
It actually implements support for seeing through loads, using alias analysis to refine the result. This is rather limited, but I didn't want to rely on more than available analysis at that point (to be gentle with compilation time), and it does seem to catch common scenario, as showcased by the included tests. Differential Revision: https://reviews.llvm.org/D122431
1211 lines
48 KiB
C++
1211 lines
48 KiB
C++
//===- MemoryBuiltins.cpp - Identify calls to memory builtins -------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This family of functions identifies calls to builtin functions that allocate
|
|
// or free memory.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Analysis/MemoryBuiltins.h"
|
|
#include "llvm/ADT/APInt.h"
|
|
#include "llvm/ADT/None.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/TargetFolder.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
#include "llvm/Analysis/Utils/Local.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/IR/Argument.h"
|
|
#include "llvm/IR/Attributes.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/GlobalAlias.h"
|
|
#include "llvm/IR/GlobalVariable.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Operator.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <iterator>
|
|
#include <numeric>
|
|
#include <type_traits>
|
|
#include <utility>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "memory-builtins"
|
|
|
|
enum AllocType : uint8_t {
|
|
OpNewLike = 1<<0, // allocates; never returns null
|
|
MallocLike = 1<<1, // allocates; may return null
|
|
AlignedAllocLike = 1<<2, // allocates with alignment; may return null
|
|
CallocLike = 1<<3, // allocates + bzero
|
|
ReallocLike = 1<<4, // reallocates
|
|
StrDupLike = 1<<5,
|
|
MallocOrOpNewLike = MallocLike | OpNewLike,
|
|
MallocOrCallocLike = MallocLike | OpNewLike | CallocLike | AlignedAllocLike,
|
|
AllocLike = MallocOrCallocLike | StrDupLike,
|
|
AnyAlloc = AllocLike | ReallocLike
|
|
};
|
|
|
|
enum class MallocFamily {
|
|
Malloc,
|
|
CPPNew, // new(unsigned int)
|
|
CPPNewAligned, // new(unsigned int, align_val_t)
|
|
CPPNewArray, // new[](unsigned int)
|
|
CPPNewArrayAligned, // new[](unsigned long, align_val_t)
|
|
MSVCNew, // new(unsigned int)
|
|
MSVCArrayNew, // new[](unsigned int)
|
|
VecMalloc,
|
|
KmpcAllocShared,
|
|
};
|
|
|
|
StringRef mangledNameForMallocFamily(const MallocFamily &Family) {
|
|
switch (Family) {
|
|
case MallocFamily::Malloc:
|
|
return "malloc";
|
|
case MallocFamily::CPPNew:
|
|
return "_Znwm";
|
|
case MallocFamily::CPPNewAligned:
|
|
return "_ZnwmSt11align_val_t";
|
|
case MallocFamily::CPPNewArray:
|
|
return "_Znam";
|
|
case MallocFamily::CPPNewArrayAligned:
|
|
return "_ZnamSt11align_val_t";
|
|
case MallocFamily::MSVCNew:
|
|
return "??2@YAPAXI@Z";
|
|
case MallocFamily::MSVCArrayNew:
|
|
return "??_U@YAPAXI@Z";
|
|
case MallocFamily::VecMalloc:
|
|
return "vec_malloc";
|
|
case MallocFamily::KmpcAllocShared:
|
|
return "__kmpc_alloc_shared";
|
|
}
|
|
llvm_unreachable("missing an alloc family");
|
|
}
|
|
|
|
struct AllocFnsTy {
|
|
AllocType AllocTy;
|
|
unsigned NumParams;
|
|
// First and Second size parameters (or -1 if unused)
|
|
int FstParam, SndParam;
|
|
// Alignment parameter for aligned_alloc and aligned new
|
|
int AlignParam;
|
|
// Name of default allocator function to group malloc/free calls by family
|
|
MallocFamily Family;
|
|
};
|
|
|
|
// clang-format off
|
|
// FIXME: certain users need more information. E.g., SimplifyLibCalls needs to
|
|
// know which functions are nounwind, noalias, nocapture parameters, etc.
|
|
static const std::pair<LibFunc, AllocFnsTy> AllocationFnData[] = {
|
|
{LibFunc_malloc, {MallocLike, 1, 0, -1, -1, MallocFamily::Malloc}},
|
|
{LibFunc_vec_malloc, {MallocLike, 1, 0, -1, -1, MallocFamily::VecMalloc}},
|
|
{LibFunc_valloc, {MallocLike, 1, 0, -1, -1, MallocFamily::Malloc}},
|
|
{LibFunc_Znwj, {OpNewLike, 1, 0, -1, -1, MallocFamily::CPPNew}}, // new(unsigned int)
|
|
{LibFunc_ZnwjRKSt9nothrow_t, {MallocLike, 2, 0, -1, -1, MallocFamily::CPPNew}}, // new(unsigned int, nothrow)
|
|
{LibFunc_ZnwjSt11align_val_t, {OpNewLike, 2, 0, -1, 1, MallocFamily::CPPNewAligned}}, // new(unsigned int, align_val_t)
|
|
{LibFunc_ZnwjSt11align_val_tRKSt9nothrow_t, {MallocLike, 3, 0, -1, 1, MallocFamily::CPPNewAligned}}, // new(unsigned int, align_val_t, nothrow)
|
|
{LibFunc_Znwm, {OpNewLike, 1, 0, -1, -1, MallocFamily::CPPNew}}, // new(unsigned long)
|
|
{LibFunc_ZnwmRKSt9nothrow_t, {MallocLike, 2, 0, -1, -1, MallocFamily::CPPNew}}, // new(unsigned long, nothrow)
|
|
{LibFunc_ZnwmSt11align_val_t, {OpNewLike, 2, 0, -1, 1, MallocFamily::CPPNewAligned}}, // new(unsigned long, align_val_t)
|
|
{LibFunc_ZnwmSt11align_val_tRKSt9nothrow_t, {MallocLike, 3, 0, -1, 1, MallocFamily::CPPNewAligned}}, // new(unsigned long, align_val_t, nothrow)
|
|
{LibFunc_Znaj, {OpNewLike, 1, 0, -1, -1, MallocFamily::CPPNewArray}}, // new[](unsigned int)
|
|
{LibFunc_ZnajRKSt9nothrow_t, {MallocLike, 2, 0, -1, -1, MallocFamily::CPPNewArray}}, // new[](unsigned int, nothrow)
|
|
{LibFunc_ZnajSt11align_val_t, {OpNewLike, 2, 0, -1, 1, MallocFamily::CPPNewArrayAligned}}, // new[](unsigned int, align_val_t)
|
|
{LibFunc_ZnajSt11align_val_tRKSt9nothrow_t, {MallocLike, 3, 0, -1, 1, MallocFamily::CPPNewArrayAligned}}, // new[](unsigned int, align_val_t, nothrow)
|
|
{LibFunc_Znam, {OpNewLike, 1, 0, -1, -1, MallocFamily::CPPNewArray}}, // new[](unsigned long)
|
|
{LibFunc_ZnamRKSt9nothrow_t, {MallocLike, 2, 0, -1, -1, MallocFamily::CPPNewArray}}, // new[](unsigned long, nothrow)
|
|
{LibFunc_ZnamSt11align_val_t, {OpNewLike, 2, 0, -1, 1, MallocFamily::CPPNewArrayAligned}}, // new[](unsigned long, align_val_t)
|
|
{LibFunc_ZnamSt11align_val_tRKSt9nothrow_t, {MallocLike, 3, 0, -1, 1, MallocFamily::CPPNewArrayAligned}}, // new[](unsigned long, align_val_t, nothrow)
|
|
{LibFunc_msvc_new_int, {OpNewLike, 1, 0, -1, -1, MallocFamily::MSVCNew}}, // new(unsigned int)
|
|
{LibFunc_msvc_new_int_nothrow, {MallocLike, 2, 0, -1, -1, MallocFamily::MSVCNew}}, // new(unsigned int, nothrow)
|
|
{LibFunc_msvc_new_longlong, {OpNewLike, 1, 0, -1, -1, MallocFamily::MSVCNew}}, // new(unsigned long long)
|
|
{LibFunc_msvc_new_longlong_nothrow, {MallocLike, 2, 0, -1, -1, MallocFamily::MSVCNew}}, // new(unsigned long long, nothrow)
|
|
{LibFunc_msvc_new_array_int, {OpNewLike, 1, 0, -1, -1, MallocFamily::MSVCArrayNew}}, // new[](unsigned int)
|
|
{LibFunc_msvc_new_array_int_nothrow, {MallocLike, 2, 0, -1, -1, MallocFamily::MSVCArrayNew}}, // new[](unsigned int, nothrow)
|
|
{LibFunc_msvc_new_array_longlong, {OpNewLike, 1, 0, -1, -1, MallocFamily::MSVCArrayNew}}, // new[](unsigned long long)
|
|
{LibFunc_msvc_new_array_longlong_nothrow, {MallocLike, 2, 0, -1, -1, MallocFamily::MSVCArrayNew}}, // new[](unsigned long long, nothrow)
|
|
{LibFunc_aligned_alloc, {AlignedAllocLike, 2, 1, -1, 0, MallocFamily::Malloc}},
|
|
{LibFunc_memalign, {AlignedAllocLike, 2, 1, -1, 0, MallocFamily::Malloc}},
|
|
{LibFunc_calloc, {CallocLike, 2, 0, 1, -1, MallocFamily::Malloc}},
|
|
{LibFunc_vec_calloc, {CallocLike, 2, 0, 1, -1, MallocFamily::VecMalloc}},
|
|
{LibFunc_realloc, {ReallocLike, 2, 1, -1, -1, MallocFamily::Malloc}},
|
|
{LibFunc_vec_realloc, {ReallocLike, 2, 1, -1, -1, MallocFamily::VecMalloc}},
|
|
{LibFunc_reallocf, {ReallocLike, 2, 1, -1, -1, MallocFamily::Malloc}},
|
|
{LibFunc_strdup, {StrDupLike, 1, -1, -1, -1, MallocFamily::Malloc}},
|
|
{LibFunc_dunder_strdup, {StrDupLike, 1, -1, -1, -1, MallocFamily::Malloc}},
|
|
{LibFunc_strndup, {StrDupLike, 2, 1, -1, -1, MallocFamily::Malloc}},
|
|
{LibFunc_dunder_strndup, {StrDupLike, 2, 1, -1, -1, MallocFamily::Malloc}},
|
|
{LibFunc___kmpc_alloc_shared, {MallocLike, 1, 0, -1, -1, MallocFamily::KmpcAllocShared}},
|
|
};
|
|
// clang-format on
|
|
|
|
static const Function *getCalledFunction(const Value *V,
|
|
bool &IsNoBuiltin) {
|
|
// Don't care about intrinsics in this case.
|
|
if (isa<IntrinsicInst>(V))
|
|
return nullptr;
|
|
|
|
const auto *CB = dyn_cast<CallBase>(V);
|
|
if (!CB)
|
|
return nullptr;
|
|
|
|
IsNoBuiltin = CB->isNoBuiltin();
|
|
|
|
if (const Function *Callee = CB->getCalledFunction())
|
|
return Callee;
|
|
return nullptr;
|
|
}
|
|
|
|
/// Returns the allocation data for the given value if it's a call to a known
|
|
/// allocation function.
|
|
static Optional<AllocFnsTy>
|
|
getAllocationDataForFunction(const Function *Callee, AllocType AllocTy,
|
|
const TargetLibraryInfo *TLI) {
|
|
// Make sure that the function is available.
|
|
LibFunc TLIFn;
|
|
if (!TLI || !TLI->getLibFunc(*Callee, TLIFn) || !TLI->has(TLIFn))
|
|
return None;
|
|
|
|
const auto *Iter = find_if(
|
|
AllocationFnData, [TLIFn](const std::pair<LibFunc, AllocFnsTy> &P) {
|
|
return P.first == TLIFn;
|
|
});
|
|
|
|
if (Iter == std::end(AllocationFnData))
|
|
return None;
|
|
|
|
const AllocFnsTy *FnData = &Iter->second;
|
|
if ((FnData->AllocTy & AllocTy) != FnData->AllocTy)
|
|
return None;
|
|
|
|
// Check function prototype.
|
|
int FstParam = FnData->FstParam;
|
|
int SndParam = FnData->SndParam;
|
|
FunctionType *FTy = Callee->getFunctionType();
|
|
|
|
if (FTy->getReturnType() == Type::getInt8PtrTy(FTy->getContext()) &&
|
|
FTy->getNumParams() == FnData->NumParams &&
|
|
(FstParam < 0 ||
|
|
(FTy->getParamType(FstParam)->isIntegerTy(32) ||
|
|
FTy->getParamType(FstParam)->isIntegerTy(64))) &&
|
|
(SndParam < 0 ||
|
|
FTy->getParamType(SndParam)->isIntegerTy(32) ||
|
|
FTy->getParamType(SndParam)->isIntegerTy(64)))
|
|
return *FnData;
|
|
return None;
|
|
}
|
|
|
|
static Optional<AllocFnsTy> getAllocationData(const Value *V, AllocType AllocTy,
|
|
const TargetLibraryInfo *TLI) {
|
|
bool IsNoBuiltinCall;
|
|
if (const Function *Callee = getCalledFunction(V, IsNoBuiltinCall))
|
|
if (!IsNoBuiltinCall)
|
|
return getAllocationDataForFunction(Callee, AllocTy, TLI);
|
|
return None;
|
|
}
|
|
|
|
static Optional<AllocFnsTy>
|
|
getAllocationData(const Value *V, AllocType AllocTy,
|
|
function_ref<const TargetLibraryInfo &(Function &)> GetTLI) {
|
|
bool IsNoBuiltinCall;
|
|
if (const Function *Callee = getCalledFunction(V, IsNoBuiltinCall))
|
|
if (!IsNoBuiltinCall)
|
|
return getAllocationDataForFunction(
|
|
Callee, AllocTy, &GetTLI(const_cast<Function &>(*Callee)));
|
|
return None;
|
|
}
|
|
|
|
static Optional<AllocFnsTy> getAllocationSize(const Value *V,
|
|
const TargetLibraryInfo *TLI) {
|
|
bool IsNoBuiltinCall;
|
|
const Function *Callee =
|
|
getCalledFunction(V, IsNoBuiltinCall);
|
|
if (!Callee)
|
|
return None;
|
|
|
|
// Prefer to use existing information over allocsize. This will give us an
|
|
// accurate AllocTy.
|
|
if (!IsNoBuiltinCall)
|
|
if (Optional<AllocFnsTy> Data =
|
|
getAllocationDataForFunction(Callee, AnyAlloc, TLI))
|
|
return Data;
|
|
|
|
Attribute Attr = Callee->getFnAttribute(Attribute::AllocSize);
|
|
if (Attr == Attribute())
|
|
return None;
|
|
|
|
std::pair<unsigned, Optional<unsigned>> Args = Attr.getAllocSizeArgs();
|
|
|
|
AllocFnsTy Result;
|
|
// Because allocsize only tells us how many bytes are allocated, we're not
|
|
// really allowed to assume anything, so we use MallocLike.
|
|
Result.AllocTy = MallocLike;
|
|
Result.NumParams = Callee->getNumOperands();
|
|
Result.FstParam = Args.first;
|
|
Result.SndParam = Args.second.getValueOr(-1);
|
|
// Allocsize has no way to specify an alignment argument
|
|
Result.AlignParam = -1;
|
|
return Result;
|
|
}
|
|
|
|
/// Tests if a value is a call or invoke to a library function that
|
|
/// allocates or reallocates memory (either malloc, calloc, realloc, or strdup
|
|
/// like).
|
|
bool llvm::isAllocationFn(const Value *V, const TargetLibraryInfo *TLI) {
|
|
return getAllocationData(V, AnyAlloc, TLI).hasValue();
|
|
}
|
|
bool llvm::isAllocationFn(
|
|
const Value *V, function_ref<const TargetLibraryInfo &(Function &)> GetTLI) {
|
|
return getAllocationData(V, AnyAlloc, GetTLI).hasValue();
|
|
}
|
|
|
|
/// Tests if a value is a call or invoke to a library function that
|
|
/// allocates uninitialized memory (such as malloc).
|
|
static bool isMallocLikeFn(const Value *V, const TargetLibraryInfo *TLI) {
|
|
return getAllocationData(V, MallocOrOpNewLike, TLI).hasValue();
|
|
}
|
|
|
|
/// Tests if a value is a call or invoke to a library function that
|
|
/// allocates uninitialized memory with alignment (such as aligned_alloc).
|
|
static bool isAlignedAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI) {
|
|
return getAllocationData(V, AlignedAllocLike, TLI)
|
|
.hasValue();
|
|
}
|
|
|
|
/// Tests if a value is a call or invoke to a library function that
|
|
/// allocates zero-filled memory (such as calloc).
|
|
static bool isCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI) {
|
|
return getAllocationData(V, CallocLike, TLI).hasValue();
|
|
}
|
|
|
|
/// Tests if a value is a call or invoke to a library function that
|
|
/// allocates memory similar to malloc or calloc.
|
|
bool llvm::isMallocOrCallocLikeFn(const Value *V, const TargetLibraryInfo *TLI) {
|
|
return getAllocationData(V, MallocOrCallocLike, TLI).hasValue();
|
|
}
|
|
|
|
/// Tests if a value is a call or invoke to a library function that
|
|
/// allocates memory (either malloc, calloc, or strdup like).
|
|
bool llvm::isAllocLikeFn(const Value *V, const TargetLibraryInfo *TLI) {
|
|
return getAllocationData(V, AllocLike, TLI).hasValue();
|
|
}
|
|
|
|
/// Tests if a value is a call or invoke to a library function that
|
|
/// reallocates memory (e.g., realloc).
|
|
bool llvm::isReallocLikeFn(const Value *V, const TargetLibraryInfo *TLI) {
|
|
return getAllocationData(V, ReallocLike, TLI).hasValue();
|
|
}
|
|
|
|
/// Tests if a functions is a call or invoke to a library function that
|
|
/// reallocates memory (e.g., realloc).
|
|
bool llvm::isReallocLikeFn(const Function *F, const TargetLibraryInfo *TLI) {
|
|
return getAllocationDataForFunction(F, ReallocLike, TLI).hasValue();
|
|
}
|
|
|
|
bool llvm::isAllocRemovable(const CallBase *CB, const TargetLibraryInfo *TLI) {
|
|
assert(isAllocationFn(CB, TLI));
|
|
|
|
// Note: Removability is highly dependent on the source language. For
|
|
// example, recent C++ requires direct calls to the global allocation
|
|
// [basic.stc.dynamic.allocation] to be observable unless part of a new
|
|
// expression [expr.new paragraph 13].
|
|
|
|
// Historically we've treated the C family allocation routines as removable
|
|
return isAllocLikeFn(CB, TLI);
|
|
}
|
|
|
|
Value *llvm::getAllocAlignment(const CallBase *V,
|
|
const TargetLibraryInfo *TLI) {
|
|
const Optional<AllocFnsTy> FnData = getAllocationData(V, AnyAlloc, TLI);
|
|
if (FnData.hasValue() && FnData->AlignParam >= 0) {
|
|
return V->getOperand(FnData->AlignParam);
|
|
}
|
|
return V->getArgOperandWithAttribute(Attribute::AllocAlign);
|
|
}
|
|
|
|
/// When we're compiling N-bit code, and the user uses parameters that are
|
|
/// greater than N bits (e.g. uint64_t on a 32-bit build), we can run into
|
|
/// trouble with APInt size issues. This function handles resizing + overflow
|
|
/// checks for us. Check and zext or trunc \p I depending on IntTyBits and
|
|
/// I's value.
|
|
static bool CheckedZextOrTrunc(APInt &I, unsigned IntTyBits) {
|
|
// More bits than we can handle. Checking the bit width isn't necessary, but
|
|
// it's faster than checking active bits, and should give `false` in the
|
|
// vast majority of cases.
|
|
if (I.getBitWidth() > IntTyBits && I.getActiveBits() > IntTyBits)
|
|
return false;
|
|
if (I.getBitWidth() != IntTyBits)
|
|
I = I.zextOrTrunc(IntTyBits);
|
|
return true;
|
|
}
|
|
|
|
Optional<APInt>
|
|
llvm::getAllocSize(const CallBase *CB,
|
|
const TargetLibraryInfo *TLI,
|
|
std::function<const Value*(const Value*)> Mapper) {
|
|
// Note: This handles both explicitly listed allocation functions and
|
|
// allocsize. The code structure could stand to be cleaned up a bit.
|
|
Optional<AllocFnsTy> FnData = getAllocationSize(CB, TLI);
|
|
if (!FnData)
|
|
return None;
|
|
|
|
// Get the index type for this address space, results and intermediate
|
|
// computations are performed at that width.
|
|
auto &DL = CB->getModule()->getDataLayout();
|
|
const unsigned IntTyBits = DL.getIndexTypeSizeInBits(CB->getType());
|
|
|
|
// Handle strdup-like functions separately.
|
|
if (FnData->AllocTy == StrDupLike) {
|
|
APInt Size(IntTyBits, GetStringLength(Mapper(CB->getArgOperand(0))));
|
|
if (!Size)
|
|
return None;
|
|
|
|
// Strndup limits strlen.
|
|
if (FnData->FstParam > 0) {
|
|
const ConstantInt *Arg =
|
|
dyn_cast<ConstantInt>(Mapper(CB->getArgOperand(FnData->FstParam)));
|
|
if (!Arg)
|
|
return None;
|
|
|
|
APInt MaxSize = Arg->getValue().zextOrSelf(IntTyBits);
|
|
if (Size.ugt(MaxSize))
|
|
Size = MaxSize + 1;
|
|
}
|
|
return Size;
|
|
}
|
|
|
|
const ConstantInt *Arg =
|
|
dyn_cast<ConstantInt>(Mapper(CB->getArgOperand(FnData->FstParam)));
|
|
if (!Arg)
|
|
return None;
|
|
|
|
APInt Size = Arg->getValue();
|
|
if (!CheckedZextOrTrunc(Size, IntTyBits))
|
|
return None;
|
|
|
|
// Size is determined by just 1 parameter.
|
|
if (FnData->SndParam < 0)
|
|
return Size;
|
|
|
|
Arg = dyn_cast<ConstantInt>(Mapper(CB->getArgOperand(FnData->SndParam)));
|
|
if (!Arg)
|
|
return None;
|
|
|
|
APInt NumElems = Arg->getValue();
|
|
if (!CheckedZextOrTrunc(NumElems, IntTyBits))
|
|
return None;
|
|
|
|
bool Overflow;
|
|
Size = Size.umul_ov(NumElems, Overflow);
|
|
if (Overflow)
|
|
return None;
|
|
return Size;
|
|
}
|
|
|
|
Constant *llvm::getInitialValueOfAllocation(const CallBase *Alloc,
|
|
const TargetLibraryInfo *TLI,
|
|
Type *Ty) {
|
|
assert(isAllocationFn(Alloc, TLI));
|
|
|
|
// malloc and aligned_alloc are uninitialized (undef)
|
|
if (isMallocLikeFn(Alloc, TLI) || isAlignedAllocLikeFn(Alloc, TLI))
|
|
return UndefValue::get(Ty);
|
|
|
|
// calloc zero initializes
|
|
if (isCallocLikeFn(Alloc, TLI))
|
|
return Constant::getNullValue(Ty);
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
struct FreeFnsTy {
|
|
unsigned NumParams;
|
|
// Name of default allocator function to group malloc/free calls by family
|
|
MallocFamily Family;
|
|
};
|
|
|
|
// clang-format off
|
|
static const std::pair<LibFunc, FreeFnsTy> FreeFnData[] = {
|
|
{LibFunc_free, {1, MallocFamily::Malloc}},
|
|
{LibFunc_ZdlPv, {1, MallocFamily::CPPNew}}, // operator delete(void*)
|
|
{LibFunc_ZdaPv, {1, MallocFamily::CPPNewArray}}, // operator delete[](void*)
|
|
{LibFunc_msvc_delete_ptr32, {1, MallocFamily::MSVCNew}}, // operator delete(void*)
|
|
{LibFunc_msvc_delete_ptr64, {1, MallocFamily::MSVCNew}}, // operator delete(void*)
|
|
{LibFunc_msvc_delete_array_ptr32, {1, MallocFamily::MSVCArrayNew}}, // operator delete[](void*)
|
|
{LibFunc_msvc_delete_array_ptr64, {1, MallocFamily::MSVCArrayNew}}, // operator delete[](void*)
|
|
{LibFunc_ZdlPvj, {2, MallocFamily::CPPNew}}, // delete(void*, uint)
|
|
{LibFunc_ZdlPvm, {2, MallocFamily::CPPNew}}, // delete(void*, ulong)
|
|
{LibFunc_ZdlPvRKSt9nothrow_t, {2, MallocFamily::CPPNew}}, // delete(void*, nothrow)
|
|
{LibFunc_ZdlPvSt11align_val_t, {2, MallocFamily::CPPNewAligned}}, // delete(void*, align_val_t)
|
|
{LibFunc_ZdaPvj, {2, MallocFamily::CPPNewArray}}, // delete[](void*, uint)
|
|
{LibFunc_ZdaPvm, {2, MallocFamily::CPPNewArray}}, // delete[](void*, ulong)
|
|
{LibFunc_ZdaPvRKSt9nothrow_t, {2, MallocFamily::CPPNewArray}}, // delete[](void*, nothrow)
|
|
{LibFunc_ZdaPvSt11align_val_t, {2, MallocFamily::CPPNewArrayAligned}}, // delete[](void*, align_val_t)
|
|
{LibFunc_msvc_delete_ptr32_int, {2, MallocFamily::MSVCNew}}, // delete(void*, uint)
|
|
{LibFunc_msvc_delete_ptr64_longlong, {2, MallocFamily::MSVCNew}}, // delete(void*, ulonglong)
|
|
{LibFunc_msvc_delete_ptr32_nothrow, {2, MallocFamily::MSVCNew}}, // delete(void*, nothrow)
|
|
{LibFunc_msvc_delete_ptr64_nothrow, {2, MallocFamily::MSVCNew}}, // delete(void*, nothrow)
|
|
{LibFunc_msvc_delete_array_ptr32_int, {2, MallocFamily::MSVCArrayNew}}, // delete[](void*, uint)
|
|
{LibFunc_msvc_delete_array_ptr64_longlong, {2, MallocFamily::MSVCArrayNew}}, // delete[](void*, ulonglong)
|
|
{LibFunc_msvc_delete_array_ptr32_nothrow, {2, MallocFamily::MSVCArrayNew}}, // delete[](void*, nothrow)
|
|
{LibFunc_msvc_delete_array_ptr64_nothrow, {2, MallocFamily::MSVCArrayNew}}, // delete[](void*, nothrow)
|
|
{LibFunc___kmpc_free_shared, {2, MallocFamily::KmpcAllocShared}}, // OpenMP Offloading RTL free
|
|
{LibFunc_ZdlPvSt11align_val_tRKSt9nothrow_t, {3, MallocFamily::CPPNewAligned}}, // delete(void*, align_val_t, nothrow)
|
|
{LibFunc_ZdaPvSt11align_val_tRKSt9nothrow_t, {3, MallocFamily::CPPNewArrayAligned}}, // delete[](void*, align_val_t, nothrow)
|
|
{LibFunc_ZdlPvjSt11align_val_t, {3, MallocFamily::CPPNewAligned}}, // delete(void*, unsigned int, align_val_t)
|
|
{LibFunc_ZdlPvmSt11align_val_t, {3, MallocFamily::CPPNewAligned}}, // delete(void*, unsigned long, align_val_t)
|
|
{LibFunc_ZdaPvjSt11align_val_t, {3, MallocFamily::CPPNewArrayAligned}}, // delete[](void*, unsigned int, align_val_t)
|
|
{LibFunc_ZdaPvmSt11align_val_t, {3, MallocFamily::CPPNewArrayAligned}}, // delete[](void*, unsigned long, align_val_t)
|
|
};
|
|
// clang-format on
|
|
|
|
Optional<FreeFnsTy> getFreeFunctionDataForFunction(const Function *Callee,
|
|
const LibFunc TLIFn) {
|
|
const auto *Iter =
|
|
find_if(FreeFnData, [TLIFn](const std::pair<LibFunc, FreeFnsTy> &P) {
|
|
return P.first == TLIFn;
|
|
});
|
|
if (Iter == std::end(FreeFnData))
|
|
return None;
|
|
return Iter->second;
|
|
}
|
|
|
|
Optional<StringRef> llvm::getAllocationFamily(const Value *I,
|
|
const TargetLibraryInfo *TLI) {
|
|
bool IsNoBuiltin;
|
|
const Function *Callee = getCalledFunction(I, IsNoBuiltin);
|
|
if (Callee == nullptr || IsNoBuiltin)
|
|
return None;
|
|
LibFunc TLIFn;
|
|
if (!TLI || !TLI->getLibFunc(*Callee, TLIFn) || !TLI->has(TLIFn))
|
|
return None;
|
|
const auto AllocData = getAllocationDataForFunction(Callee, AnyAlloc, TLI);
|
|
if (AllocData.hasValue())
|
|
return mangledNameForMallocFamily(AllocData.getValue().Family);
|
|
const auto FreeData = getFreeFunctionDataForFunction(Callee, TLIFn);
|
|
if (FreeData.hasValue())
|
|
return mangledNameForMallocFamily(FreeData.getValue().Family);
|
|
return None;
|
|
}
|
|
|
|
/// isLibFreeFunction - Returns true if the function is a builtin free()
|
|
bool llvm::isLibFreeFunction(const Function *F, const LibFunc TLIFn) {
|
|
Optional<FreeFnsTy> FnData = getFreeFunctionDataForFunction(F, TLIFn);
|
|
if (!FnData.hasValue())
|
|
return false;
|
|
|
|
// Check free prototype.
|
|
// FIXME: workaround for PR5130, this will be obsolete when a nobuiltin
|
|
// attribute will exist.
|
|
FunctionType *FTy = F->getFunctionType();
|
|
if (!FTy->getReturnType()->isVoidTy())
|
|
return false;
|
|
if (FTy->getNumParams() != FnData->NumParams)
|
|
return false;
|
|
if (FTy->getParamType(0) != Type::getInt8PtrTy(F->getContext()))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// isFreeCall - Returns non-null if the value is a call to the builtin free()
|
|
const CallInst *llvm::isFreeCall(const Value *I, const TargetLibraryInfo *TLI) {
|
|
bool IsNoBuiltinCall;
|
|
const Function *Callee = getCalledFunction(I, IsNoBuiltinCall);
|
|
if (Callee == nullptr || IsNoBuiltinCall)
|
|
return nullptr;
|
|
|
|
LibFunc TLIFn;
|
|
if (!TLI || !TLI->getLibFunc(*Callee, TLIFn) || !TLI->has(TLIFn))
|
|
return nullptr;
|
|
|
|
return isLibFreeFunction(Callee, TLIFn) ? dyn_cast<CallInst>(I) : nullptr;
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Utility functions to compute size of objects.
|
|
//
|
|
static APInt getSizeWithOverflow(const SizeOffsetType &Data) {
|
|
if (Data.second.isNegative() || Data.first.ult(Data.second))
|
|
return APInt(Data.first.getBitWidth(), 0);
|
|
return Data.first - Data.second;
|
|
}
|
|
|
|
/// Compute the size of the object pointed by Ptr. Returns true and the
|
|
/// object size in Size if successful, and false otherwise.
|
|
/// If RoundToAlign is true, then Size is rounded up to the alignment of
|
|
/// allocas, byval arguments, and global variables.
|
|
bool llvm::getObjectSize(const Value *Ptr, uint64_t &Size, const DataLayout &DL,
|
|
const TargetLibraryInfo *TLI, ObjectSizeOpts Opts) {
|
|
ObjectSizeOffsetVisitor Visitor(DL, TLI, Ptr->getContext(), Opts);
|
|
SizeOffsetType Data = Visitor.compute(const_cast<Value*>(Ptr));
|
|
if (!Visitor.bothKnown(Data))
|
|
return false;
|
|
|
|
Size = getSizeWithOverflow(Data).getZExtValue();
|
|
return true;
|
|
}
|
|
|
|
Value *llvm::lowerObjectSizeCall(IntrinsicInst *ObjectSize,
|
|
const DataLayout &DL,
|
|
const TargetLibraryInfo *TLI,
|
|
bool MustSucceed) {
|
|
return lowerObjectSizeCall(ObjectSize, DL, TLI, /*AAResults=*/nullptr,
|
|
MustSucceed);
|
|
}
|
|
|
|
Value *llvm::lowerObjectSizeCall(IntrinsicInst *ObjectSize,
|
|
const DataLayout &DL,
|
|
const TargetLibraryInfo *TLI, AAResults *AA,
|
|
bool MustSucceed) {
|
|
assert(ObjectSize->getIntrinsicID() == Intrinsic::objectsize &&
|
|
"ObjectSize must be a call to llvm.objectsize!");
|
|
|
|
bool MaxVal = cast<ConstantInt>(ObjectSize->getArgOperand(1))->isZero();
|
|
ObjectSizeOpts EvalOptions;
|
|
EvalOptions.AA = AA;
|
|
|
|
// Unless we have to fold this to something, try to be as accurate as
|
|
// possible.
|
|
if (MustSucceed)
|
|
EvalOptions.EvalMode =
|
|
MaxVal ? ObjectSizeOpts::Mode::Max : ObjectSizeOpts::Mode::Min;
|
|
else
|
|
EvalOptions.EvalMode = ObjectSizeOpts::Mode::Exact;
|
|
|
|
EvalOptions.NullIsUnknownSize =
|
|
cast<ConstantInt>(ObjectSize->getArgOperand(2))->isOne();
|
|
|
|
auto *ResultType = cast<IntegerType>(ObjectSize->getType());
|
|
bool StaticOnly = cast<ConstantInt>(ObjectSize->getArgOperand(3))->isZero();
|
|
if (StaticOnly) {
|
|
// FIXME: Does it make sense to just return a failure value if the size won't
|
|
// fit in the output and `!MustSucceed`?
|
|
uint64_t Size;
|
|
if (getObjectSize(ObjectSize->getArgOperand(0), Size, DL, TLI, EvalOptions) &&
|
|
isUIntN(ResultType->getBitWidth(), Size))
|
|
return ConstantInt::get(ResultType, Size);
|
|
} else {
|
|
LLVMContext &Ctx = ObjectSize->getFunction()->getContext();
|
|
ObjectSizeOffsetEvaluator Eval(DL, TLI, Ctx, EvalOptions);
|
|
SizeOffsetEvalType SizeOffsetPair =
|
|
Eval.compute(ObjectSize->getArgOperand(0));
|
|
|
|
if (SizeOffsetPair != ObjectSizeOffsetEvaluator::unknown()) {
|
|
IRBuilder<TargetFolder> Builder(Ctx, TargetFolder(DL));
|
|
Builder.SetInsertPoint(ObjectSize);
|
|
|
|
// If we've outside the end of the object, then we can always access
|
|
// exactly 0 bytes.
|
|
Value *ResultSize =
|
|
Builder.CreateSub(SizeOffsetPair.first, SizeOffsetPair.second);
|
|
Value *UseZero =
|
|
Builder.CreateICmpULT(SizeOffsetPair.first, SizeOffsetPair.second);
|
|
ResultSize = Builder.CreateZExtOrTrunc(ResultSize, ResultType);
|
|
Value *Ret = Builder.CreateSelect(
|
|
UseZero, ConstantInt::get(ResultType, 0), ResultSize);
|
|
|
|
// The non-constant size expression cannot evaluate to -1.
|
|
if (!isa<Constant>(SizeOffsetPair.first) ||
|
|
!isa<Constant>(SizeOffsetPair.second))
|
|
Builder.CreateAssumption(
|
|
Builder.CreateICmpNE(Ret, ConstantInt::get(ResultType, -1)));
|
|
|
|
return Ret;
|
|
}
|
|
}
|
|
|
|
if (!MustSucceed)
|
|
return nullptr;
|
|
|
|
return ConstantInt::get(ResultType, MaxVal ? -1ULL : 0);
|
|
}
|
|
|
|
STATISTIC(ObjectVisitorArgument,
|
|
"Number of arguments with unsolved size and offset");
|
|
STATISTIC(ObjectVisitorLoad,
|
|
"Number of load instructions with unsolved size and offset");
|
|
|
|
APInt ObjectSizeOffsetVisitor::align(APInt Size, MaybeAlign Alignment) {
|
|
if (Options.RoundToAlign && Alignment)
|
|
return APInt(IntTyBits, alignTo(Size.getZExtValue(), Alignment));
|
|
return Size;
|
|
}
|
|
|
|
ObjectSizeOffsetVisitor::ObjectSizeOffsetVisitor(const DataLayout &DL,
|
|
const TargetLibraryInfo *TLI,
|
|
LLVMContext &Context,
|
|
ObjectSizeOpts Options)
|
|
: DL(DL), TLI(TLI), Options(Options) {
|
|
// Pointer size must be rechecked for each object visited since it could have
|
|
// a different address space.
|
|
}
|
|
|
|
SizeOffsetType ObjectSizeOffsetVisitor::compute(Value *V) {
|
|
unsigned InitialIntTyBits = DL.getIndexTypeSizeInBits(V->getType());
|
|
|
|
// Stripping pointer casts can strip address space casts which can change the
|
|
// index type size. The invariant is that we use the value type to determine
|
|
// the index type size and if we stripped address space casts we have to
|
|
// readjust the APInt as we pass it upwards in order for the APInt to match
|
|
// the type the caller passed in.
|
|
APInt Offset(InitialIntTyBits, 0);
|
|
V = V->stripAndAccumulateConstantOffsets(
|
|
DL, Offset, /* AllowNonInbounds */ true, /* AllowInvariantGroup */ true);
|
|
|
|
// Later we use the index type size and zero but it will match the type of the
|
|
// value that is passed to computeImpl.
|
|
IntTyBits = DL.getIndexTypeSizeInBits(V->getType());
|
|
Zero = APInt::getZero(IntTyBits);
|
|
|
|
bool IndexTypeSizeChanged = InitialIntTyBits != IntTyBits;
|
|
if (!IndexTypeSizeChanged && Offset.isZero())
|
|
return computeImpl(V);
|
|
|
|
// We stripped an address space cast that changed the index type size or we
|
|
// accumulated some constant offset (or both). Readjust the bit width to match
|
|
// the argument index type size and apply the offset, as required.
|
|
SizeOffsetType SOT = computeImpl(V);
|
|
if (IndexTypeSizeChanged) {
|
|
if (knownSize(SOT) && !::CheckedZextOrTrunc(SOT.first, InitialIntTyBits))
|
|
SOT.first = APInt();
|
|
if (knownOffset(SOT) && !::CheckedZextOrTrunc(SOT.second, InitialIntTyBits))
|
|
SOT.second = APInt();
|
|
}
|
|
// If the computed offset is "unknown" we cannot add the stripped offset.
|
|
return {SOT.first,
|
|
SOT.second.getBitWidth() > 1 ? SOT.second + Offset : SOT.second};
|
|
}
|
|
|
|
SizeOffsetType ObjectSizeOffsetVisitor::computeImpl(Value *V) {
|
|
if (Instruction *I = dyn_cast<Instruction>(V)) {
|
|
// If we have already seen this instruction, bail out. Cycles can happen in
|
|
// unreachable code after constant propagation.
|
|
if (!SeenInsts.insert(I).second)
|
|
return unknown();
|
|
|
|
return visit(*I);
|
|
}
|
|
if (Argument *A = dyn_cast<Argument>(V))
|
|
return visitArgument(*A);
|
|
if (ConstantPointerNull *P = dyn_cast<ConstantPointerNull>(V))
|
|
return visitConstantPointerNull(*P);
|
|
if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
|
|
return visitGlobalAlias(*GA);
|
|
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
|
|
return visitGlobalVariable(*GV);
|
|
if (UndefValue *UV = dyn_cast<UndefValue>(V))
|
|
return visitUndefValue(*UV);
|
|
|
|
LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor::compute() unhandled value: "
|
|
<< *V << '\n');
|
|
return unknown();
|
|
}
|
|
|
|
bool ObjectSizeOffsetVisitor::CheckedZextOrTrunc(APInt &I) {
|
|
return ::CheckedZextOrTrunc(I, IntTyBits);
|
|
}
|
|
|
|
SizeOffsetType ObjectSizeOffsetVisitor::visitAllocaInst(AllocaInst &I) {
|
|
if (!I.getAllocatedType()->isSized())
|
|
return unknown();
|
|
|
|
TypeSize ElemSize = DL.getTypeAllocSize(I.getAllocatedType());
|
|
if (ElemSize.isScalable() && Options.EvalMode != ObjectSizeOpts::Mode::Min)
|
|
return unknown();
|
|
APInt Size(IntTyBits, ElemSize.getKnownMinSize());
|
|
if (!I.isArrayAllocation())
|
|
return std::make_pair(align(Size, I.getAlign()), Zero);
|
|
|
|
Value *ArraySize = I.getArraySize();
|
|
if (const ConstantInt *C = dyn_cast<ConstantInt>(ArraySize)) {
|
|
APInt NumElems = C->getValue();
|
|
if (!CheckedZextOrTrunc(NumElems))
|
|
return unknown();
|
|
|
|
bool Overflow;
|
|
Size = Size.umul_ov(NumElems, Overflow);
|
|
return Overflow ? unknown()
|
|
: std::make_pair(align(Size, I.getAlign()), Zero);
|
|
}
|
|
return unknown();
|
|
}
|
|
|
|
SizeOffsetType ObjectSizeOffsetVisitor::visitArgument(Argument &A) {
|
|
Type *MemoryTy = A.getPointeeInMemoryValueType();
|
|
// No interprocedural analysis is done at the moment.
|
|
if (!MemoryTy|| !MemoryTy->isSized()) {
|
|
++ObjectVisitorArgument;
|
|
return unknown();
|
|
}
|
|
|
|
APInt Size(IntTyBits, DL.getTypeAllocSize(MemoryTy));
|
|
return std::make_pair(align(Size, A.getParamAlign()), Zero);
|
|
}
|
|
|
|
SizeOffsetType ObjectSizeOffsetVisitor::visitCallBase(CallBase &CB) {
|
|
auto Mapper = [](const Value *V) { return V; };
|
|
if (Optional<APInt> Size = getAllocSize(&CB, TLI, Mapper))
|
|
return std::make_pair(*Size, Zero);
|
|
return unknown();
|
|
}
|
|
|
|
SizeOffsetType
|
|
ObjectSizeOffsetVisitor::visitConstantPointerNull(ConstantPointerNull& CPN) {
|
|
// If null is unknown, there's nothing we can do. Additionally, non-zero
|
|
// address spaces can make use of null, so we don't presume to know anything
|
|
// about that.
|
|
//
|
|
// TODO: How should this work with address space casts? We currently just drop
|
|
// them on the floor, but it's unclear what we should do when a NULL from
|
|
// addrspace(1) gets casted to addrspace(0) (or vice-versa).
|
|
if (Options.NullIsUnknownSize || CPN.getType()->getAddressSpace())
|
|
return unknown();
|
|
return std::make_pair(Zero, Zero);
|
|
}
|
|
|
|
SizeOffsetType
|
|
ObjectSizeOffsetVisitor::visitExtractElementInst(ExtractElementInst&) {
|
|
return unknown();
|
|
}
|
|
|
|
SizeOffsetType
|
|
ObjectSizeOffsetVisitor::visitExtractValueInst(ExtractValueInst&) {
|
|
// Easy cases were already folded by previous passes.
|
|
return unknown();
|
|
}
|
|
|
|
SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalAlias(GlobalAlias &GA) {
|
|
if (GA.isInterposable())
|
|
return unknown();
|
|
return compute(GA.getAliasee());
|
|
}
|
|
|
|
SizeOffsetType ObjectSizeOffsetVisitor::visitGlobalVariable(GlobalVariable &GV){
|
|
if (!GV.hasDefinitiveInitializer())
|
|
return unknown();
|
|
|
|
APInt Size(IntTyBits, DL.getTypeAllocSize(GV.getValueType()));
|
|
return std::make_pair(align(Size, GV.getAlign()), Zero);
|
|
}
|
|
|
|
SizeOffsetType ObjectSizeOffsetVisitor::visitIntToPtrInst(IntToPtrInst&) {
|
|
// clueless
|
|
return unknown();
|
|
}
|
|
|
|
SizeOffsetType ObjectSizeOffsetVisitor::findLoadSizeOffset(
|
|
LoadInst &Load, BasicBlock &BB, BasicBlock::iterator From,
|
|
SmallDenseMap<BasicBlock *, SizeOffsetType, 8> &VisitedBlocks,
|
|
unsigned &ScannedInstCount) {
|
|
constexpr unsigned MaxInstsToScan = 128;
|
|
|
|
auto Where = VisitedBlocks.find(&BB);
|
|
if (Where != VisitedBlocks.end())
|
|
return Where->second;
|
|
|
|
auto Unknown = [this, &BB, &VisitedBlocks]() {
|
|
return VisitedBlocks[&BB] = unknown();
|
|
};
|
|
auto Known = [this, &BB, &VisitedBlocks](SizeOffsetType SO) {
|
|
return VisitedBlocks[&BB] = SO;
|
|
};
|
|
|
|
do {
|
|
Instruction &I = *From;
|
|
|
|
if (I.isDebugOrPseudoInst())
|
|
continue;
|
|
|
|
if (++ScannedInstCount > MaxInstsToScan)
|
|
return Unknown();
|
|
|
|
if (!I.mayWriteToMemory())
|
|
continue;
|
|
|
|
if (auto *SI = dyn_cast<StoreInst>(&I)) {
|
|
AliasResult AR =
|
|
Options.AA->alias(SI->getPointerOperand(), Load.getPointerOperand());
|
|
switch ((AliasResult::Kind)AR) {
|
|
case AliasResult::NoAlias:
|
|
continue;
|
|
case AliasResult::MustAlias:
|
|
if (SI->getValueOperand()->getType()->isPointerTy())
|
|
return Known(compute(SI->getValueOperand()));
|
|
else
|
|
return Unknown(); // No handling of non-pointer values by `compute`.
|
|
default:
|
|
return Unknown();
|
|
}
|
|
}
|
|
|
|
if (auto *CB = dyn_cast<CallBase>(&I)) {
|
|
Function *Callee = CB->getCalledFunction();
|
|
// Bail out on indirect call.
|
|
if (!Callee)
|
|
return Unknown();
|
|
|
|
LibFunc TLIFn;
|
|
if (!TLI || !TLI->getLibFunc(*CB->getCalledFunction(), TLIFn) ||
|
|
!TLI->has(TLIFn))
|
|
return Unknown();
|
|
|
|
// TODO: There's probably more interesting case to support here.
|
|
if (TLIFn != LibFunc_posix_memalign)
|
|
return Unknown();
|
|
|
|
AliasResult AR =
|
|
Options.AA->alias(CB->getOperand(0), Load.getPointerOperand());
|
|
switch ((AliasResult::Kind)AR) {
|
|
case AliasResult::NoAlias:
|
|
continue;
|
|
case AliasResult::MustAlias:
|
|
break;
|
|
default:
|
|
return Unknown();
|
|
}
|
|
|
|
// Is the error status of posix_memalign correctly checked? If not it
|
|
// would be incorrect to assume it succeeds and load doesn't see the
|
|
// previous value.
|
|
Optional<bool> Checked = isImpliedByDomCondition(
|
|
ICmpInst::ICMP_EQ, CB, ConstantInt::get(CB->getType(), 0), &Load, DL);
|
|
if (!Checked || !*Checked)
|
|
return Unknown();
|
|
|
|
Value *Size = CB->getOperand(2);
|
|
auto *C = dyn_cast<ConstantInt>(Size);
|
|
if (!C)
|
|
return Unknown();
|
|
|
|
return Known({C->getValue(), APInt(C->getValue().getBitWidth(), 0)});
|
|
}
|
|
|
|
return Unknown();
|
|
} while (From-- != BB.begin());
|
|
|
|
SmallVector<SizeOffsetType> PredecessorSizeOffsets;
|
|
for (auto *PredBB : predecessors(&BB)) {
|
|
PredecessorSizeOffsets.push_back(findLoadSizeOffset(
|
|
Load, *PredBB, BasicBlock::iterator(PredBB->getTerminator()),
|
|
VisitedBlocks, ScannedInstCount));
|
|
if (!bothKnown(PredecessorSizeOffsets.back()))
|
|
return Unknown();
|
|
}
|
|
|
|
if (PredecessorSizeOffsets.empty())
|
|
return Unknown();
|
|
|
|
return Known(std::accumulate(PredecessorSizeOffsets.begin() + 1,
|
|
PredecessorSizeOffsets.end(),
|
|
PredecessorSizeOffsets.front(),
|
|
[this](SizeOffsetType LHS, SizeOffsetType RHS) {
|
|
return combineSizeOffset(LHS, RHS);
|
|
}));
|
|
}
|
|
|
|
SizeOffsetType ObjectSizeOffsetVisitor::visitLoadInst(LoadInst &LI) {
|
|
if (!Options.AA) {
|
|
++ObjectVisitorLoad;
|
|
return unknown();
|
|
}
|
|
|
|
SmallDenseMap<BasicBlock *, SizeOffsetType, 8> VisitedBlocks;
|
|
unsigned ScannedInstCount = 0;
|
|
SizeOffsetType SO =
|
|
findLoadSizeOffset(LI, *LI.getParent(), BasicBlock::iterator(LI),
|
|
VisitedBlocks, ScannedInstCount);
|
|
if (!bothKnown(SO))
|
|
++ObjectVisitorLoad;
|
|
return SO;
|
|
}
|
|
|
|
SizeOffsetType ObjectSizeOffsetVisitor::combineSizeOffset(SizeOffsetType LHS,
|
|
SizeOffsetType RHS) {
|
|
if (!bothKnown(LHS) || !bothKnown(RHS))
|
|
return unknown();
|
|
|
|
switch (Options.EvalMode) {
|
|
case ObjectSizeOpts::Mode::Min:
|
|
return (getSizeWithOverflow(LHS).slt(getSizeWithOverflow(RHS))) ? LHS : RHS;
|
|
case ObjectSizeOpts::Mode::Max:
|
|
return (getSizeWithOverflow(LHS).sgt(getSizeWithOverflow(RHS))) ? LHS : RHS;
|
|
case ObjectSizeOpts::Mode::Exact:
|
|
return (getSizeWithOverflow(LHS).eq(getSizeWithOverflow(RHS))) ? LHS
|
|
: unknown();
|
|
}
|
|
llvm_unreachable("missing an eval mode");
|
|
}
|
|
|
|
SizeOffsetType ObjectSizeOffsetVisitor::visitPHINode(PHINode &PN) {
|
|
auto IncomingValues = PN.incoming_values();
|
|
return std::accumulate(IncomingValues.begin() + 1, IncomingValues.end(),
|
|
compute(*IncomingValues.begin()),
|
|
[this](SizeOffsetType LHS, Value *VRHS) {
|
|
return combineSizeOffset(LHS, compute(VRHS));
|
|
});
|
|
}
|
|
|
|
SizeOffsetType ObjectSizeOffsetVisitor::visitSelectInst(SelectInst &I) {
|
|
return combineSizeOffset(compute(I.getTrueValue()),
|
|
compute(I.getFalseValue()));
|
|
}
|
|
|
|
SizeOffsetType ObjectSizeOffsetVisitor::visitUndefValue(UndefValue&) {
|
|
return std::make_pair(Zero, Zero);
|
|
}
|
|
|
|
SizeOffsetType ObjectSizeOffsetVisitor::visitInstruction(Instruction &I) {
|
|
LLVM_DEBUG(dbgs() << "ObjectSizeOffsetVisitor unknown instruction:" << I
|
|
<< '\n');
|
|
return unknown();
|
|
}
|
|
|
|
ObjectSizeOffsetEvaluator::ObjectSizeOffsetEvaluator(
|
|
const DataLayout &DL, const TargetLibraryInfo *TLI, LLVMContext &Context,
|
|
ObjectSizeOpts EvalOpts)
|
|
: DL(DL), TLI(TLI), Context(Context),
|
|
Builder(Context, TargetFolder(DL),
|
|
IRBuilderCallbackInserter(
|
|
[&](Instruction *I) { InsertedInstructions.insert(I); })),
|
|
EvalOpts(EvalOpts) {
|
|
// IntTy and Zero must be set for each compute() since the address space may
|
|
// be different for later objects.
|
|
}
|
|
|
|
SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute(Value *V) {
|
|
// XXX - Are vectors of pointers possible here?
|
|
IntTy = cast<IntegerType>(DL.getIndexType(V->getType()));
|
|
Zero = ConstantInt::get(IntTy, 0);
|
|
|
|
SizeOffsetEvalType Result = compute_(V);
|
|
|
|
if (!bothKnown(Result)) {
|
|
// Erase everything that was computed in this iteration from the cache, so
|
|
// that no dangling references are left behind. We could be a bit smarter if
|
|
// we kept a dependency graph. It's probably not worth the complexity.
|
|
for (const Value *SeenVal : SeenVals) {
|
|
CacheMapTy::iterator CacheIt = CacheMap.find(SeenVal);
|
|
// non-computable results can be safely cached
|
|
if (CacheIt != CacheMap.end() && anyKnown(CacheIt->second))
|
|
CacheMap.erase(CacheIt);
|
|
}
|
|
|
|
// Erase any instructions we inserted as part of the traversal.
|
|
for (Instruction *I : InsertedInstructions) {
|
|
I->replaceAllUsesWith(UndefValue::get(I->getType()));
|
|
I->eraseFromParent();
|
|
}
|
|
}
|
|
|
|
SeenVals.clear();
|
|
InsertedInstructions.clear();
|
|
return Result;
|
|
}
|
|
|
|
SizeOffsetEvalType ObjectSizeOffsetEvaluator::compute_(Value *V) {
|
|
ObjectSizeOffsetVisitor Visitor(DL, TLI, Context, EvalOpts);
|
|
SizeOffsetType Const = Visitor.compute(V);
|
|
if (Visitor.bothKnown(Const))
|
|
return std::make_pair(ConstantInt::get(Context, Const.first),
|
|
ConstantInt::get(Context, Const.second));
|
|
|
|
V = V->stripPointerCasts();
|
|
|
|
// Check cache.
|
|
CacheMapTy::iterator CacheIt = CacheMap.find(V);
|
|
if (CacheIt != CacheMap.end())
|
|
return CacheIt->second;
|
|
|
|
// Always generate code immediately before the instruction being
|
|
// processed, so that the generated code dominates the same BBs.
|
|
BuilderTy::InsertPointGuard Guard(Builder);
|
|
if (Instruction *I = dyn_cast<Instruction>(V))
|
|
Builder.SetInsertPoint(I);
|
|
|
|
// Now compute the size and offset.
|
|
SizeOffsetEvalType Result;
|
|
|
|
// Record the pointers that were handled in this run, so that they can be
|
|
// cleaned later if something fails. We also use this set to break cycles that
|
|
// can occur in dead code.
|
|
if (!SeenVals.insert(V).second) {
|
|
Result = unknown();
|
|
} else if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
|
|
Result = visitGEPOperator(*GEP);
|
|
} else if (Instruction *I = dyn_cast<Instruction>(V)) {
|
|
Result = visit(*I);
|
|
} else if (isa<Argument>(V) ||
|
|
(isa<ConstantExpr>(V) &&
|
|
cast<ConstantExpr>(V)->getOpcode() == Instruction::IntToPtr) ||
|
|
isa<GlobalAlias>(V) ||
|
|
isa<GlobalVariable>(V)) {
|
|
// Ignore values where we cannot do more than ObjectSizeVisitor.
|
|
Result = unknown();
|
|
} else {
|
|
LLVM_DEBUG(
|
|
dbgs() << "ObjectSizeOffsetEvaluator::compute() unhandled value: " << *V
|
|
<< '\n');
|
|
Result = unknown();
|
|
}
|
|
|
|
// Don't reuse CacheIt since it may be invalid at this point.
|
|
CacheMap[V] = Result;
|
|
return Result;
|
|
}
|
|
|
|
SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitAllocaInst(AllocaInst &I) {
|
|
if (!I.getAllocatedType()->isSized())
|
|
return unknown();
|
|
|
|
// must be a VLA
|
|
assert(I.isArrayAllocation());
|
|
|
|
// If needed, adjust the alloca's operand size to match the pointer size.
|
|
// Subsequent math operations expect the types to match.
|
|
Value *ArraySize = Builder.CreateZExtOrTrunc(
|
|
I.getArraySize(), DL.getIntPtrType(I.getContext()));
|
|
assert(ArraySize->getType() == Zero->getType() &&
|
|
"Expected zero constant to have pointer type");
|
|
|
|
Value *Size = ConstantInt::get(ArraySize->getType(),
|
|
DL.getTypeAllocSize(I.getAllocatedType()));
|
|
Size = Builder.CreateMul(Size, ArraySize);
|
|
return std::make_pair(Size, Zero);
|
|
}
|
|
|
|
SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitCallBase(CallBase &CB) {
|
|
Optional<AllocFnsTy> FnData = getAllocationSize(&CB, TLI);
|
|
if (!FnData)
|
|
return unknown();
|
|
|
|
// Handle strdup-like functions separately.
|
|
if (FnData->AllocTy == StrDupLike) {
|
|
// TODO: implement evaluation of strdup/strndup
|
|
return unknown();
|
|
}
|
|
|
|
Value *FirstArg = CB.getArgOperand(FnData->FstParam);
|
|
FirstArg = Builder.CreateZExtOrTrunc(FirstArg, IntTy);
|
|
if (FnData->SndParam < 0)
|
|
return std::make_pair(FirstArg, Zero);
|
|
|
|
Value *SecondArg = CB.getArgOperand(FnData->SndParam);
|
|
SecondArg = Builder.CreateZExtOrTrunc(SecondArg, IntTy);
|
|
Value *Size = Builder.CreateMul(FirstArg, SecondArg);
|
|
return std::make_pair(Size, Zero);
|
|
}
|
|
|
|
SizeOffsetEvalType
|
|
ObjectSizeOffsetEvaluator::visitExtractElementInst(ExtractElementInst&) {
|
|
return unknown();
|
|
}
|
|
|
|
SizeOffsetEvalType
|
|
ObjectSizeOffsetEvaluator::visitExtractValueInst(ExtractValueInst&) {
|
|
return unknown();
|
|
}
|
|
|
|
SizeOffsetEvalType
|
|
ObjectSizeOffsetEvaluator::visitGEPOperator(GEPOperator &GEP) {
|
|
SizeOffsetEvalType PtrData = compute_(GEP.getPointerOperand());
|
|
if (!bothKnown(PtrData))
|
|
return unknown();
|
|
|
|
Value *Offset = EmitGEPOffset(&Builder, DL, &GEP, /*NoAssumptions=*/true);
|
|
Offset = Builder.CreateAdd(PtrData.second, Offset);
|
|
return std::make_pair(PtrData.first, Offset);
|
|
}
|
|
|
|
SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitIntToPtrInst(IntToPtrInst&) {
|
|
// clueless
|
|
return unknown();
|
|
}
|
|
|
|
SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitLoadInst(LoadInst &LI) {
|
|
return unknown();
|
|
}
|
|
|
|
SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitPHINode(PHINode &PHI) {
|
|
// Create 2 PHIs: one for size and another for offset.
|
|
PHINode *SizePHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues());
|
|
PHINode *OffsetPHI = Builder.CreatePHI(IntTy, PHI.getNumIncomingValues());
|
|
|
|
// Insert right away in the cache to handle recursive PHIs.
|
|
CacheMap[&PHI] = std::make_pair(SizePHI, OffsetPHI);
|
|
|
|
// Compute offset/size for each PHI incoming pointer.
|
|
for (unsigned i = 0, e = PHI.getNumIncomingValues(); i != e; ++i) {
|
|
Builder.SetInsertPoint(&*PHI.getIncomingBlock(i)->getFirstInsertionPt());
|
|
SizeOffsetEvalType EdgeData = compute_(PHI.getIncomingValue(i));
|
|
|
|
if (!bothKnown(EdgeData)) {
|
|
OffsetPHI->replaceAllUsesWith(UndefValue::get(IntTy));
|
|
OffsetPHI->eraseFromParent();
|
|
InsertedInstructions.erase(OffsetPHI);
|
|
SizePHI->replaceAllUsesWith(UndefValue::get(IntTy));
|
|
SizePHI->eraseFromParent();
|
|
InsertedInstructions.erase(SizePHI);
|
|
return unknown();
|
|
}
|
|
SizePHI->addIncoming(EdgeData.first, PHI.getIncomingBlock(i));
|
|
OffsetPHI->addIncoming(EdgeData.second, PHI.getIncomingBlock(i));
|
|
}
|
|
|
|
Value *Size = SizePHI, *Offset = OffsetPHI;
|
|
if (Value *Tmp = SizePHI->hasConstantValue()) {
|
|
Size = Tmp;
|
|
SizePHI->replaceAllUsesWith(Size);
|
|
SizePHI->eraseFromParent();
|
|
InsertedInstructions.erase(SizePHI);
|
|
}
|
|
if (Value *Tmp = OffsetPHI->hasConstantValue()) {
|
|
Offset = Tmp;
|
|
OffsetPHI->replaceAllUsesWith(Offset);
|
|
OffsetPHI->eraseFromParent();
|
|
InsertedInstructions.erase(OffsetPHI);
|
|
}
|
|
return std::make_pair(Size, Offset);
|
|
}
|
|
|
|
SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitSelectInst(SelectInst &I) {
|
|
SizeOffsetEvalType TrueSide = compute_(I.getTrueValue());
|
|
SizeOffsetEvalType FalseSide = compute_(I.getFalseValue());
|
|
|
|
if (!bothKnown(TrueSide) || !bothKnown(FalseSide))
|
|
return unknown();
|
|
if (TrueSide == FalseSide)
|
|
return TrueSide;
|
|
|
|
Value *Size = Builder.CreateSelect(I.getCondition(), TrueSide.first,
|
|
FalseSide.first);
|
|
Value *Offset = Builder.CreateSelect(I.getCondition(), TrueSide.second,
|
|
FalseSide.second);
|
|
return std::make_pair(Size, Offset);
|
|
}
|
|
|
|
SizeOffsetEvalType ObjectSizeOffsetEvaluator::visitInstruction(Instruction &I) {
|
|
LLVM_DEBUG(dbgs() << "ObjectSizeOffsetEvaluator unknown instruction:" << I
|
|
<< '\n');
|
|
return unknown();
|
|
}
|