLVM_UNLIKELY(size > d.size())) {
|
|
// If it is 0xFFFFFFFF, the next 8 bytes contain the size instead,
|
|
// but we do not support that format yet.
|
|
msg = size == UINT32_MAX + uint64_t(4)
|
|
? "CIE/FDE too large"
|
|
: "CIE/FDE ends past the end of the section";
|
|
break;
|
|
}
|
|
|
|
// Find the first relocation that points to [off,off+size). Relocations
|
|
// have been sorted by r_offset.
|
|
const uint64_t off = d.data() - content().data();
|
|
while (relI != rels.size() && rels[relI].r_offset < off)
|
|
++relI;
|
|
unsigned firstRel = -1;
|
|
if (relI != rels.size() && rels[relI].r_offset < off + size)
|
|
firstRel = relI;
|
|
(id == 0 ? cies : fdes).emplace_back(off, this, size, firstRel);
|
|
d = d.slice(size);
|
|
}
|
|
if (msg)
|
|
Err(file->ctx) << "corrupted .eh_frame: " << msg << "\n>>> defined in "
|
|
<< getObjMsg(d.data() - content().data());
|
|
}
|
|
|
|
// Return the offset in an output section for a given input offset.
|
|
uint64_t EhInputSection::getParentOffset(uint64_t offset) const {
|
|
auto it = partition_point(
|
|
fdes, [=](EhSectionPiece p) { return p.inputOff <= offset; });
|
|
if (it == fdes.begin() || it[-1].inputOff + it[-1].size <= offset) {
|
|
it = partition_point(
|
|
cies, [=](EhSectionPiece p) { return p.inputOff <= offset; });
|
|
if (it == cies.begin()) // invalid piece
|
|
return offset;
|
|
}
|
|
if (it[-1].outputOff == -1) // invalid piece
|
|
return offset - it[-1].inputOff;
|
|
return it[-1].outputOff + (offset - it[-1].inputOff);
|
|
}
|
|
|
|
static size_t findNull(StringRef s, size_t entSize) {
|
|
for (unsigned i = 0, n = s.size(); i != n; i += entSize) {
|
|
const char *b = s.begin() + i;
|
|
if (std::all_of(b, b + entSize, [](char c) { return c == 0; }))
|
|
return i;
|
|
}
|
|
llvm_unreachable("");
|
|
}
|
|
|
|
// Split SHF_STRINGS section. Such section is a sequence of
|
|
// null-terminated strings.
|
|
void MergeInputSection::splitStrings(StringRef s, size_t entSize) {
|
|
const bool live = !(flags & SHF_ALLOC) || !getCtx().arg.gcSections;
|
|
const char *p = s.data(), *end = s.data() + s.size();
|
|
if (!std::all_of(end - entSize, end, [](char c) { return c == 0; })) {
|
|
Err(getCtx()) << this << ": string is not null terminated";
|
|
pieces.emplace_back(entSize, 0, false);
|
|
return;
|
|
}
|
|
if (entSize == 1) {
|
|
// Optimize the common case.
|
|
do {
|
|
size_t size = strlen(p);
|
|
pieces.emplace_back(p - s.begin(), xxh3_64bits(StringRef(p, size)), live);
|
|
p += size + 1;
|
|
} while (p != end);
|
|
} else {
|
|
do {
|
|
size_t size = findNull(StringRef(p, end - p), entSize);
|
|
pieces.emplace_back(p - s.begin(), xxh3_64bits(StringRef(p, size)), live);
|
|
p += size + entSize;
|
|
} while (p != end);
|
|
}
|
|
}
|
|
|
|
// Split non-SHF_STRINGS section. Such section is a sequence of
|
|
// fixed size records.
|
|
void MergeInputSection::splitNonStrings(ArrayRef<uint8_t> data,
|
|
size_t entSize) {
|
|
size_t size = data.size();
|
|
assert((size % entSize) == 0);
|
|
const bool live = !(flags & SHF_ALLOC) || !getCtx().arg.gcSections;
|
|
|
|
pieces.resize_for_overwrite(size / entSize);
|
|
for (size_t i = 0, j = 0; i != size; i += entSize, j++)
|
|
pieces[j] = {i, (uint32_t)xxh3_64bits(data.slice(i, entSize)), live};
|
|
}
|
|
|
|
template <class ELFT>
|
|
MergeInputSection::MergeInputSection(ObjFile<ELFT> &f,
|
|
const typename ELFT::Shdr &header,
|
|
StringRef name)
|
|
: InputSectionBase(f, header, name, InputSectionBase::Merge) {}
|
|
|
|
MergeInputSection::MergeInputSection(Ctx &ctx, StringRef name, uint32_t type,
|
|
uint64_t flags, uint64_t entsize,
|
|
ArrayRef<uint8_t> data)
|
|
: InputSectionBase(ctx.internalFile, name, type, flags, /*link=*/0,
|
|
/*info=*/0,
|
|
/*addralign=*/entsize, entsize, data,
|
|
SectionBase::Merge) {}
|
|
|
|
// This function is called after we obtain a complete list of input sections
|
|
// that need to be linked. This is responsible to split section contents
|
|
// into small chunks for further processing.
|
|
//
|
|
// Note that this function is called from parallelForEach. This must be
|
|
// thread-safe (i.e. no memory allocation from the pools).
|
|
void MergeInputSection::splitIntoPieces() {
|
|
assert(pieces.empty());
|
|
|
|
if (flags & SHF_STRINGS)
|
|
splitStrings(toStringRef(contentMaybeDecompress()), entsize);
|
|
else
|
|
splitNonStrings(contentMaybeDecompress(), entsize);
|
|
}
|
|
|
|
SectionPiece &MergeInputSection::getSectionPiece(uint64_t offset) {
|
|
if (content().size() <= offset) {
|
|
Err(getCtx()) << this << ": offset is outside the section";
|
|
return pieces[0];
|
|
}
|
|
return partition_point(
|
|
pieces, [=](SectionPiece p) { return p.inputOff <= offset; })[-1];
|
|
}
|
|
|
|
// Return the offset in an output section for a given input offset.
|
|
uint64_t MergeInputSection::getParentOffset(uint64_t offset) const {
|
|
const SectionPiece &piece = getSectionPiece(offset);
|
|
return piece.outputOff + (offset - piece.inputOff);
|
|
}
|
|
|
|
template InputSection::InputSection(ObjFile<ELF32LE> &, const ELF32LE::Shdr &,
|
|
StringRef);
|
|
template InputSection::InputSection(ObjFile<ELF32BE> &, const ELF32BE::Shdr &,
|
|
StringRef);
|
|
template InputSection::InputSection(ObjFile<ELF64LE> &, const ELF64LE::Shdr &,
|
|
StringRef);
|
|
template InputSection::InputSection(ObjFile<ELF64BE> &, const ELF64BE::Shdr &,
|
|
StringRef);
|
|
|
|
template void InputSection::writeTo<ELF32LE>(Ctx &, uint8_t *);
|
|
template void InputSection::writeTo<ELF32BE>(Ctx &, uint8_t *);
|
|
template void InputSection::writeTo<ELF64LE>(Ctx &, uint8_t *);
|
|
template void InputSection::writeTo<ELF64BE>(Ctx &, uint8_t *);
|
|
|
|
template RelsOrRelas<ELF32LE>
|
|
InputSectionBase::relsOrRelas<ELF32LE>(bool) const;
|
|
template RelsOrRelas<ELF32BE>
|
|
InputSectionBase::relsOrRelas<ELF32BE>(bool) const;
|
|
template RelsOrRelas<ELF64LE>
|
|
InputSectionBase::relsOrRelas<ELF64LE>(bool) const;
|
|
template RelsOrRelas<ELF64BE>
|
|
InputSectionBase::relsOrRelas<ELF64BE>(bool) const;
|
|
|
|
template MergeInputSection::MergeInputSection(ObjFile<ELF32LE> &,
|
|
const ELF32LE::Shdr &, StringRef);
|
|
template MergeInputSection::MergeInputSection(ObjFile<ELF32BE> &,
|
|
const ELF32BE::Shdr &, StringRef);
|
|
template MergeInputSection::MergeInputSection(ObjFile<ELF64LE> &,
|
|
const ELF64LE::Shdr &, StringRef);
|
|
template MergeInputSection::MergeInputSection(ObjFile<ELF64BE> &,
|
|
const ELF64BE::Shdr &, StringRef);
|
|
|
|
template EhInputSection::EhInputSection(ObjFile<ELF32LE> &,
|
|
const ELF32LE::Shdr &, StringRef);
|
|
template EhInputSection::EhInputSection(ObjFile<ELF32BE> &,
|
|
const ELF32BE::Shdr &, StringRef);
|
|
template EhInputSection::EhInputSection(ObjFile<ELF64LE> &,
|
|
const ELF64LE::Shdr &, StringRef);
|
|
template EhInputSection::EhInputSection(ObjFile<ELF64BE> &,
|
|
const ELF64BE::Shdr &, StringRef);
|
|
|
|
template void EhInputSection::split<ELF32LE>();
|
|
template void EhInputSection::split<ELF32BE>();
|
|
template void EhInputSection::split<ELF64LE>();
|
|
template void EhInputSection::split<ELF64BE>();
|