582 lines
23 KiB
C++
582 lines
23 KiB
C++
//===- VectorDropLeadUnitDim.cpp - Conversion within the Vector dialect ---===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include <numeric>
|
|
|
|
#include "mlir/Dialect/Arith/IR/Arith.h"
|
|
#include "mlir/Dialect/Utils/StructuredOpsUtils.h"
|
|
#include "mlir/Dialect/Vector/IR/VectorOps.h"
|
|
#include "mlir/Dialect/Vector/Transforms/VectorRewritePatterns.h"
|
|
#include "mlir/Dialect/Vector/Transforms/VectorTransforms.h"
|
|
#include "mlir/Dialect/Vector/Utils/VectorUtils.h"
|
|
#include "mlir/IR/Builders.h"
|
|
#include "mlir/IR/TypeUtilities.h"
|
|
|
|
#define DEBUG_TYPE "vector-drop-unit-dim"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::vector;
|
|
|
|
// Trims leading one dimensions from `oldType` and returns the result type.
|
|
// Returns `vector<1xT>` if `oldType` only has one element.
|
|
static VectorType trimLeadingOneDims(VectorType oldType) {
|
|
ArrayRef<int64_t> oldShape = oldType.getShape();
|
|
ArrayRef<int64_t> newShape = oldShape;
|
|
|
|
ArrayRef<bool> oldScalableDims = oldType.getScalableDims();
|
|
ArrayRef<bool> newScalableDims = oldScalableDims;
|
|
|
|
while (!newShape.empty() && newShape.front() == 1 &&
|
|
!newScalableDims.front()) {
|
|
newShape = newShape.drop_front(1);
|
|
newScalableDims = newScalableDims.drop_front(1);
|
|
}
|
|
|
|
// Make sure we have at least 1 dimension per vector type requirements.
|
|
if (newShape.empty()) {
|
|
newShape = oldShape.take_back();
|
|
newScalableDims = oldType.getScalableDims().take_back();
|
|
}
|
|
return VectorType::get(newShape, oldType.getElementType(), newScalableDims);
|
|
}
|
|
|
|
/// Return a smallVector of size `rank` containing all zeros.
|
|
static SmallVector<int64_t> splatZero(int64_t rank) {
|
|
return SmallVector<int64_t>(rank, 0);
|
|
}
|
|
namespace {
|
|
|
|
// Casts away leading one dimensions in vector.extract_strided_slice's vector
|
|
// input by inserting vector.broadcast.
|
|
struct CastAwayExtractStridedSliceLeadingOneDim
|
|
: public OpRewritePattern<vector::ExtractStridedSliceOp> {
|
|
using OpRewritePattern::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(vector::ExtractStridedSliceOp extractOp,
|
|
PatternRewriter &rewriter) const override {
|
|
// vector.extract_strided_slice requires the input and output vector to have
|
|
// the same rank. Here we drop leading one dimensions from the input vector
|
|
// type to make sure we don't cause mismatch.
|
|
VectorType oldSrcType = extractOp.getSourceVectorType();
|
|
VectorType newSrcType = trimLeadingOneDims(oldSrcType);
|
|
|
|
if (newSrcType.getRank() == oldSrcType.getRank())
|
|
return failure();
|
|
|
|
int64_t dropCount = oldSrcType.getRank() - newSrcType.getRank();
|
|
|
|
VectorType oldDstType = extractOp.getType();
|
|
VectorType newDstType =
|
|
VectorType::get(oldDstType.getShape().drop_front(dropCount),
|
|
oldDstType.getElementType(),
|
|
oldDstType.getScalableDims().drop_front(dropCount));
|
|
|
|
Location loc = extractOp.getLoc();
|
|
|
|
Value newSrcVector = rewriter.create<vector::ExtractOp>(
|
|
loc, extractOp.getVector(), splatZero(dropCount));
|
|
|
|
// The offsets/sizes/strides attribute can have a less number of elements
|
|
// than the input vector's rank: it is meant for the leading dimensions.
|
|
auto newOffsets = rewriter.getArrayAttr(
|
|
extractOp.getOffsets().getValue().drop_front(dropCount));
|
|
auto newSizes = rewriter.getArrayAttr(
|
|
extractOp.getSizes().getValue().drop_front(dropCount));
|
|
auto newStrides = rewriter.getArrayAttr(
|
|
extractOp.getStrides().getValue().drop_front(dropCount));
|
|
|
|
auto newExtractOp = rewriter.create<vector::ExtractStridedSliceOp>(
|
|
loc, newDstType, newSrcVector, newOffsets, newSizes, newStrides);
|
|
|
|
rewriter.replaceOpWithNewOp<vector::BroadcastOp>(extractOp, oldDstType,
|
|
newExtractOp);
|
|
|
|
return success();
|
|
}
|
|
};
|
|
|
|
// Casts away leading one dimensions in vector.insert_strided_slice's vector
|
|
// inputs by inserting vector.broadcast.
|
|
struct CastAwayInsertStridedSliceLeadingOneDim
|
|
: public OpRewritePattern<vector::InsertStridedSliceOp> {
|
|
using OpRewritePattern::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(vector::InsertStridedSliceOp insertOp,
|
|
PatternRewriter &rewriter) const override {
|
|
VectorType oldSrcType = insertOp.getSourceVectorType();
|
|
VectorType newSrcType = trimLeadingOneDims(oldSrcType);
|
|
VectorType oldDstType = insertOp.getDestVectorType();
|
|
VectorType newDstType = trimLeadingOneDims(oldDstType);
|
|
|
|
int64_t srcDropCount = oldSrcType.getRank() - newSrcType.getRank();
|
|
int64_t dstDropCount = oldDstType.getRank() - newDstType.getRank();
|
|
if (srcDropCount == 0 && dstDropCount == 0)
|
|
return failure();
|
|
|
|
// Trim leading one dimensions from both operands.
|
|
Location loc = insertOp.getLoc();
|
|
|
|
Value newSrcVector = rewriter.create<vector::ExtractOp>(
|
|
loc, insertOp.getSource(), splatZero(srcDropCount));
|
|
Value newDstVector = rewriter.create<vector::ExtractOp>(
|
|
loc, insertOp.getDest(), splatZero(dstDropCount));
|
|
|
|
auto newOffsets = rewriter.getArrayAttr(
|
|
insertOp.getOffsets().getValue().take_back(newDstType.getRank()));
|
|
auto newStrides = rewriter.getArrayAttr(
|
|
insertOp.getStrides().getValue().take_back(newSrcType.getRank()));
|
|
|
|
auto newInsertOp = rewriter.create<vector::InsertStridedSliceOp>(
|
|
loc, newDstType, newSrcVector, newDstVector, newOffsets, newStrides);
|
|
|
|
rewriter.replaceOpWithNewOp<vector::BroadcastOp>(insertOp, oldDstType,
|
|
newInsertOp);
|
|
|
|
return success();
|
|
}
|
|
};
|
|
|
|
// Casts away leading one dimensions in vector.insert's vector inputs by
|
|
// inserting vector.broadcast.
|
|
struct CastAwayInsertLeadingOneDim : public OpRewritePattern<vector::InsertOp> {
|
|
using OpRewritePattern::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(vector::InsertOp insertOp,
|
|
PatternRewriter &rewriter) const override {
|
|
Type oldSrcType = insertOp.getSourceType();
|
|
Type newSrcType = oldSrcType;
|
|
int64_t oldSrcRank = 0, newSrcRank = 0;
|
|
if (auto type = dyn_cast<VectorType>(oldSrcType)) {
|
|
newSrcType = trimLeadingOneDims(type);
|
|
oldSrcRank = type.getRank();
|
|
newSrcRank = cast<VectorType>(newSrcType).getRank();
|
|
}
|
|
|
|
VectorType oldDstType = insertOp.getDestVectorType();
|
|
VectorType newDstType = trimLeadingOneDims(oldDstType);
|
|
|
|
int64_t srcDropCount = oldSrcRank - newSrcRank;
|
|
int64_t dstDropCount = oldDstType.getRank() - newDstType.getRank();
|
|
if (srcDropCount == 0 && dstDropCount == 0)
|
|
return failure();
|
|
|
|
// Trim leading one dimensions from both operands.
|
|
Location loc = insertOp.getLoc();
|
|
|
|
Value newSrcVector = insertOp.getSource();
|
|
if (oldSrcRank != 0) {
|
|
newSrcVector = rewriter.create<vector::ExtractOp>(
|
|
loc, insertOp.getSource(), splatZero(srcDropCount));
|
|
}
|
|
Value newDstVector = rewriter.create<vector::ExtractOp>(
|
|
loc, insertOp.getDest(), splatZero(dstDropCount));
|
|
|
|
// New position rank needs to be computed in two steps: (1) if destination
|
|
// type has leading unit dims, we also trim the position array accordingly,
|
|
// then (2) if source type also has leading unit dims, we need to append
|
|
// zeroes to the position array accordingly.
|
|
unsigned oldPosRank = insertOp.getNumIndices();
|
|
unsigned newPosRank = std::max<int64_t>(0, oldPosRank - dstDropCount);
|
|
SmallVector<OpFoldResult> oldPosition = insertOp.getMixedPosition();
|
|
SmallVector<OpFoldResult> newPosition =
|
|
llvm::to_vector(ArrayRef(oldPosition).take_back(newPosRank));
|
|
newPosition.resize(newDstType.getRank() - newSrcRank,
|
|
rewriter.getI64IntegerAttr(0));
|
|
|
|
auto newInsertOp = rewriter.create<vector::InsertOp>(
|
|
loc, newSrcVector, newDstVector, newPosition);
|
|
|
|
rewriter.replaceOpWithNewOp<vector::BroadcastOp>(insertOp, oldDstType,
|
|
newInsertOp);
|
|
|
|
return success();
|
|
}
|
|
};
|
|
|
|
static Value dropUnitDimsFromMask(OpBuilder &b, Location loc, Value mask,
|
|
VectorType newType, AffineMap newMap,
|
|
VectorType oldMaskType) {
|
|
// Infer the type of the new mask from the new map.
|
|
VectorType newMaskType = inferTransferOpMaskType(newType, newMap);
|
|
|
|
// If the new mask is broadcastable to the old result type, we can safely
|
|
// use a `vector.extract` to get the new mask. Otherwise the best we can
|
|
// do is shape cast.
|
|
if (vector::isBroadcastableTo(newMaskType, oldMaskType) ==
|
|
BroadcastableToResult::Success) {
|
|
int64_t dropDim = oldMaskType.getRank() - newMaskType.getRank();
|
|
return b.create<vector::ExtractOp>(loc, mask, splatZero(dropDim));
|
|
}
|
|
return b.create<vector::ShapeCastOp>(loc, newMaskType, mask);
|
|
}
|
|
|
|
// Turns vector.transfer_read on vector with leading 1 dimensions into
|
|
// vector.shape_cast followed by vector.transfer_read on vector without leading
|
|
// 1 dimensions.
|
|
struct CastAwayTransferReadLeadingOneDim
|
|
: public OpRewritePattern<vector::TransferReadOp> {
|
|
using OpRewritePattern::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(vector::TransferReadOp read,
|
|
PatternRewriter &rewriter) const override {
|
|
// TODO(#78787): Not supported masked op yet.
|
|
if (cast<MaskableOpInterface>(read.getOperation()).isMasked())
|
|
return failure();
|
|
// TODO: support 0-d corner case.
|
|
if (read.getTransferRank() == 0)
|
|
return failure();
|
|
|
|
auto shapedType = cast<ShapedType>(read.getSource().getType());
|
|
if (shapedType.getElementType() != read.getVectorType().getElementType())
|
|
return failure();
|
|
|
|
VectorType oldType = read.getVectorType();
|
|
VectorType newType = trimLeadingOneDims(oldType);
|
|
|
|
if (newType == oldType)
|
|
return failure();
|
|
|
|
AffineMap oldMap = read.getPermutationMap();
|
|
ArrayRef<AffineExpr> newResults =
|
|
oldMap.getResults().take_back(newType.getRank());
|
|
AffineMap newMap =
|
|
AffineMap::get(oldMap.getNumDims(), oldMap.getNumSymbols(), newResults,
|
|
rewriter.getContext());
|
|
|
|
ArrayAttr inBoundsAttr;
|
|
if (read.getInBounds())
|
|
inBoundsAttr = rewriter.getArrayAttr(
|
|
read.getInBoundsAttr().getValue().take_back(newType.getRank()));
|
|
|
|
Value mask = Value();
|
|
if (read.getMask()) {
|
|
VectorType maskType = read.getMaskType();
|
|
mask = dropUnitDimsFromMask(rewriter, read.getLoc(), read.getMask(),
|
|
newType, newMap, maskType);
|
|
}
|
|
|
|
auto newRead = rewriter.create<vector::TransferReadOp>(
|
|
read.getLoc(), newType, read.getSource(), read.getIndices(),
|
|
AffineMapAttr::get(newMap), read.getPadding(), mask, inBoundsAttr);
|
|
rewriter.replaceOpWithNewOp<vector::BroadcastOp>(read, oldType, newRead);
|
|
|
|
return success();
|
|
}
|
|
};
|
|
|
|
// Turns vector.transfer_write on vector with leading 1 dimensions into
|
|
// vector.shape_cast followed by vector.transfer_write on vector without leading
|
|
// 1 dimensions.
|
|
struct CastAwayTransferWriteLeadingOneDim
|
|
: public OpRewritePattern<vector::TransferWriteOp> {
|
|
using OpRewritePattern::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(vector::TransferWriteOp write,
|
|
PatternRewriter &rewriter) const override {
|
|
// TODO(#78787): Not supported masked op yet.
|
|
if (cast<MaskableOpInterface>(write.getOperation()).isMasked())
|
|
return failure();
|
|
// TODO: support 0-d corner case.
|
|
if (write.getTransferRank() == 0)
|
|
return failure();
|
|
|
|
auto shapedType = dyn_cast<ShapedType>(write.getSource().getType());
|
|
if (shapedType.getElementType() != write.getVectorType().getElementType())
|
|
return failure();
|
|
|
|
VectorType oldType = write.getVectorType();
|
|
VectorType newType = trimLeadingOneDims(oldType);
|
|
if (newType == oldType)
|
|
return failure();
|
|
int64_t dropDim = oldType.getRank() - newType.getRank();
|
|
|
|
AffineMap oldMap = write.getPermutationMap();
|
|
ArrayRef<AffineExpr> newResults =
|
|
oldMap.getResults().take_back(newType.getRank());
|
|
AffineMap newMap =
|
|
AffineMap::get(oldMap.getNumDims(), oldMap.getNumSymbols(), newResults,
|
|
rewriter.getContext());
|
|
|
|
ArrayAttr inBoundsAttr;
|
|
if (write.getInBounds())
|
|
inBoundsAttr = rewriter.getArrayAttr(
|
|
write.getInBoundsAttr().getValue().take_back(newType.getRank()));
|
|
|
|
auto newVector = rewriter.create<vector::ExtractOp>(
|
|
write.getLoc(), write.getVector(), splatZero(dropDim));
|
|
|
|
if (write.getMask()) {
|
|
VectorType maskType = write.getMaskType();
|
|
Value newMask = dropUnitDimsFromMask(
|
|
rewriter, write.getLoc(), write.getMask(), newType, newMap, maskType);
|
|
rewriter.replaceOpWithNewOp<vector::TransferWriteOp>(
|
|
write, newVector, write.getSource(), write.getIndices(),
|
|
AffineMapAttr::get(newMap), newMask, inBoundsAttr);
|
|
return success();
|
|
}
|
|
|
|
rewriter.replaceOpWithNewOp<vector::TransferWriteOp>(
|
|
write, newVector, write.getSource(), write.getIndices(),
|
|
AffineMapAttr::get(newMap), inBoundsAttr);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
FailureOr<Value>
|
|
mlir::vector::castAwayContractionLeadingOneDim(vector::ContractionOp contractOp,
|
|
MaskingOpInterface maskingOp,
|
|
RewriterBase &rewriter) {
|
|
VectorType oldAccType = dyn_cast<VectorType>(contractOp.getAccType());
|
|
if (oldAccType == nullptr)
|
|
return failure();
|
|
if (oldAccType.getRank() < 2)
|
|
return failure();
|
|
if (oldAccType.getShape()[0] != 1)
|
|
return failure();
|
|
// currently we support only dropping one dim but the pattern can be applied
|
|
// greedily to drop more.
|
|
int64_t dropDim = 1;
|
|
|
|
auto oldIndexingMaps = contractOp.getIndexingMapsArray();
|
|
SmallVector<AffineMap> newIndexingMaps;
|
|
|
|
auto oldIteratorTypes = contractOp.getIteratorTypes();
|
|
SmallVector<Attribute> newIteratorTypes;
|
|
|
|
int64_t dimToDrop = oldIndexingMaps[2].getDimPosition(0);
|
|
|
|
if (!isParallelIterator(oldIteratorTypes[dimToDrop]))
|
|
// only parallel type iterators can be dropped.
|
|
return failure();
|
|
|
|
for (const auto &it : llvm::enumerate(oldIteratorTypes)) {
|
|
int64_t currDim = it.index();
|
|
if (currDim == dimToDrop)
|
|
continue;
|
|
newIteratorTypes.push_back(it.value());
|
|
}
|
|
|
|
SmallVector<Value> operands = {contractOp.getLhs(), contractOp.getRhs(),
|
|
contractOp.getAcc()};
|
|
SmallVector<Value> newOperands;
|
|
auto loc = contractOp.getLoc();
|
|
|
|
for (const auto &it : llvm::enumerate(oldIndexingMaps)) {
|
|
// Check if the dim to be dropped exists as a leading dim in the operand
|
|
// if it does then we use vector.extract to drop it.
|
|
bool validExtract = false;
|
|
SmallVector<AffineExpr> results;
|
|
auto map = it.value();
|
|
int64_t orginalZeroDim = it.value().getDimPosition(0);
|
|
if (orginalZeroDim != dimToDrop) {
|
|
// There are two reasons to be in this path, 1. We need to
|
|
// transpose the operand to make the dim to be dropped
|
|
// leading. 2. The dim to be dropped does not exist and in
|
|
// that case we dont want to add a unit transpose but we must
|
|
// check all the indices to make sure this is the case.
|
|
bool transposeNeeded = false;
|
|
SmallVector<int64_t> perm;
|
|
SmallVector<AffineExpr> transposeResults;
|
|
|
|
for (int64_t i = 0, e = map.getNumResults(); i < e; ++i) {
|
|
int64_t currDim = map.getDimPosition(i);
|
|
if (currDim == dimToDrop) {
|
|
transposeNeeded = true;
|
|
perm.insert(perm.begin(), i);
|
|
auto targetExpr = rewriter.getAffineDimExpr(currDim);
|
|
transposeResults.insert(transposeResults.begin(), targetExpr);
|
|
} else {
|
|
perm.push_back(i);
|
|
auto targetExpr = rewriter.getAffineDimExpr(currDim);
|
|
transposeResults.push_back(targetExpr);
|
|
}
|
|
}
|
|
|
|
// Checks if only the outer, unit dimensions (of size 1) are permuted.
|
|
// Such transposes do not materially effect the underlying vector and can
|
|
// be omitted. EG: perm [1, 0, 2] applied to vector<1x1x8xi32>
|
|
bool transposeNonOuterUnitDims = false;
|
|
auto operandShape = cast<ShapedType>(operands[it.index()].getType());
|
|
for (auto [index, dim] :
|
|
llvm::enumerate(ArrayRef<int64_t>(perm).drop_back(1))) {
|
|
if (dim != static_cast<int64_t>(index) &&
|
|
operandShape.getDimSize(index) != 1) {
|
|
transposeNonOuterUnitDims = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Do the transpose now if needed so that we can drop the
|
|
// correct dim using extract later.
|
|
if (transposeNeeded) {
|
|
map = AffineMap::get(map.getNumDims(), 0, transposeResults,
|
|
contractOp.getContext());
|
|
if (transposeNonOuterUnitDims) {
|
|
operands[it.index()] = rewriter.createOrFold<vector::TransposeOp>(
|
|
loc, operands[it.index()], perm);
|
|
}
|
|
}
|
|
}
|
|
// We have taken care to have the dim to be dropped be
|
|
// the leading dim. If its still not leading that means it
|
|
// does not exist in this operand and hence we do not need
|
|
// an extract.
|
|
if (map.getDimPosition(0) == dimToDrop)
|
|
validExtract = true;
|
|
|
|
for (int64_t i = 0, e = map.getNumResults(); i < e; ++i) {
|
|
int64_t currDim = map.getDimPosition(i);
|
|
if (currDim == dimToDrop)
|
|
// This is the dim we are dropping.
|
|
continue;
|
|
auto targetExpr = rewriter.getAffineDimExpr(
|
|
currDim < dimToDrop ? currDim : currDim - 1);
|
|
results.push_back(targetExpr);
|
|
}
|
|
newIndexingMaps.push_back(AffineMap::get(map.getNumDims() - 1, 0, results,
|
|
contractOp.getContext()));
|
|
// Extract if its a valid extraction, otherwise use the operand
|
|
// without extraction.
|
|
newOperands.push_back(
|
|
validExtract ? rewriter.create<vector::ExtractOp>(
|
|
loc, operands[it.index()], splatZero(dropDim))
|
|
: operands[it.index()]);
|
|
}
|
|
|
|
// Depending on whether this vector.contract is masked, the replacing Op
|
|
// should either be a new vector.contract Op or vector.mask Op.
|
|
Operation *newOp = rewriter.create<vector::ContractionOp>(
|
|
loc, newOperands[0], newOperands[1], newOperands[2],
|
|
rewriter.getAffineMapArrayAttr(newIndexingMaps),
|
|
rewriter.getArrayAttr(newIteratorTypes), contractOp.getKind());
|
|
|
|
if (maskingOp) {
|
|
auto newMask = rewriter.create<vector::ExtractOp>(loc, maskingOp.getMask(),
|
|
splatZero(dropDim));
|
|
|
|
newOp = mlir::vector::maskOperation(rewriter, newOp, newMask);
|
|
}
|
|
|
|
return rewriter
|
|
.create<vector::BroadcastOp>(loc, contractOp->getResultTypes()[0],
|
|
newOp->getResults()[0])
|
|
.getResult();
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// Turns vector.contract on vector with leading 1 dimensions into
|
|
/// vector.extract followed by vector.contract on vector without leading
|
|
/// 1 dimensions. Also performs transpose of lhs and rhs operands if required
|
|
/// prior to extract.
|
|
struct CastAwayContractionLeadingOneDim
|
|
: public MaskableOpRewritePattern<vector::ContractionOp> {
|
|
using MaskableOpRewritePattern::MaskableOpRewritePattern;
|
|
|
|
FailureOr<Value>
|
|
matchAndRewriteMaskableOp(vector::ContractionOp contractOp,
|
|
MaskingOpInterface maskingOp,
|
|
PatternRewriter &rewriter) const override {
|
|
return castAwayContractionLeadingOneDim(contractOp, maskingOp, rewriter);
|
|
}
|
|
};
|
|
|
|
/// Looks at elementwise operations on vectors with at least one leading
|
|
/// dimension equal 1, e.g. vector<1x[4]x1xf32> (but not vector<2x[4]x1xf32>),
|
|
/// and cast aways the leading one dimensions (_plural_) and then broadcasts
|
|
/// the results.
|
|
///
|
|
/// Example before:
|
|
/// %1 = arith.mulf %arg0, %arg1 : vector<1x4x1xf32>
|
|
/// Example after:
|
|
/// %2 = arith.mulf %0, %1 : vector<4x1xf32>
|
|
/// %3 = vector.broadcast %2 : vector<4x1xf32> to vector<1x4x1xf32>
|
|
///
|
|
/// Does support scalable vectors.
|
|
class CastAwayElementwiseLeadingOneDim : public RewritePattern {
|
|
public:
|
|
CastAwayElementwiseLeadingOneDim(MLIRContext *context,
|
|
PatternBenefit benefit = 1)
|
|
: RewritePattern(MatchAnyOpTypeTag(), benefit, context) {}
|
|
|
|
LogicalResult matchAndRewrite(Operation *op,
|
|
PatternRewriter &rewriter) const override {
|
|
if (!OpTrait::hasElementwiseMappableTraits(op) || op->getNumResults() != 1)
|
|
return failure();
|
|
auto vecType = dyn_cast<VectorType>(op->getResultTypes()[0]);
|
|
if (!vecType)
|
|
return failure();
|
|
VectorType newVecType = trimLeadingOneDims(vecType);
|
|
if (newVecType == vecType)
|
|
return failure();
|
|
int64_t dropDim = vecType.getRank() - newVecType.getRank();
|
|
SmallVector<Value, 4> newOperands;
|
|
for (Value operand : op->getOperands()) {
|
|
if (auto opVecType = dyn_cast<VectorType>(operand.getType())) {
|
|
newOperands.push_back(rewriter.create<vector::ExtractOp>(
|
|
op->getLoc(), operand, splatZero(dropDim)));
|
|
} else {
|
|
newOperands.push_back(operand);
|
|
}
|
|
}
|
|
Operation *newOp =
|
|
rewriter.create(op->getLoc(), op->getName().getIdentifier(),
|
|
newOperands, newVecType, op->getAttrs());
|
|
rewriter.replaceOpWithNewOp<vector::BroadcastOp>(op, vecType,
|
|
newOp->getResult(0));
|
|
return success();
|
|
}
|
|
};
|
|
|
|
// Drops leading 1 dimensions from vector.constant_mask and inserts a
|
|
// vector.broadcast back to the original shape.
|
|
struct CastAwayConstantMaskLeadingOneDim
|
|
: public OpRewritePattern<vector::ConstantMaskOp> {
|
|
using OpRewritePattern::OpRewritePattern;
|
|
|
|
LogicalResult matchAndRewrite(vector::ConstantMaskOp mask,
|
|
PatternRewriter &rewriter) const override {
|
|
VectorType oldType = mask.getType();
|
|
VectorType newType = trimLeadingOneDims(oldType);
|
|
|
|
if (newType == oldType)
|
|
return failure();
|
|
|
|
int64_t dropDim = oldType.getRank() - newType.getRank();
|
|
ArrayRef<int64_t> dimSizes = mask.getMaskDimSizes();
|
|
|
|
// If any of the dropped unit dims has a size of `0`, the entire mask is a
|
|
// zero mask, else the unit dim has no effect on the mask.
|
|
int64_t flatLeadingSize =
|
|
std::accumulate(dimSizes.begin(), dimSizes.begin() + dropDim + 1,
|
|
static_cast<int64_t>(1), std::multiplies<int64_t>());
|
|
SmallVector<int64_t> newDimSizes = {flatLeadingSize};
|
|
newDimSizes.append(dimSizes.begin() + dropDim + 1, dimSizes.end());
|
|
|
|
auto newMask = rewriter.create<vector::ConstantMaskOp>(
|
|
mask.getLoc(), newType, newDimSizes);
|
|
rewriter.replaceOpWithNewOp<vector::BroadcastOp>(mask, oldType, newMask);
|
|
return success();
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
void mlir::vector::populateCastAwayVectorLeadingOneDimPatterns(
|
|
RewritePatternSet &patterns, PatternBenefit benefit) {
|
|
patterns
|
|
.add<CastAwayExtractStridedSliceLeadingOneDim,
|
|
CastAwayInsertStridedSliceLeadingOneDim, CastAwayInsertLeadingOneDim,
|
|
CastAwayConstantMaskLeadingOneDim, CastAwayTransferReadLeadingOneDim,
|
|
CastAwayTransferWriteLeadingOneDim, CastAwayElementwiseLeadingOneDim,
|
|
CastAwayContractionLeadingOneDim>(patterns.getContext(), benefit);
|
|
populateShapeCastFoldingPatterns(patterns, benefit);
|
|
}
|